

# Statistical ensembles without typicality

Paul Boes, Henrik Wilming, Jens Eisert, Rodrigo Gallego

**QIP'18** 

# A frequent question in thermodynamics

Given a (quantum) system of which you only know its average energy e wrt some Hamiltonian H, how will it behave thermodynamically?

# A frequent question in thermodynamics

Given a (quantum) system of which you only know its average energy e wrt some Hamiltonian H, how will it behave thermodynamically?

Difficult problem, due to lack of information about underlying state of system.

"Gibbs' trick": Assign canonical ensemble.

$$\{\rho: \operatorname{Tr}(\rho H) = e\} =: \left(e, H\right) \longrightarrow \gamma_e(H) := \frac{e^{-\beta(e)H}}{\operatorname{Tr}(e^{-\beta(e)H})} \in (e, H)$$

"macrostate" "microstate"

# Why does this work?

# Why does this work?

Typicality: vast majority of microstates compatible with coarse-grained information behaves like can. ensemble wrt property of interest.

# Why does this work?

Typicality: vast majority of microstates compatible with coarse-grained information behaves like can. ensemble wrt property of interest.

E.g.: Canonical Typicality (Popescu et al., Goldstein et al., '06)

$$\frac{V_{\mu_{\text{Haar}}}[\{|\psi\rangle \in \mathcal{H}_{mc} \mid \mathcal{D}(Tr_{\bar{S}}(|\psi\rangle \langle \psi|), \gamma_S) \ge \epsilon\}]}{V_{\mu_{\text{Haar}}}[\{|\psi\rangle \in \mathcal{H}_{mc}\}]} \le \epsilon'$$

#### This talk

Provide a novel way to motivate the success of Gibbs' trick that is independent of any measure or Jaynes-like reasoning.

Result: Thermodynamically, any macrostate is operationally equivalent to its corresponding canonical ensemble.

1. Two models of thermodynamic transitions

$$\rho \rightarrow O_1 \rightarrow \rho_f \qquad (e, H) \rightarrow O_2 \rightarrow \rho_f$$

1. Two models of thermodynamic transitions

$$\rho \rightarrow O_1 \rightarrow \rho_f \qquad (e, H) \rightarrow O_2 \rightarrow \rho_f$$

2. Compare via reachable state sets

$$(e, H) \rightarrow \rho_f \stackrel{?}{\Leftrightarrow} \rho \rightarrow \rho_f$$

1. Two models of thermodynamic transitions

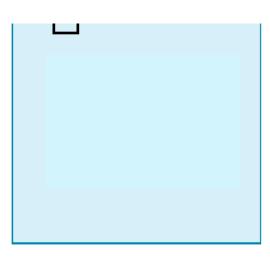
$$\rho \rightarrow O_1 \rightarrow \rho_f \qquad (e, H) \rightarrow O_2 \rightarrow \rho_f$$

