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A frequent question in thermodynamics

Given a (quantum) system of which you only know its
average energy e wrt some Hamiltonian H, how will it

behave thermodynamically?
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about underlying state

of system.



“Gibbs’ trick”: Assign canonical ensemble.

{p: Tr(pH) = e} =: (6, H) — Ve (H) T Tr(e= P

“macrostate” “microstate”



Why does this work?
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Why does this work?

Typicality: vast majority of microstates compatible
with coarse-grained information behaves like
can. ensemble wrt property of interest.

E.g.: Canonical Typicality
(Popescu et al., Goldstein et al., '06)

Vistaar [{18) € Hone | D(Trs (1) (0]),v) > e} _
Vitaar {19 € Hinc .




This talk

Provide a novel way to motivate the success of
Gibbs’ trick that is independent of any measure or
Jaynes-like reasoning.

Result: Thermodynamically, any macrostate is
operationally equivalent to its corresponding
canonical ensemble.
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1. Two models of thermodynamic transitions

P — Ol — Pf (6,H)—> 02 — Pf

/ N /

2. Compare via reachable state sets
I¢
(e, H) = pr = p— py

3. Show equivalence between macrostates and canonical
ensemples

(evH) ~ /Ve(H)
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1. Bath states:

—BH

e Bt

Wﬁ(Ei) — tr(e=PHp:)
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Setting

1. Bath states:

E') =
,75( ) tr(e_BHEi)
2. Evolution:

S and E evolve
unitarily,
such that total
average energy
preserved




Microstate Operations

B—mic.

p—" ps

if Ve, e >0,3 {Hg1,...,Hgn},U s.t.

N

1=1

and

E (UP(X)WB(HE@) UT) e € (P@VB(HE@))
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pr H

1. Bath states:

(eg(Hp:i), Hp: ),
es(Hpi) == E(vp(HEi))

2. Evolution:

S and E evolve
unitarily,
such that total
average enerqgy
preserved



Macrostate Operations

B —mac.

(e, H) " — py

if Ve, e >0,3 {Hg1,...,Hgn},U s.t.

N
Pf R ITE (Up@a(i) UT)

i—1
and

1=1

N N
£ (Up(g)a(i) UT) ~o & (p(g)a(i))
1=1



Same:

Setting

Fixed bath temperature

Unitary Evolution

Average energy preservation
No Initial correlations
Final state iIs microstate

1
0= T
B
By
1B HE
7 A\

Different:

Initial states
Constraint on Unitary




Operational Equivalence

(G,H) ~3 P

S —mac. £ —mic.

(e,H)"— prep — py



Main Result

(e,H) ~gv.(H), Ve H >0



Motivating the success of Gibbs’ trick



Motivating the success of Gibbs’ trick

The canonical ensemble Is the one
and only microstate that encodes
the possible thermodynamic state
transitions of a system whenever
one only has partial information
about system, bath and evolution.
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Proof Sketch

Key Lemma

N
B-mac N — 00
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Re-deriving phenomenological TD

B-mac

(e, H) "= 7.(H)



Re-deriving phenomenological TD

B-mac

(e, H) "= 7.(H)

Work extraction

AW < AFg, Fg:=AEg—TASg

cf. Skrzypczyk et al., Nat. Comm. 5, 4185 (2016)
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Re-deriving phenomenological TD

B-mac

(e, H) "= 7.(H)

Work extraction
AW < AFg, Fg:=AEg—TASg

Second Law

B-mac

(G,H) — pf<:>FS(Ve(H))ZFS(/Of)°

Clausius Inequality

(e, H) pmac (e, H) & AQ <TAS

cf. Skrzypczyk et al., Nat. Comm. 5, 4185 (2016)



Stronger setting: Unitary commutes

Exact commutation instead of average preservation.

[UvHS _|_HE] =0
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Stronger setting: Unitary commutes

Exact commutation instead of average preservation.
[U, Hq + HE] =0
Operational equivalence breaks down!

H+#0,8<o00=3dest. (e,H) =g v.(H)

Can be recovered for special cases,
e.qg. locally in thermodynamic limit.



Generalizable to GGE setting

Can generalise all of this to the

case of any set of commuting
observables (GGES).

(Vv Q) ~B VV(Q)

cf. Guryanova et al./Yunger-Halpern et al., Nat. Comm. 7, 12049/12051 (2016)



Summary

Provided novel justification for use of canonical
ensembles in (quantum) statistical mechanics by
showing operational equivalence wrt possible
thermodynamic transitions.

Re-derive phenomenological TD without assuming can.
ensemble.

Operational equivalence breaks down for exactly
commuting case.

Can be generalised for commuting observables.



Thank you

arxiv: 1707.08218
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