Almost-linear time decoding algorithm for topological codes Naomi Nickerson & Nicolas Delfosse

QIP, 17th January 2018Delfosse & Nickerson 1709.062181Delfosse & Zemor 1703.01517

2. The Union Find decoder

3. Achieving almost-linear time

What is a decoder?

LOGICAL PROCESSING

How fast?

•	If the measurements outcomes cannot be
	processed by the decoder as quickly as they
	are being produced, we end up with a backlog
	problem.

	Clock speed	Estimated decoding time (for a 20x20 lattice)	
Superconducting qubits	20ns	400 ns	1411.7403
Trapped ions	480ns	10,000 ns	1709.06952
Photons	2 ns	40 ns	
NV centres (electron)	10 µs	200,000 ns	Science 356, 634, 928- 932
NV centres (nuclear spin)	500 µs	10,000,000 ns	Science 356, 634, 928- 932

What makes a good decoder?

- The optimal decoder cannot always correct errors, instead we see **threshold behavior**
- The optimal decoder has exponential complexity. Approximate algorithms trade off speed for lowering the threshold.

	Threshold (2d surface code)	Worst case Complexity	Works with any geometry?
Optimal decoder	11.0%	e ^N	\checkmark
MWPM (Harrington, Fowler)	10.3%	O(N ³)	Х
RG decoder (Harrington, Duclos-Cianci, Poulin)	8.2%	O(NlogN)	X
HDRG (Wooton)	7.3%	O(N ²)	V
Union Find decoder	9.9%	O(a(N) N)	\checkmark

1. What is decoding and how fast does it need to be?

3. Achieving almost-linear time

Syndrome graph

Syndrome graph

- The syndrome graph is a representation of (one basis of) the code.
- Each edge represents the error state of a qubit.
- Stabilizer measurement outcomes are associated with each vertex.
- The sum of the outcomes around each vertex should always be even.

Identifying errors

Erasure error a.k.a loss

- A Pauli error occurs with 50% probability
- The location of the error is known.
- For example: we reinitialize a qubit into the maximially mixed state.

Bit-flip error (Z-basis Pauli error)

- The location of the error is unknown
- For example: the photon is in the 'wrong' rail before the final detection

The Union Find Decoder

The Union Find decoding algorithm can be broken in two stages

- 1. Convert stochastic errors into erasures
- 2. Apply the erasure decoder

Measurement outcomes are represented as a graph where edges correspond to erased outcomes, and vertices are syndromes.

while erased edges remain, do:

- 1. start at a leaf edge (u,v).
- 2 . Remove the edge from the erasure, and apply the rules:
 - (R1) If the vertex u is odd, set the edge value to 1 and flip the value of v
 - (R2) If the vertex u is even, set the edge value to $\boldsymbol{\Theta}$

Measurement outcomes are represented as a graph where edges correspond to erased outcomes, and vertices are syndromes.

Grow a spanning forest to cover the erased edges.

while erased edges remain, do:

- 1. start at a leaf edge (u,v).
- 2 . Remove the edge from the erasure, and apply the rules:
 - (R1) If the vertex u is odd, set the edge value to 1 and flip the value of v
 - (R2) If the vertex u is even, set the edge value to $\boldsymbol{\Theta}$

Measurement outcomes are represented as a graph where edges correspond to erased outcomes, and vertices are syndromes.

Grow a spanning forest to cover the erased edges.

while erased edges remain, do:

- 1. start at a leaf edge (u,v).
- 2 . Remove the edge from the erasure, and apply the rules:
 - (R1) If the vertex u is odd, set the edge value to 1 and flip the value of v
 - (R2) If the vertex u is even, set the edge value to $\boldsymbol{\Theta}$

Measurement outcomes are represented as a graph where edges correspond to erased outcomes, and vertices are syndromes.

Grow a spanning forest to cover the erased edges.

while erased edges remain, do:

- 1. start at a leaf edge (u,v).
- 2 . Remove the edge from the erasure, and apply the rules:
 - (R1) If the vertex u is odd, set the edge value to 1 and flip the value of v
 - (R2) If the vertex u is even, set the edge value to $\boldsymbol{\Theta}$

Measurement outcomes are represented as a graph where edges correspond to erased outcomes, and vertices are syndromes.

Grow a spanning forest to cover the erased edges.

while erased edges remain, do:

- 1. start at a leaf edge (u,v).
- 2 . Remove the edge from the erasure, and apply the rules:
 - (R1) If the vertex u is odd, set the edge value to 1 and flip the value of v
 - (R2) If the vertex u is even, set the edge value to $\boldsymbol{\Theta}$

Measurement outcomes are represented as a graph where edges correspond to erased outcomes, and vertices are syndromes.