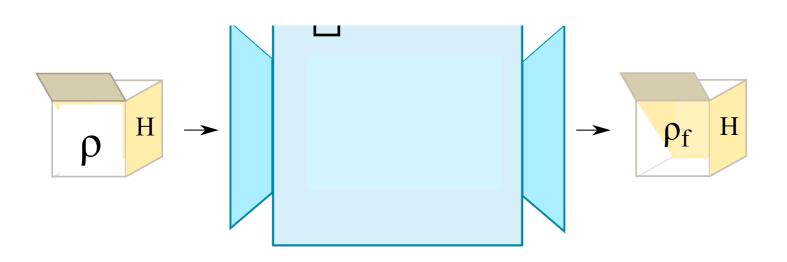
2. Compare via reachable state sets

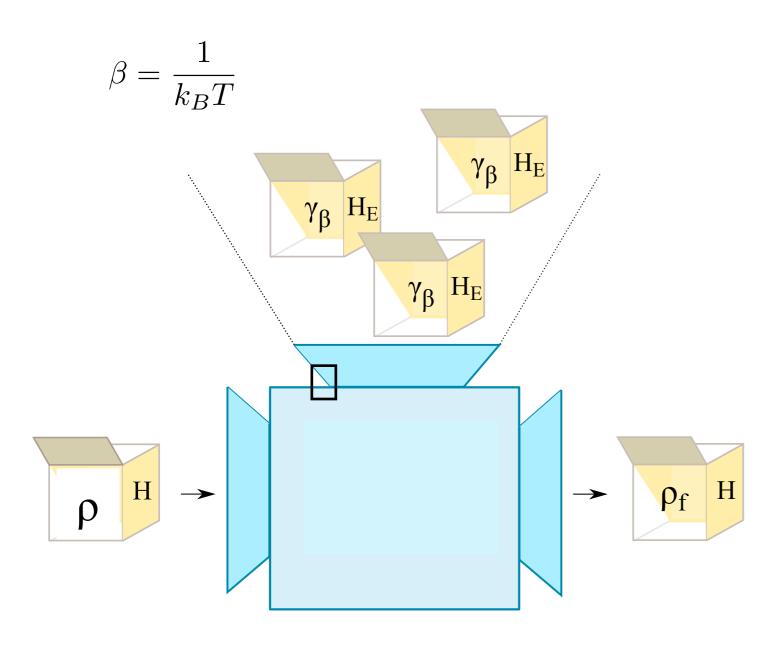
$$(e, H) \rightarrow \rho_f \stackrel{?}{\Leftrightarrow} \rho \rightarrow \rho_f$$

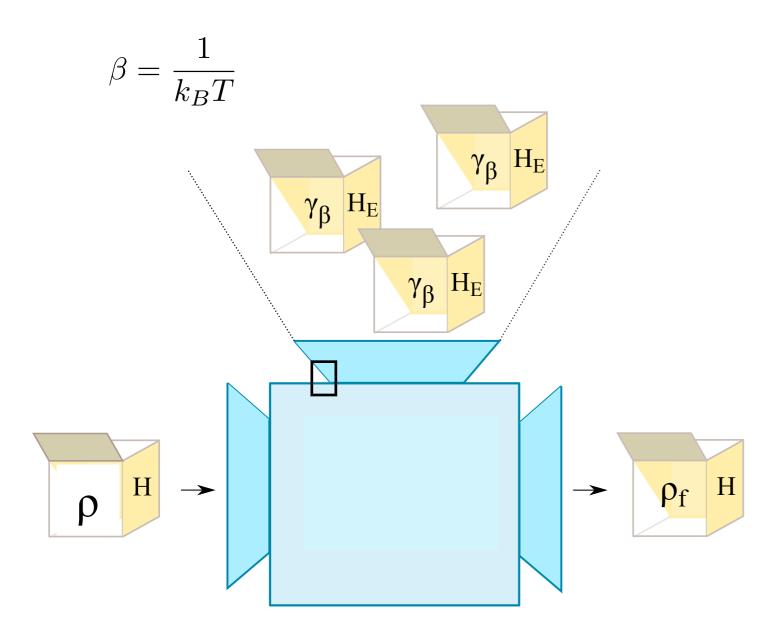
 Show equivalence between macrostates and canonical ensembles

