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Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, '97]

We can simulate a quantum circuit with T perfect gates and m logical
qubits by a fault-tolerant circuit with noisy gates and O(m polylog(mT))
physical qubits.
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Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, '97]

We can simulate a quantum circuit with T perfect gates and m logical
qubits by a fault-tolerant circuit with noisy gates and O(m polylog(mT))
physical qubits.

@ Practice: break RSA with 4000 logical qubits, but 10° — 10° physical
qubits

o [Gottesman, '13] improved this result using constant rate quantum
codes instead of concatenated codes

Threshold theorem with constant overhead [Gottesman, '13]

Provided codes with nice properties exist, the ratio physical/logical qubits
can be made constant: O(m polylog(mT)) ~ O(m)
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Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, '97]

We can simulate a quantum circuit with T perfect gates and m logical
qubits by a fault-tolerant circuit with noisy gates and O(m polylog(mT))
physical qubits.

@ Practice: break RSA with 4000 logical qubits, but 10° — 10° physical
qubits

o [Gottesman, '13] improved this result using constant rate quantum
codes instead of concatenated codes

Threshold theorem with constant overhead [Gottesman, '13]

Provided codes with nice properties exist, the ratio physical/logical qubits
can be made constant: O(m polylog(mT)) ~ O(m)

@ Before this work, no existing codes had these “nice properties”

@ We proved that quantum expander codes have these “nice
properties”
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Stabilizer codes
Definition stabilizer codes: given a set g1,...,g,—« of commuting

Pauli operators (product of X and Z Pauli matrices) on n qubits (called
generators), we define a quantum code Q by:

Q= {I¥) €C” g ) = |0)--goi V) = IV} }
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Stabilizer codes

Definition stabilizer codes: given a set g1,...,g,—« of commuting
Pauli operators (product of X and Z Pauli matrices) on n qubits (called
generators), we define a quantum code Q by:

Q= {I¥) €C” g ) = |0)--goi V) = IV} }

Parameters of a stabilizer code [n, k, d]:

@ Q encodes k logical qubits into n physical qubits
i.e Qis a 2 dimensional subspace of C?’

o A logical error L is a Pauli operator such that [L, g;] = 0 for all / and

L ¢ <g17 v 7gl7*k>
@ The minimal distance d is the minimal weight of a logical error
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Stabilizer codes

Definition stabilizer codes: given a set g1,...,g,—« of commuting
Pauli operators (product of X and Z Pauli matrices) on n qubits (called
generators), we define a quantum code Q by:

Q= {I¥) €C” g ) = |0)--goi V) = IV} }

Parameters of a stabilizer code [n, k, d]:

@ Q encodes k logical qubits into n physical qubits
i.e Qis a 2 dimensional subspace of C?’

o A logical error L is a Pauli operator such that [L, g;] = 0 for all / and
L (g, 8n—k)

@ The minimal distance d is the minimal weight of a logical error

Decoder for a quantum code:

@ Measurements of the generators g, ..., gn—«
— Syndrome € {—1,+1}"*
Ex: syndrome(code state) = (+1,+1,+1,...)

@ Syndrome — A guess for the error

© Apply the guessed error to the quantum state
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Example: the toric code

[

n qubits on edges

X-type generators associated with vertices

Z-type generators associated with v
plaquettes

k = #holes = 2
d = systole = /n/2 P

(]

Numerical simulations: 10% rate random
errors are corrected
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Example: the toric code

[

n qubits on edges

X-type generators associated with vertices

Z-type generators associated with v
plaquettes

k = #holes = 2

d = systole = /n/2

Numerical simulations: 10% rate random
errors are corrected

(]

Adversarial errors VS Random errors:

o "“Corrects adversarial errors of size up to ©(y/n)": any error of size
up to ©(y/n) is corrected
— Link with the minimal distance

"

e "Corrects random errors of size ©(n)": an error where qubits are
flipped with probability p independently is corrected with high
probability
— Framework of our result
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“Nice properties” required for [Gottesman, '13]

