
Efficient decoding of random errors for quantum
expander codes

Omar Fawzi & Antoine Grospellier & Anthony Leverrier

January 17, 2018

A. Grospellier Efficient decoding of random errors for quantum expander codes 1/23

Content of the talk

1 Context

2 Examples of quantum codes

3 Quantum expander codes

4 Our contribution

A. Grospellier Efficient decoding of random errors for quantum expander codes 2/23

Outline

1 Context

2 Examples of quantum codes

3 Quantum expander codes

4 Our contribution

A. Grospellier Efficient decoding of random errors for quantum expander codes 3/23

Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, ’97]

We can simulate a quantum circuit with T perfect gates and m logical
qubits by a fault-tolerant circuit with noisy gates and O(m polylog(mT))
physical qubits.

Practice: break RSA with 4000 logical qubits, but 106 − 109 physical
qubits

[Gottesman, ’13] improved this result using constant rate quantum
codes instead of concatenated codes

Threshold theorem with constant overhead [Gottesman, ’13]

Provided codes with nice properties exist, the ratio physical/logical qubits
can be made constant: O(m polylog(mT)) ; O(m)

Before this work, no existing codes had these “nice properties”

We proved that quantum expander codes have these “nice
properties”

A. Grospellier Efficient decoding of random errors for quantum expander codes 4/23

Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, ’97]

We can simulate a quantum circuit with T perfect gates and m logical
qubits by a fault-tolerant circuit with noisy gates and O(m polylog(mT))
physical qubits.

Practice: break RSA with 4000 logical qubits, but 106 − 109 physical
qubits

[Gottesman, ’13] improved this result using constant rate quantum
codes instead of concatenated codes

Threshold theorem with constant overhead [Gottesman, ’13]

Provided codes with nice properties exist, the ratio physical/logical qubits
can be made constant: O(m polylog(mT)) ; O(m)

Before this work, no existing codes had these “nice properties”

We proved that quantum expander codes have these “nice
properties”

A. Grospellier Efficient decoding of random errors for quantum expander codes 4/23

Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, ’97]

We can simulate a quantum circuit with T perfect gates and m logical
qubits by a fault-tolerant circuit with noisy gates and O(m polylog(mT))
physical qubits.

Practice: break RSA with 4000 logical qubits, but 106 − 109 physical
qubits

[Gottesman, ’13] improved this result using constant rate quantum
codes instead of concatenated codes

Threshold theorem with constant overhead [Gottesman, ’13]

Provided codes with nice properties exist, the ratio physical/logical qubits
can be made constant: O(m polylog(mT)) ; O(m)

Before this work, no existing codes had these “nice properties”

We proved that quantum expander codes have these “nice
properties”

A. Grospellier Efficient decoding of random errors for quantum expander codes 4/23

Stabilizer codes

Definition stabilizer codes: given a set g1, . . . , gn−k of commuting
Pauli operators (product of X and Z Pauli matrices) on n qubits (called
generators), we define a quantum code Q by:

Q =
{
|ψ〉 ∈ C2n

: g1 |ψ〉 = |ψ〉 · · · gn−k |ψ〉 = |ψ〉
}

Parameters of a stabilizer code Jn, k, dK:

Q encodes k logical qubits into n physical qubits
i.e Q is a 2k dimensional subspace of C2n

A logical error L is a Pauli operator such that [L, gi] = 0 for all i and
L /∈ 〈g1, . . . , gn−k〉
The minimal distance d is the minimal weight of a logical error

Decoder for a quantum code:
1 Measurements of the generators g1, . . . , gn−k
→ Syndrome ∈ {−1,+1}n−k
Ex: syndrome(code state) = (+1,+1,+1, . . .)

2 Syndrome → A guess for the error
3 Apply the guessed error to the quantum state

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/23

Stabilizer codes

Definition stabilizer codes: given a set g1, . . . , gn−k of commuting
Pauli operators (product of X and Z Pauli matrices) on n qubits (called
generators), we define a quantum code Q by:

Q =
{
|ψ〉 ∈ C2n

: g1 |ψ〉 = |ψ〉 · · · gn−k |ψ〉 = |ψ〉
}

Parameters of a stabilizer code Jn, k , dK:

Q encodes k logical qubits into n physical qubits
i.e Q is a 2k dimensional subspace of C2n

A logical error L is a Pauli operator such that [L, gi] = 0 for all i and
L /∈ 〈g1, . . . , gn−k〉
The minimal distance d is the minimal weight of a logical error

Decoder for a quantum code:
1 Measurements of the generators g1, . . . , gn−k
→ Syndrome ∈ {−1,+1}n−k
Ex: syndrome(code state) = (+1,+1,+1, . . .)