$$(e,H) \sim \gamma_e(H)$$



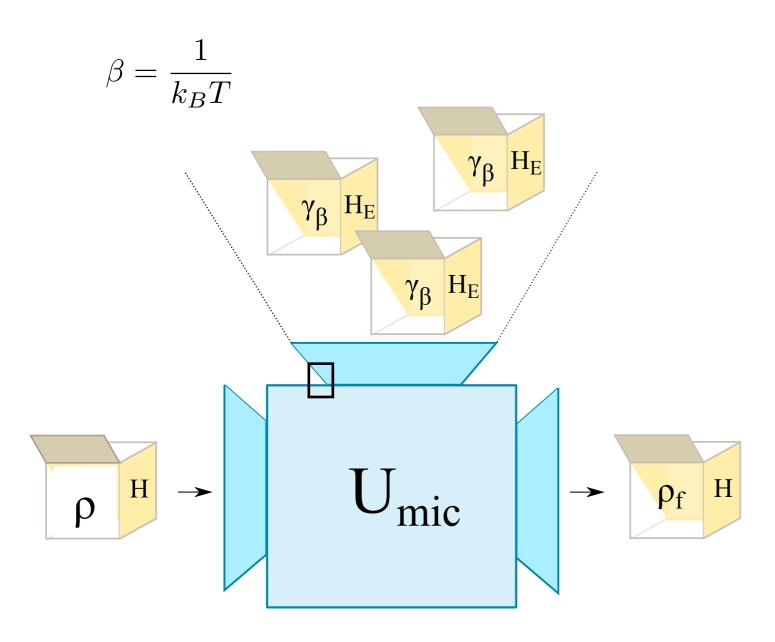






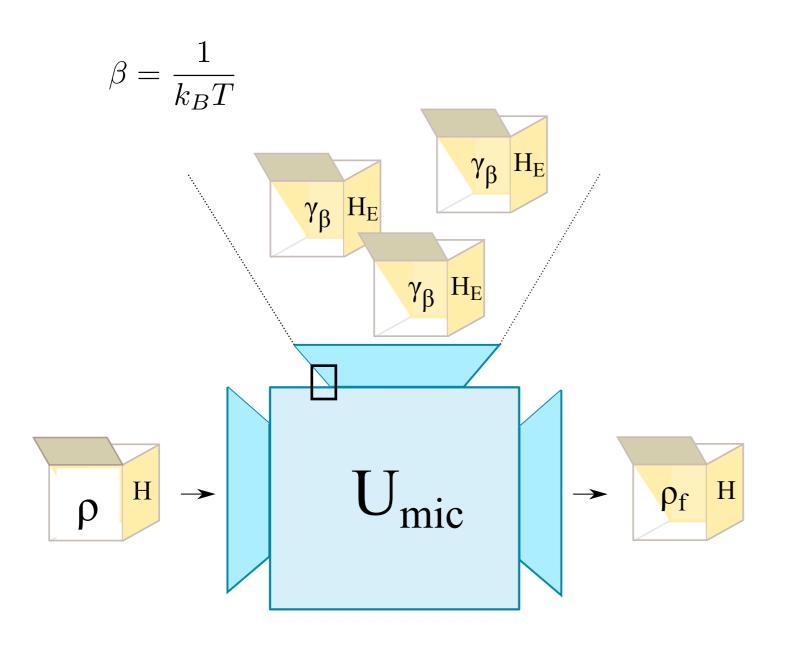
# 1. Bath states:

$$\gamma_{\beta}(E^{i}) = \frac{e^{-\beta H_{E^{i}}}}{tr(e^{-\beta H_{E^{i}}})}$$



# 1. Bath states:

$$\gamma_{\beta}(E^{i}) = \frac{e^{-\beta H_{E^{i}}}}{tr(e^{-\beta H_{E^{i}}})}$$



#### 1. Bath states:

$$\gamma_{\beta}(E^{i}) = \frac{e^{-\beta H_{E^{i}}}}{tr(e^{-\beta H_{E^{i}}})}$$