An LDPC code is such that the generators g1, ..., g,k satisfy:

@ The size of the support of each g; is bounded
@ Each qubit is included in the support of a bounded number of g;
Ex: for the toric code, bounded = 4
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“Nice properties” required for [Gottesman, '13]

LDPC

An LDPC code is such that the generators g1, ..., g,k satisfy:

@ The size of the support of each g; is bounded
@ Each qubit is included in the support of a bounded number of g;
Ex: for the toric code, bounded = 4

4

Constant rate
k = O(n)
Ex: the toric code does not have a constant rate (k = 2)
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“Nice properties” required for [Gottesman, '13]

LDPC

An LDPC code is such that the generators g1, ..., g,k satisfy:

@ The size of the support of each g; is bounded
@ Each qubit is included in the support of a bounded number of g;
Ex: for the toric code, bounded = 4

| A

Constant rate

k = O(n)
Ex: the toric code does not have a constant rate (k = 2)

Efficient decoder

There is a polynomial time decoder which corrects random errors of size
©(n) with very high probability

@ Very high probability: P(correction) =1 — o(1/n¢) for all c € N

e d = O(n°) is required to get a “very high probability"
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Quantum expander codes are LDPC and have constant rate and have an
efficient decoder

y

Efficient decoder

There is a polynomial time decoder which corrects random errors of size
©(n) with very high probability

N,
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Quantum expander codes are LDPC and have constant rate and have an
efficient decoder

y

Efficient decoder

There is a polynomial time decoder which corrects random errors of size
©(n) with very high probability

N,

Technical remark:

@ The main theorem is true even with syndrome measurements errors
(proved after the QIP submission)

o We can apply [Gottesman, '13] with quantum expander codes

@ Fault-tolerant quantum computation with constant overhead is
possible
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Initial problem:

@ The best known minimal distance for a constant rate LDPC code is
©(v/n {/log(n)) ([Freedman & Meyer & Luo '02])

e We want to correct random errors of size ©(n) with very high
probability
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Initial problem:
@ The best known minimal distance for a constant rate LDPC code is
©(v/n {/log(n)) ([Freedman & Meyer & Luo '02])
e We want to correct random errors of size ©(n) with very high
probability
Solution given by [Dennis & Kitaev & Landahl & Preskill '01],
[Kovalev & Pryadko '13]:
@ Use of graph percolation theory
@ Given a constant rate LDPC code with minimal distance d = Q(n®),
the maximum likelihood decoder corrects random errors of size ©(n)
with very high probability
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Initial problem:
@ The best known minimal distance for a constant rate LDPC code is

©(v/n {/log(n)) ([Freedman & Meyer & Luo '02])
e We want to correct random errors of size ©(n) with very high
probability
Solution given by [Dennis & Kitaev & Landahl & Preskill '01],
[Kovalev & Pryadko '13]:
@ Use of graph percolation theory
@ Given a constant rate LDPC code with minimal distance d = Q(n®),
the maximum likelihood decoder corrects random errors of size ©(n)
with very high probability
Remaining problem:
@ The maximum likelihood decoder is exponential time in general
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Surface codes

@ The generators g1,...,8,—k are given by a tessellations of a surface

e Maximum-likelihood decoding can be done efficiently using
Edmond's matching algorithm
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Surface codes

@ The generators gy, . .

., 8n—k are given by a tessellations of a surface

e Maximum-likelihood decoding can be done efficiently using
Edmond's matching algorithm

k Correction up to size | Efficient correction up to size
Toric code [Kit03] 2 ©(v/n) O(v/n)
Hyperbolic 2D [FML02]|©(n) O(log n) O(log n)

[Kit03] A Yu Kitaev. “Fault-tolerant quantum computation by anyons”. (2003)
[FMLO2] Michael H Freedman, David A Meyer, and Feng Luo. “Z2-systolic freedom and quantum

codes”. (2002)

Properties needed to apply [Gottesman, '13]:

@ A constant rate quantum code

o d=Q(n)
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Surface codes

@ The generators gy, . . .