2 Syndrome → A guess for the error
3 Apply the guessed error to the quantum state

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/23

Stabilizer codes

Definition stabilizer codes: given a set g1, . . . , gn−k of commuting
Pauli operators (product of X and Z Pauli matrices) on n qubits (called
generators), we define a quantum code Q by:

Q =
{
|ψ〉 ∈ C2n

: g1 |ψ〉 = |ψ〉 · · · gn−k |ψ〉 = |ψ〉
}

Parameters of a stabilizer code Jn, k , dK:

Q encodes k logical qubits into n physical qubits
i.e Q is a 2k dimensional subspace of C2n

A logical error L is a Pauli operator such that [L, gi] = 0 for all i and
L /∈ 〈g1, . . . , gn−k〉
The minimal distance d is the minimal weight of a logical error

Decoder for a quantum code:
1 Measurements of the generators g1, . . . , gn−k
→ Syndrome ∈ {−1,+1}n−k
Ex: syndrome(code state) = (+1,+1,+1, . . .)

2 Syndrome → A guess for the error
3 Apply the guessed error to the quantum state

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/23

Example: the toric code

n qubits on edges

X -type generators associated with vertices

Z -type generators associated with
plaquettes

k = #holes = 2

d = systole =
√
n/2

Numerical simulations: 10% rate random
errors are corrected

Adversarial errors VS Random errors:

“Corrects adversarial errors of size up to Θ(
√
n)”: any error of size

up to Θ(
√
n) is corrected

→ Link with the minimal distance

“Corrects random errors of size Θ(n)”: an error where qubits are
flipped with probability p independently is corrected with high
probability
→ Framework of our result

A. Grospellier Efficient decoding of random errors for quantum expander codes 6/23

Example: the toric code

n qubits on edges

X -type generators associated with vertices

Z -type generators associated with
plaquettes

k = #holes = 2

d = systole =
√
n/2

Numerical simulations: 10% rate random
errors are corrected

Adversarial errors VS Random errors:

“Corrects adversarial errors of size up to Θ(
√
n)”: any error of size

up to Θ(
√
n) is corrected

→ Link with the minimal distance

“Corrects random errors of size Θ(n)”: an error where qubits are
flipped with probability p independently is corrected with high
probability
→ Framework of our result

A. Grospellier Efficient decoding of random errors for quantum expander codes 6/23

“Nice properties” required for [Gottesman, ’13]

LDPC

An LDPC code is such that the generators g1, . . . , gn−k satisfy:

The size of the support of each gi is bounded

Each qubit is included in the support of a bounded number of gi

Ex: for the toric code, bounded = 4

Constant rate

k = Θ(n)
Ex: the toric code does not have a constant rate (k = 2)

Efficient decoder

There is a polynomial time decoder which corrects random errors of size
Θ(n) with very high probability

Very high probability: P(correction) = 1− o(1/nc) for all c ∈ N
d = Θ(nε) is required to get a “very high probability”

A. Grospellier Efficient decoding of random errors for quantum expander codes 7/23

“Nice properties” required for [Gottesman, ’13]

LDPC

An LDPC code is such that the generators g1, . . . , gn−k satisfy:

The size of the support of each gi is bounded

Each qubit is included in the support of a bounded number of gi

Ex: for the toric code, bounded = 4

Constant rate

k = Θ(n)
Ex: the toric code does not have a constant rate (k = 2)

Efficient decoder

There is a polynomial time decoder which corrects random errors of size
Θ(n) with very high probability

Very high probability: P(correction) = 1− o(1/nc) for all c ∈ N
d = Θ(nε) is required to get a “very high probability”

A. Grospellier Efficient decoding of random errors for quantum expander codes 7/23

“Nice properties” required for [Gottesman, ’13]