## 2. Evolution:

S and E evolve unitarily, such that total average energy preserved

## Microstate Operations

$$\rho \stackrel{\beta-\mathrm{mic.}}{\longrightarrow} \rho_f$$

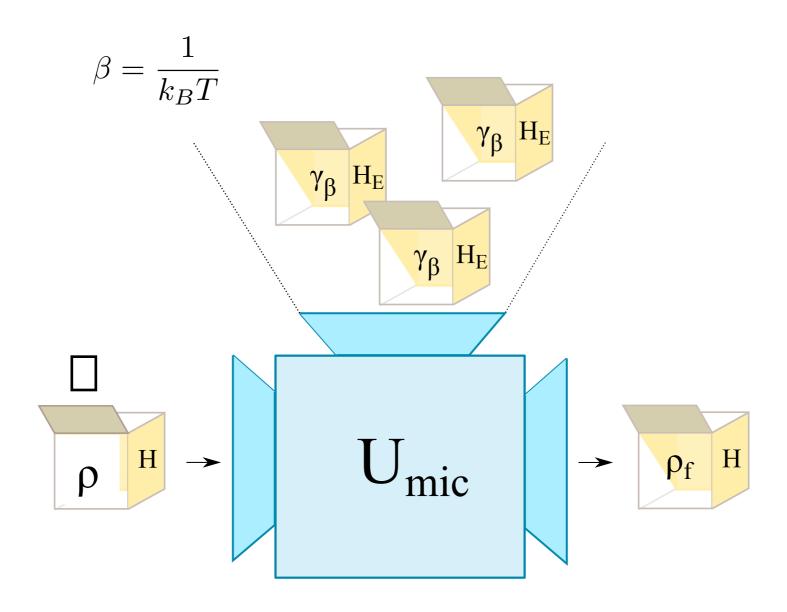
if

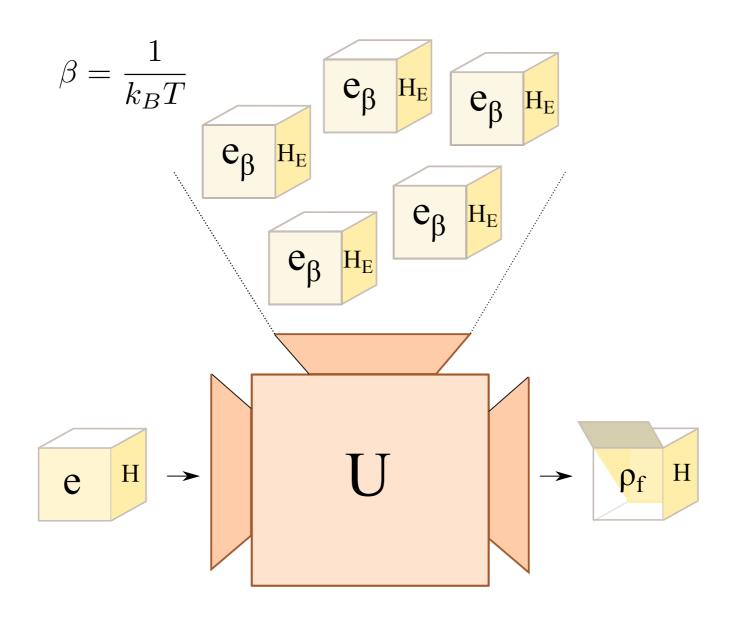
$$\forall \epsilon, \epsilon' > 0, \exists \{H_{E^1}, \dots, H_{E^N}\}, U \text{ s.t.}$$

$$\rho_f \approx_{\epsilon} tr_E \left( U \rho \bigotimes_{i=1}^N \gamma_{\beta}(H_{E^i}) U^{\dagger} \right)$$