Grow a spanning forest to cover the erased edges.

while erased edges remain, do:

- 1. start at a leaf edge (u,v).
- 2 . Remove the edge from the erasure, and apply the rules:
 - (R1) If the vertex u is odd, set the edge value to 1 and flip the value of v
 - (R2) If the vertex u is even, set the edge value to $\boldsymbol{\Theta}$

Syndrome Validation

Create a list of all odd clusters

while there exists an odd cluster:

Iterate over all odd clusters:

- 1. Grow the cluster by a half-edge 1
- 2. If the cluster meets another cluster, fuse and update parity
- 3. If the new cluster is even, remove it from the odd cluster list

Syndrome Validation

Create a list of all odd clusters

while there exists an odd cluster:

Iterate over all odd clusters:

- 1. Grow the cluster by a half-edge
- 2. If the cluster meets another cluster, fuse and update parity
- 3. If the new cluster is even, remove it from the odd cluster list

Syndrome Validation

Create a list of all odd clusters

while there exists an odd cluster:

Iterate over all odd clusters:

- 1. Grow the cluster by a half-edge 1
- 2. If the cluster meets another cluster, fuse and update parity
- 3. If the new cluster is even, remove it from the odd cluster list

Syndrome Validation

Create a list of all odd clusters

while there exists an odd cluster:

Iterate over all odd clusters:

- 1. Grow the cluster by a half-edge 1
- 2. If the cluster meets another cluster, fuse and update parity
- 3. If the new cluster is even, remove it from the odd cluster list

Syndrome Validation

Create a list of all odd clusters

while there exists an odd cluster:

Iterate over all odd clusters:

- 1. Grow the cluster by a half-edge
- 2. If the cluster meets another cluster, fuse and update parity
- 3. If the new cluster is even, remove it from the odd cluster list

Syndrome Validation

Create a list of all odd clusters

while there exists an odd cluster:

Iterate over all odd clusters:

- 1. Grow the cluster by a half-edge 1
- 2. If the cluster meets another cluster, fuse and update parity
- 3. If the new cluster is even, remove it from the odd cluster list

Measure Syndromes

Syndrome Validation

Syndrome Validation

Syndrome Validation

Resulting error

Performance: Threshold

Wider Applicability

- Fault tolerance: Exactly the same algorithm will decode the 2+1d surface code, which has a cubic syndrome graph.
- **Arbitrary surface code:** Method works for any structure of syndrome graph, and can be applied directly to any surface code, including those with unusual geometry such as hyperbolic codes.
- **Color code:** By projecting the surface code onto the color code, an arbitrary color code can be decoded.
- Other codes?: For any code for which there is an erasure decoder, and a notion of distance between syndromes, this approach can be used to create a decoder for Pauli error.

1. What is decoding and how fast does it need to be?

2. The Union Find decoder

3. Achieving almost-linear time

Naive algorithm

FIND:	Lookup node: O(1)
UNION:	Relabel every element of one cluster: O(N)

Worst case complexity: $O(N^2)$

Better algorithm

Data structure:

Tree, stored as a linked list root of tree identifies the cluster

FIND:	Traverse tree to find root: O(log N)
UNION:	Point root of one cluster to the other O(1)

Worst case complexity: O(N log N)

Better algorithm

Data structure:

Tree, stored as a linked list root of tree identifies the cluster

FIND:	Traverse tree to find root: O(log N)
UNION:	Point root of one cluster to the other O(1)

Worst case complexity: O(N log N)

Even better algorithm

Data structure:

Tree, stored as a linked list
root of tree identifies the cluster

+ Weighted Union

During UNION always updates the smallest of the two clusters. Size of smaller cluster at least doubles when UNION is called.

+ Path compression

After FIND(u) Is called, add a new edge pointing u directly to the root. If Find(u) is called again, it will take 1 step to return the root.

The analysis of these three things combined was first made by Tarjan: R. E. Tarjan, Journal of the ACM (JACM) 22, 215. (1975).

Worst case complexity: $O(\ \alpha(N) \ N \)$

 $\alpha(N)$ is the inverse of Ackermann's function, and $\alpha(N) \le 3$ as long as N < $2^{2^{2^{-2}}}$ with 65536 twos-

Performance: Running time

Why you should care about the Union Find Decoder if:

You want to build a quantum computer:

- The UF decoder is very fast in practice, with effectively linear scaling and a small constant overhead
- Very simple algorithm, good for implementing in hardware.

You want to numerically study codes with unusual geometries:

• The decoder can be applied to any surface code (2d or 2+1d), without any adaptation, to color codes, and potentially to wider classes of codes.

You want to understand the connection between erasure errors and Pauli errors:

• The decoding algorithm provides one way of converting Pauli errors into erasures. Maybe this can help us better understand how they are related?

Questions still to answer:

- How fast can it run in hardware?
- Compare directly to other decoders' below threshold performance
- What's the best way to parallelize the algorithm?
- Can the threshold be further improved?
- Can the algorithm be adapted to account for more types of errors?