LDPC

An LDPC code is such that the generators g1, . . . , gn−k satisfy:

The size of the support of each gi is bounded

Each qubit is included in the support of a bounded number of gi

Ex: for the toric code, bounded = 4

Constant rate

k = Θ(n)
Ex: the toric code does not have a constant rate (k = 2)

Efficient decoder

There is a polynomial time decoder which corrects random errors of size
Θ(n) with very high probability

Very high probability: P(correction) = 1− o(1/nc) for all c ∈ N
d = Θ(nε) is required to get a “very high probability”

A. Grospellier Efficient decoding of random errors for quantum expander codes 7/23

Main Theorem

Quantum expander codes are LDPC and have constant rate and have an
efficient decoder

Efficient decoder

There is a polynomial time decoder which corrects random errors of size
Θ(n) with very high probability

Technical remark:

The main theorem is true even with syndrome measurements errors
(proved after the QIP submission)

We can apply [Gottesman, ’13] with quantum expander codes

Fault-tolerant quantum computation with constant overhead is
possible

A. Grospellier Efficient decoding of random errors for quantum expander codes 8/23

Main Theorem

Quantum expander codes are LDPC and have constant rate and have an
efficient decoder

Efficient decoder

There is a polynomial time decoder which corrects random errors of size
Θ(n) with very high probability

Technical remark:

The main theorem is true even with syndrome measurements errors
(proved after the QIP submission)

We can apply [Gottesman, ’13] with quantum expander codes

Fault-tolerant quantum computation with constant overhead is
possible

A. Grospellier Efficient decoding of random errors for quantum expander codes 8/23

Outline

1 Context

2 Examples of quantum codes

3 Quantum expander codes

4 Our contribution

A. Grospellier Efficient decoding of random errors for quantum expander codes 9/23

Initial problem:

The best known minimal distance for a constant rate LDPC code is
Θ(
√
n 4
√

log(n)) ([Freedman & Meyer & Luo ’02])

We want to correct random errors of size Θ(n) with very high
probability

Solution given by [Dennis & Kitaev & Landahl & Preskill ’01],
[Kovalev & Pryadko ’13]:

Use of graph percolation theory

Given a constant rate LDPC code with minimal distance d = Ω(nε),
the maximum likelihood decoder corrects random errors of size Θ(n)
with very high probability

Remaining problem:

The maximum likelihood decoder is exponential time in general

A. Grospellier Efficient decoding of random errors for quantum expander codes 10/23

Initial problem:

The best known minimal distance for a constant rate LDPC code is
Θ(
√
n 4
√

log(n)) ([Freedman & Meyer & Luo ’02])

We want to correct random errors of size Θ(n) with very high
probability

Solution given by [Dennis & Kitaev & Landahl & Preskill ’01],
[Kovalev & Pryadko ’13]:

Use of graph percolation theory

Given a constant rate LDPC code with minimal distance d = Ω(nε),
the maximum likelihood decoder corrects random errors of size Θ(n)
with very high probability

Remaining problem:

The maximum likelihood decoder is exponential time in general

A. Grospellier Efficient decoding of random errors for quantum expander codes 10/23

Initial problem:

The best known minimal distance for a constant rate LDPC code is
Θ(
√
n 4
√

log(n)) ([Freedman & Meyer & Luo ’02])

We want to correct random errors of size Θ(n) with very high
probability

Solution given by [Dennis & Kitaev & Landahl & Preskill ’01],
[Kovalev & Pryadko ’13]:

Use of graph percolation theory

Given a constant rate LDPC code with minimal distance d = Ω(nε),
the maximum likelihood decoder corrects random errors of size Θ(n)
with very high probability

Remaining problem:

The maximum likelihood decoder is exponential time in general

A. Grospellier Efficient decoding of random errors for quantum expander codes 10/23

Surface codes

The generators g1, . . . , gn−k are given by a tessellations of a surface

Maximum-likelihood decoding can be done efficiently using
Edmond’s matching algorithm

k Correction up to size Efficient correction up to size

Toric code [Kit03] 2 Θ(
√
n) Θ(

√
n)

Hyperbolic 2D [FML02] Θ(n) Θ(log n) Θ(log n)