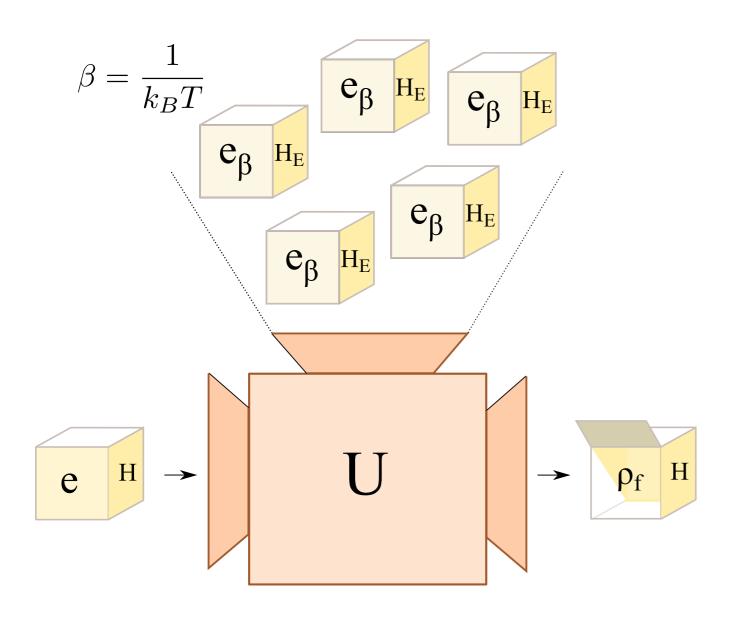
and

$$\mathcal{E}\left(U \rho \bigotimes_{i=1}^{N} \gamma_{\beta}(H_{E^{i}}) U^{\dagger}\right) \approx_{\epsilon'} \mathcal{E}\left(\rho \bigotimes_{i=1}^{N} \gamma_{\beta}(H_{E^{i}})\right)$$



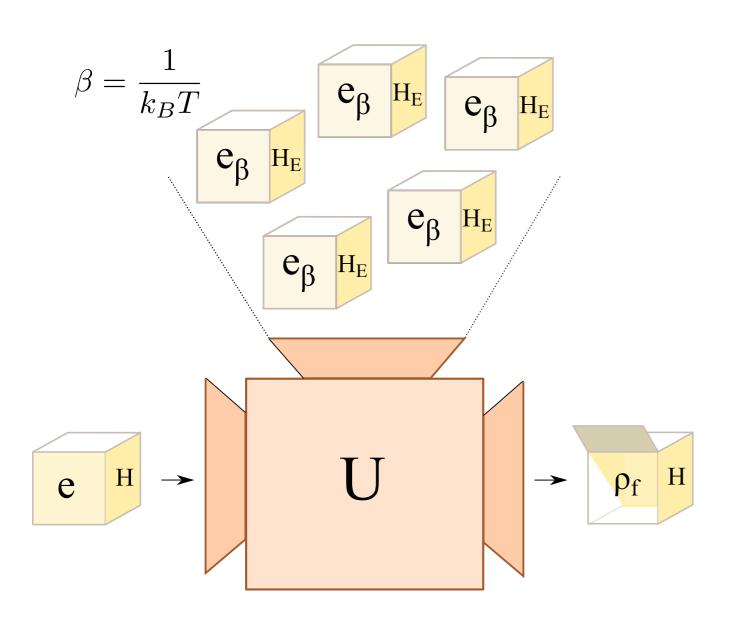


# 1. Bath states:



$$(e_{\beta}(H_{E^i}), H_{E^i}),$$

$$e_{\beta}(H_{E^i}) := \mathcal{E}(\gamma_{\beta}(H_{E^i}))$$



#### 1. Bath states:

$$(e_{\beta}(H_{E^i}), H_{E^i}),$$

$$e_{\beta}(H_{E^i}) := \mathcal{E}(\gamma_{\beta}(H_{E^i}))$$

#### 2. Evolution:

S and E evolve unitarily, such that total average energy preserved

## **Macrostate Operations**

$$(e, H) \stackrel{\beta-\text{mac.}}{\longrightarrow} \rho_f$$

if

$$\forall \epsilon, \epsilon' > 0, \exists \{H_{E^1}, \dots, H_{E^N}\}, U \text{ s.t.}$$

$$\forall \rho \in (e, H), \sigma^{(i)} \in (e_{\beta}, H_{E^i})$$

$$\rho_f \approx_{\epsilon} tr_E \left( U \rho \bigotimes_{i=1}^N \sigma^{(i)} U^{\dagger} \right)$$

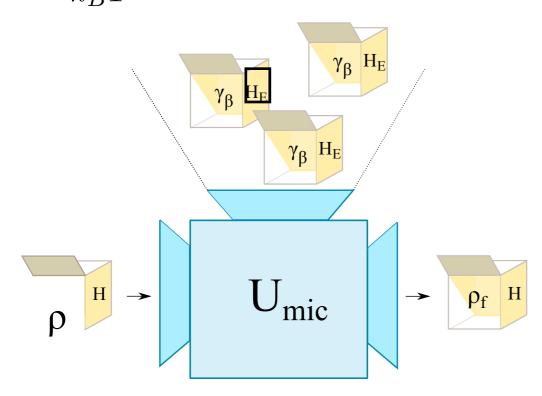
and

$$\mathcal{E}\left(U \rho \bigotimes_{i=1}^{N} \sigma^{(i)} U^{\dagger}\right) \approx_{\epsilon'} \mathcal{E}\left(\rho \bigotimes_{i=1}^{N} \sigma^{(i)}\right)$$

#### Same:

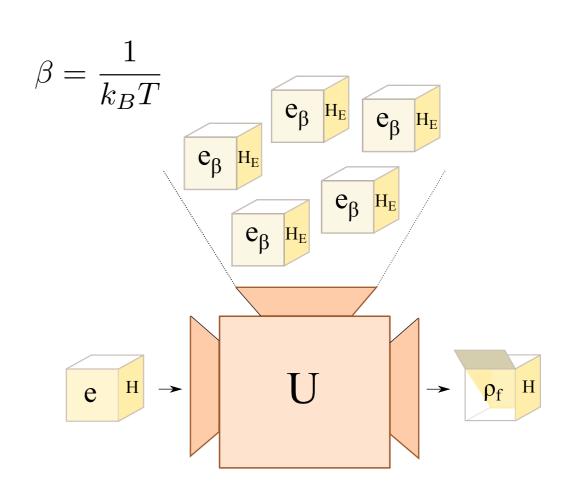
- Fixed bath temperature
- Unitary Evolution
- Average energy preservation
- No initial correlations
- Final state is microstate

$$\beta = \frac{1}{k_B T}$$



#### Different:

- Initial states
- Constraint on Unitary



# Operational Equivalence

$$(e,H) \sim_{\beta} \rho$$

$$(e, H) \stackrel{\beta-\text{mac.}}{\longrightarrow} \rho_f \Leftrightarrow \rho \stackrel{\beta-\text{mic.}}{\longrightarrow} \rho_f$$