[Kit03] A Yu Kitaev. “Fault-tolerant quantum computation by anyons”. (2003)
[FML02] Michael H Freedman, David A Meyer, and Feng Luo. “Z2-systolic freedom and quantum
codes”. (2002)

Properties needed to apply [Gottesman, ’13]:

A constant rate quantum code

d = Ω(nε)

No-go result

We cannot apply [Gottesman ’13] using surface codes:

kd2 ≤ c(log k)2n [Delfosse ’13]

A. Grospellier Efficient decoding of random errors for quantum expander codes 11/23

Surface codes

The generators g1, . . . , gn−k are given by a tessellations of a surface

Maximum-likelihood decoding can be done efficiently using
Edmond’s matching algorithm

k Correction up to size Efficient correction up to size

Toric code [Kit03] 2 Θ(
√
n) Θ(

√
n)

Hyperbolic 2D [FML02] Θ(n) Θ(log n) Θ(log n)

[Kit03] A Yu Kitaev. “Fault-tolerant quantum computation by anyons”. (2003)
[FML02] Michael H Freedman, David A Meyer, and Feng Luo. “Z2-systolic freedom and quantum
codes”. (2002)

Properties needed to apply [Gottesman, ’13]:

A constant rate quantum code

d = Ω(nε)

No-go result

We cannot apply [Gottesman ’13] using surface codes:

kd2 ≤ c(log k)2n [Delfosse ’13]

A. Grospellier Efficient decoding of random errors for quantum expander codes 11/23

Surface codes

The generators g1, . . . , gn−k are given by a tessellations of a surface

Maximum-likelihood decoding can be done efficiently using
Edmond’s matching algorithm

k Correction up to size Efficient correction up to size

Toric code [Kit03] 2 Θ(
√
n) Θ(

√
n)

Hyperbolic 2D [FML02] Θ(n) Θ(log n) Θ(log n)

[Kit03] A Yu Kitaev. “Fault-tolerant quantum computation by anyons”. (2003)
[FML02] Michael H Freedman, David A Meyer, and Feng Luo. “Z2-systolic freedom and quantum
codes”. (2002)

Properties needed to apply [Gottesman, ’13]:

A constant rate quantum code

d = Ω(nε)

No-go result

We cannot apply [Gottesman ’13] using surface codes:

kd2 ≤ c(log k)2n [Delfosse ’13]

A. Grospellier Efficient decoding of random errors for quantum expander codes 11/23

4 Dimensional hyperbolic codes

The generators g1, . . . , gn−k are given by a tessellation of the 4
Dimensional hyperbolic space

The bound for surface codes can be beaten by 4D codes

No efficient maximum-likelihood decoder is known

k Correction up to size Efficient correction up to size

Hyperbolic 4D
[GL14], [Has13], [LL17]

Θ(n) Ω(n0.2),O(n0.3) Θ(log n)

[GL14] Larry Guth and Alexander Lubotzky. “Quantum error correcting codes and 4-dimensional
arithmetic hyperbolic manifolds”. (2014)
[Has13] Matthew B Hastings. “Decoding in Hyperbolic Spaces: LDPC Codes With Linear Rate
and Efficient Error Correction”. (2013)
[LL17] Vivien Londe and Anthony Leverrier. “Golden codes: 4D hyperbolic regular quantum
codes”. (2017)

There might be an efficient decoder to correct any adversarial error
of size up to Ω(nε) but no such algorithm is known

Θ(log n) is not enough to apply [Gottesman ’13]

A. Grospellier Efficient decoding of random errors for quantum expander codes 12/23

Outline

1 Context

2 Examples of quantum codes

3 Quantum expander codes

4 Our contribution

A. Grospellier Efficient decoding of random errors for quantum expander codes 13/23

The CSS construction

Definition [Steane ’95], [Calderbank & Shor ’95]

We can construct a quantum error correcting code using CX and CZ two
classical error correcting codes such that C⊥X ⊆ CZ

Each generator g1, . . . , gn−k of a CSS-code is either a product of Pauli X
matrices or a product of Pauli Z matrices

Remark

The difficulty for constructing CSS code is to find two classical codes
which are orthogonal

A. Grospellier Efficient decoding of random errors for quantum expander codes 14/23

The CSS construction

Definition [Steane ’95], [Calderbank & Shor ’95]