### Main Result

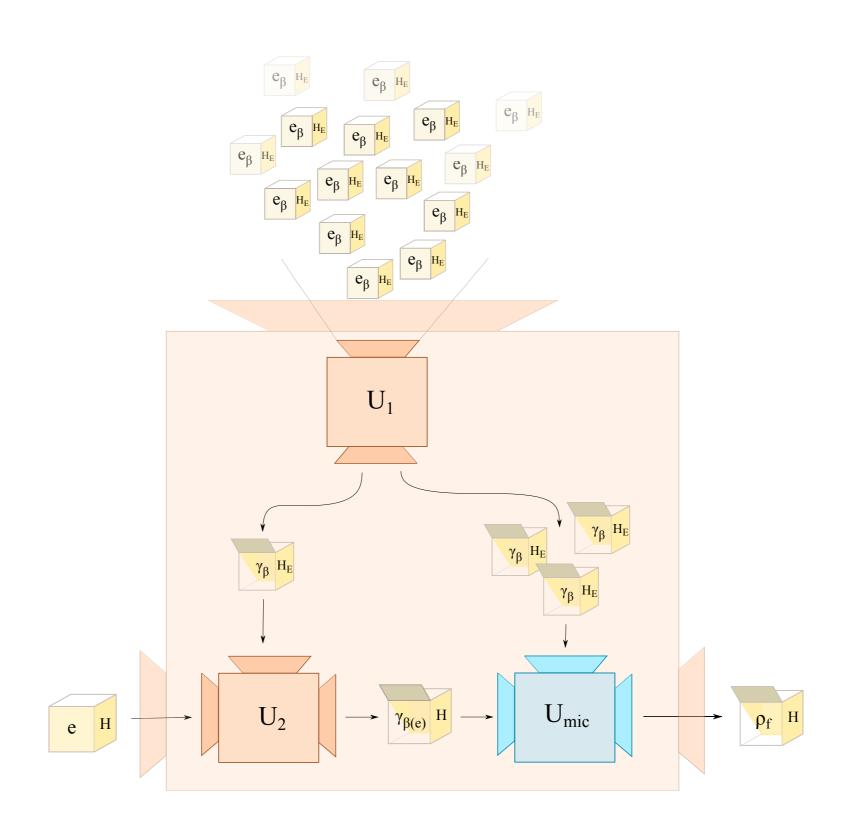
$$(e, H) \sim_{\beta} \gamma_e(H), \quad \forall e, H, \beta > 0$$

# Motivating the success of Gibbs' trick

# Motivating the success of Gibbs' trick

The canonical ensemble is the one and only microstate that encodes the possible thermodynamic state transitions of a system whenever one only has partial information about system, bath and evolution.

# **Proof Sketch**

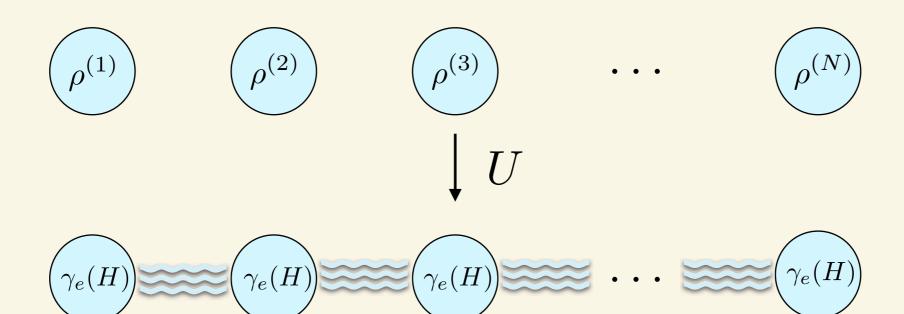


#### **Proof Sketch**



# Key Lemma

$$\exists \rho_f : \bigotimes_{l=1}^{N} (e, H) \stackrel{\beta\text{-mac}}{\to} \rho_f \text{ s.t. } tr_{\overline{l}}(\rho_f) \stackrel{N \to \infty}{\longrightarrow} \gamma_e(H).$$



$$(e, H) \stackrel{\beta\text{-mac}}{\to} \gamma_e(H)$$

$$(e, H) \stackrel{\beta\text{-mac}}{\to} \gamma_e(H)$$

Work extraction

$$\Delta W \leq \Delta \mathcal{F}_S, \quad \mathcal{F}_S := \Delta \mathcal{E}_S - T\Delta \mathcal{S}_S$$

$$(e, H) \stackrel{\beta\text{-mac}}{\to} \gamma_e(H)$$

Work extraction

$$\Delta W \leq \Delta \mathcal{F}_S, \quad \mathcal{F}_S := \Delta \mathcal{E}_S - T\Delta \mathcal{S}_S$$

Second Law

$$(e, H) \stackrel{\beta\text{-mac}}{\to} \rho_f \Leftrightarrow \mathcal{F}_S(\gamma_e(H)) \geq \mathcal{F}_S(\rho_f).$$

$$(e, H) \stackrel{\beta\text{-mac}}{\to} \gamma_e(H)$$

Work extraction

$$\Delta W \leq \Delta \mathcal{F}_S, \quad \mathcal{F}_S := \Delta \mathcal{E}_S - T\Delta \mathcal{S}_S$$