We can construct a quantum error correcting code using CX and CZ two
classical error correcting codes such that C⊥X ⊆ CZ

Each generator g1, . . . , gn−k of a CSS-code is either a product of Pauli X
matrices or a product of Pauli Z matrices

Remark

The difficulty for constructing CSS code is to find two classical codes
which are orthogonal

A. Grospellier Efficient decoding of random errors for quantum expander codes 14/23

Hypergraph product codes [Tillich & Zémor ’09]

The parity check matrix H of a classical code C satisfies C = kerH.
Let H be the parity check matrix of a classical code with constant rate
and linear minimal distance.
We define the two classical codes CX and CZ by their parity check
matrices:

HX = (1⊗ H,HT ⊗ 1) HZ = (H ⊗ 1,1⊗ HT)

Then C⊥X ⊆ CZ

Definition

The hypergraph product is defined as CSS(CX , CZ).
It’s a constant rate code with minimal distance d = Θ(

√
n)

Freedom to choose H

[Leverrier & Tillich & Zémor ’15] chooses H as the parity
check-matrix of a “classical expander code” ([Sipser & Spielman,
’96])

A. Grospellier Efficient decoding of random errors for quantum expander codes 15/23

Hypergraph product codes [Tillich & Zémor ’09]

The parity check matrix H of a classical code C satisfies C = kerH.
Let H be the parity check matrix of a classical code with constant rate
and linear minimal distance.
We define the two classical codes CX and CZ by their parity check
matrices:

HX = (1⊗ H,HT ⊗ 1) HZ = (H ⊗ 1,1⊗ HT)

Then C⊥X ⊆ CZ

Definition

The hypergraph product is defined as CSS(CX , CZ).
It’s a constant rate code with minimal distance d = Θ(

√
n)

Freedom to choose H

[Leverrier & Tillich & Zémor ’15] chooses H as the parity
check-matrix of a “classical expander code” ([Sipser & Spielman,
’96])

A. Grospellier Efficient decoding of random errors for quantum expander codes 15/23

Classical expander codes

The parity check matrix H of a classical code C satisfies C = kerH
H represented by a factor graph


0 1 1
1 1 0
0 0 1
1 0 0
1 1 0
0 1 1



Bits Parity check-nodes

0

1

2

3

4

5

6

7

8

A. Grospellier Efficient decoding of random errors for quantum expander codes 16/23

Classical expander codes

The parity check matrix H of a classical code C satisfies C = kerH
H represented by a factor graph

Definition of a (γ, δ) expander graph

For all S ⊆ {Bits}, if |S | ≤ γn then:

|Γ(S)| ≥ (1− δ)d1|S |
|Γ(S)| ≤ d1|S |

Expander graph
→ Parity check matrix
→ Classical expander code
→ Quantum expander code

Bits Parity check-nodes

d
2

d
1

S

Г(S)

A. Grospellier Efficient decoding of random errors for quantum expander codes 16/23

Decoder for quantum expander codes

Classical case (bit-flip algorithm):

As long as it is possible to flip a single bit to decrease the syndrome
weight, flip this bit
This efficient algorithm corrects any adversarial error of size up to
Θ(n) for classical expander codes [Sipser & Spielman, ’96]

Quantum case (small-set-flip algorithm):

The “qubit-flip” algorithm doesn’t work
Idea: try to flip several qubits at each step
As long as it is possible to flip a subset of a generator to decrease
the syndrome weight, flip this subset

Theorem [Leverrier & Tillich & Zémor ’15]

This efficient algorithm corrects any adversarial error of size up to Θ(
√
n)

for quantum expander codes

A. Grospellier Efficient decoding of random errors for quantum expander codes 17/23

Decoder for quantum expander codes

Classical case (bit-flip algorithm):

As long as it is possible to flip a single bit to decrease the syndrome
weight, flip this bit
This efficient algorithm corrects any adversarial error of size up to
Θ(n) for classical expander codes [Sipser & Spielman, ’96]

Quantum case (small-set-flip algorithm):

The “qubit-flip” algorithm doesn’t work
Idea: try to flip several qubits at each step
As long as it is possible to flip a subset of a generator to decrease
the syndrome weight, flip this subset

Theorem [Leverrier & Tillich & Zémor ’15]

This efficient algorithm corrects any adversarial error of size up to Θ(
√
n)

for quantum expander codes

A. Grospellier Efficient decoding of random errors for quantum expander codes 17/23

Decoder for quantum expander codes

Classical case (bit-flip algorithm):

As long as it is possible to flip a single bit to decrease the syndrome
weight, flip this bit
This efficient algorithm corrects any adversarial error of size up to
Θ(n) for classical expander codes [Sipser & Spielman, ’96]

Quantum case (small-set-flip algorithm):

The “qubit-flip” algorithm doesn’t work
Idea: try to flip several qubits at each step
As long as it is possible to flip a subset of a generator to decrease
the syndrome weight, flip this subset

Theorem [Leverrier & Tillich & Zémor ’15]

This efficient algorithm corrects any adversarial error of size up to Θ(
√
n)

for quantum expander codes

A. Grospellier Efficient decoding of random errors for quantum expander codes 17/23

Outline

1 Context

2 Examples of quantum codes

3 Quantum expander codes

4 Our contribution

A. Grospellier Efficient decoding of random errors for quantum expander codes 18/23

Summary of our contribution

Question: What happens for random errors of size Θ(n)?

Theorem: what we proved

For a probability of error p < pth:
P(small-set-flip corrects the error) = 1− 1/eΩ(

√
n)

Idea. The algorithm is local with respect to the adjacency graph

A. Grospellier Efficient decoding of random errors for quantum expander codes 19/23

A. Grospellier Efficient decoding of random errors for quantum expander codes 20/23

A. Grospellier Efficient decoding of random errors for quantum expander codes 20/23

A. Grospellier Efficient decoding of random errors for quantum expander codes 20/23

A. Grospellier Efficient decoding of random errors for quantum expander codes 20/23

The number of flips is linear in the size of the initial error

Definition: α-subset, α ∈ (0, 1]

X is an α-subset of E if |X ∩ E | ≥ α|X |

Each connected component X is an α-subset of {red dots} ∩ X

A. Grospellier Efficient decoding of random errors for quantum expander codes 21/23

Theorem: what we proved

For a probability of error p < pth:
P(small-set-flip corrects the error) = 1− 1/eΩ(

√
n)

Key lemma: percolation

Let α ∈ (0, 1] and a probability of error p < cst(α, d).
With probability 1− 1/eΩ(

√
n):

If X is a connected α-subset of the error then |X | < c
√
n

Sketch of the proof of the theorem:
Take a random error and run the small-set-flip algorithm. Let X be a
connected component of the marked qubits:

X is an α-subset of the error

|X | < c
√
n

X is corrected

This is true for any X → the entire error is corrected

A. Grospellier Efficient decoding of random errors for quantum expander codes 22/23

Theorem: what we proved

For a probability of error p < pth:
P(small-set-flip corrects the error) = 1− 1/eΩ(

√
n)

Key lemma: percolation

Let α ∈ (0, 1] and a probability of error p < cst(α, d).
With probability 1− 1/eΩ(

√
n):

If X is a connected α-subset of the error then |X | < c
√
n

Sketch of the proof of the theorem:
Take a random error and run the small-set-flip algorithm. Let X be a
connected component of the marked qubits:

X is an α-subset of the error

|X | < c
√
n

X is corrected

This is true for any X → the entire error is corrected

A. Grospellier Efficient decoding of random errors for quantum expander codes 22/23

Theorem: what we proved

For a probability of error p < pth:
P(small-set-flip corrects the error) = 1− 1/eΩ(

√
n)

Key lemma: percolation

Let α ∈ (0, 1] and a probability of error p < cst(α, d).
With probability 1− 1/eΩ(

√
n):

If X is a connected α-subset of the error then |X | < c
√
n

Sketch of the proof of the theorem:
Take a random error and run the small-set-flip algorithm. Let X be a
connected component of the marked qubits:

X is an α-subset of the error

|X | < c
√
n

X is corrected

This is true for any X → the entire error is corrected

A. Grospellier Efficient decoding of random errors for quantum expander codes 22/23

Conclusion

Quantum expander codes:

Are LDPC quantum codes

Have a constant rate

Have a good minimal distance: d = Θ(
√
n)

The decoder:

Corrects any adversarial error of size up to Θ(
√
n)

For a probability of error p < pth : P(correction) = 1− 1/eΩ(
√
n)

Corollary:

Fault tolerant quantum computation with constant overhead is
possible

Future work (pth ∼ 10−16):

Run simulations

Improve our numerical value for the threshold

Thank you for your attention

A. Grospellier Efficient decoding of random errors for quantum expander codes 23/23

Conclusion

Quantum expander codes:

Are LDPC quantum codes

Have a constant rate

Have a good minimal distance: d = Θ(
√
n)

The decoder:

Corrects any adversarial error of size up to Θ(
√
n)

For a probability of error p < pth : P(correction) = 1− 1/eΩ(
√
n)

Corollary:

Fault tolerant quantum computation with constant overhead is
possible

Future work (pth ∼ 10−16):

Run simulations

Improve our numerical value for the threshold

Thank you for your attention

A. Grospellier Efficient decoding of random errors for quantum expander codes 23/23

Conclusion

Quantum expander codes:

Are LDPC quantum codes

Have a constant rate

Have a good minimal distance: d = Θ(
√
n)

The decoder:

Corrects any adversarial error of size up to Θ(
√
n)

For a probability of error p < pth : P(correction) = 1− 1/eΩ(
√
n)

Corollary:

Fault tolerant quantum computation with constant overhead is
possible

Future work (pth ∼ 10−16):

Run simulations

Improve our numerical value for the threshold

Thank you for your attention

A. Grospellier Efficient decoding of random errors for quantum expander codes 23/23

Known constructions of quantum LDPC codes

k Correction up to size Efficient correction up to size

Toric code [Kit03] 2 Θ(
√
n) Θ(

√
n)

Hyperbolic 2D [FML02] Θ(n) Θ(log n) Θ(log n)
Hyperbolic 4D
[GL14], [Has13], [LL17]

Θ(n) Ω(n0.2),O(n0.3) Θ(log n)

Expander codes
[TZ14], [LTZ15]

Θ(n) Θ(
√
n) Θ(

√
n)

[Kit03] A Yu Kitaev. “Fault-tolerant quantum computation by anyons”. (2003)
[FML02] Michael H Freedman, David A Meyer, and Feng Luo. “Z2-systolic freedom and quantum
codes”. (2002)
[GL14] Larry Guth and Alexander Lubotzky. “Quantum error correcting codes and 4-dimensional
arithmetic hyperbolic manifolds”. (2014)
[Has13] Matthew B Hastings. “Decoding in Hyperbolic Spaces: LDPC Codes With Linear Rate
and Efficient Error Correction”. (2013)
[LL17] Vivien Londe and Anthony Leverrier. “Golden codes: 4D hyperbolic regular quantum
codes”. (2017)
[TZ14] Jean-Pierre Tillich and Gilles Zémor. “Quantum LDPC codes with positive rate and
minimum distance proportional to the square root of the blocklength”. (2014)
[LTZ15] Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zémor. “Quantum expander codes”.
(2015)

A. Grospellier Efficient decoding of random errors for quantum expander codes 24/23

n = 10,m = 5, d1 = 2, d2 = n
md1 = 4

0

1

2

3

4

5

6

7

8

9

A. Grospellier Efficient decoding of random errors for quantum expander codes 25/23

n = 10,m = 5, d1 = 2, d2 = n
md1 = 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A. Grospellier Efficient decoding of random errors for quantum expander codes 25/23

n = 10,m = 5, d1 = 2, d2 = n
md1 = 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A. Grospellier Efficient decoding of random errors for quantum expander codes 25/23

n = 10,m = 5, d1 = 2, d2 = n
md1 = 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A. Grospellier Efficient decoding of random errors for quantum expander codes 25/23

n = 10,m = 5, d1 = 2, d2 = n
md1 = 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A. Grospellier Efficient decoding of random errors for quantum expander codes 25/23

n = 10,m = 5, d1 = 2, d2 = n
md1 = 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A. Grospellier Efficient decoding of random errors for quantum expander codes 25/23

	Context
	Examples of quantum codes
	Quantum expander codes
	Our contribution