Second Law

$$(e, H) \stackrel{\beta\text{-mac}}{\to} \rho_f \Leftrightarrow \mathcal{F}_S(\gamma_e(H)) \geq \mathcal{F}_S(\rho_f).$$

Clausius Inequality

$$(e, H) \stackrel{\beta\text{-mac}}{\to} (e, H) \Leftrightarrow \Delta Q \leq T\Delta S$$

# Stronger setting: Unitary commutes

Exact commutation instead of average preservation.

$$[U, H_S + H_E] = 0$$

# Stronger setting: Unitary commutes

Exact commutation instead of average preservation.

$$[U, H_S + H_E] = 0$$

Operational equivalence breaks down!

$$H \neq 0, \beta < \infty \Rightarrow \exists e \text{ s.t. } (e, H) \stackrel{c}{\nsim}_{\beta} \gamma_e(H)$$

# Stronger setting: Unitary commutes

Exact commutation instead of average preservation.

$$[U, H_S + H_E] = 0$$

Operational equivalence breaks down!

$$H \neq 0, \beta < \infty \Rightarrow \exists e \text{ s.t. } (e, H) \stackrel{c}{\nsim}_{\beta} \gamma_e(H)$$

Can be recovered for special cases, e.g. locally in thermodynamic limit.

# Generalizable to GGE setting

Can generalise all of this to the case of any set of commuting observables (GGEs).

$$(\mathbf{v}, \mathcal{Q}) \sim_{\beta} \gamma_{\mathbf{v}}(\mathcal{Q})$$

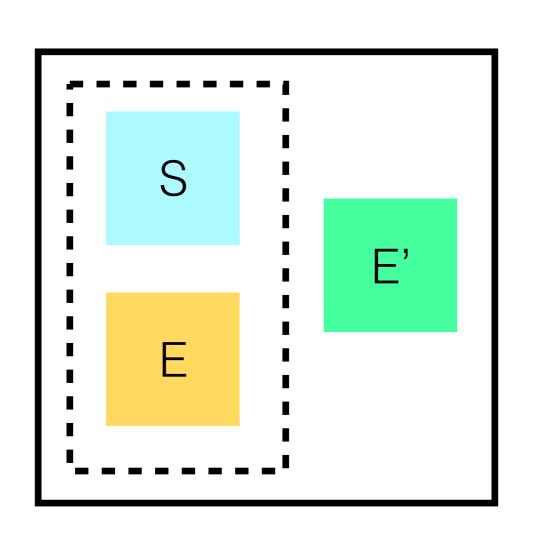
$$\gamma_{\mathbf{v}}(\mathcal{Q}) := \frac{e^{-\sum_{j} \beta_{S}^{j}(\mathbf{v})Q^{j}}}{\operatorname{tr}(e^{-\sum_{j} \beta_{S}^{j}(\mathbf{v})Q^{j}})}$$

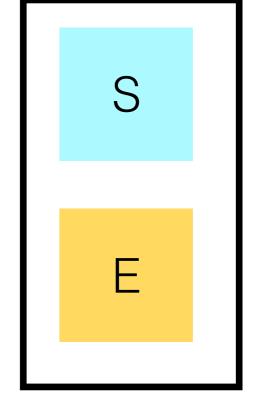
## Summary

- Provided novel justification for use of canonical ensembles in (quantum) statistical mechanics by showing operational equivalence wrt possible thermodynamic transitions.
- Re-derive phenomenological TD without assuming can. ensemble.
- Operational equivalence breaks down for exactly commuting case.
- Can be generalised for commuting observables.

# Thank you

arxiv: 1707.08218





VS.