,&n—k are given by a tessellations of a surface

e Maximum-likelihood decoding can be done efficiently using
Edmond's matching algorithm

k Correction up to size | Efficient correction up to size
Toric code [Kit03] 2 ©(v/n) O(v/n)
Hyperbolic 2D [FML02]|©(n) O(log n) O(log n)

[Kit03] A Yu Kitaev. “Fault-tolerant quantum computation by anyons”. (2003)
[FMLO2] Michael H Freedman, David A Meyer, and Feng Luo. “Z2-systolic freedom and quantum

codes”. (2002)

Properties needed to apply [Gottesman, '13]:

@ A constant rate quantum code

o d=Q(n)

No-go result

We cannot apply [Gottesman '13] using surface codes:

kd? < c(log k)?n

[Delfosse '13]
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4 Dimensional hyperbolic codes

@ The generators g1, ...,g,_x are given by a tessellation of the 4
Dimensional hyperbolic space

@ The bound for surface codes can be beaten by 4D codes

@ No efficient maximume-likelihood decoder is known

k Correction up to size | Efficient correction up to size

O(n) Q(n%2), O(n%3) O(log n)

Hyperbolic 4D
[GL14], [Has13], [LL17]

[GL14] Larry Guth and Alexander Lubotzky. “Quantum error correcting codes and 4-dimensional
arithmetic hyperbolic manifolds”. (2014)

[Has13] Matthew B Hastings. “Decoding in Hyperbolic Spaces: LDPC Codes With Linear Rate
and Efficient Error Correction”. (2013)

[LL17] Vivien Londe and Anthony Leverrier. “Golden codes: 4D hyperbolic regular quantum
codes”. (2017)

@ There might be an efficient decoder to correct any adversarial error
of size up to Q(n¢) but no such algorithm is known

@ O(log n) is not enough to apply [Gottesman '13]
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The CSS construction

Definition [Steane '95], [Calderbank & Shor '95]

We can construct a quantum error correcting code using Cx and Cz two
classical error correcting codes such that Cx C Cz

Each generator g1, ..., g,k of a CSS-code is either a product of Pauli X
matrices or a product of Pauli Z matrices
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The CSS construction

Definition [Steane '95], [Calderbank & Shor '95]

We can construct a quantum error correcting code using Cx and Cz two
classical error correcting codes such that Cx C Cz

Each generator g1, ..., g,k of a CSS-code is either a product of Pauli X
matrices or a product of Pauli Z matrices

The difficulty for constructing CSS code is to find two classical codes
which are orthogonal
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Hypergraph product codes [Tillich & Zémor '09]

The parity check matrix H of a classical code C satisfies C = ker H.
Let H be the parity check matrix of a classical code with constant rate
and linear minimal distance.

We define the two classical codes Cx and Cz by their parity check
matrices:

Hx =(1®H,H  ®1) Hz=(He1,1oH")

Then C;( CCy
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Hypergraph product codes [Tillich & Zémor '09]

The parity check matrix H of a classical code C satisfies C = ker H.
Let H be the parity check matrix of a classical code with constant rate
and linear minimal distance.

We define the two classical codes Cx and Cz by their parity check
matrices:

Hx =(1®H,H  ®1) Hz=(He1,1oH")

Then Cx C Cz

Definition

The hypergraph product is defined as CSS(Cx, Cz).
It's a constant rate code with minimal distance d = ©( /n)

@ Freedom to choose H

o [Leverrier & Tillich & Zémor '15] chooses H as the parity
check-matrix of a “classical expander code” ([Sipser & Spielman,
'96])

A. Grospellier Efficient decoding of random errors for quantum expander codes 15/23



Classical expander codes

The parity check matrix H of a classical code C satisfies C = ker H
H represented by a factor graph

Bits Parity check-nodes

O, = OKFRO
H OO RKR K
_H OO O
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Classical expander codes

The parity check matrix H of a classical code C satisfies C = ker H
H represented by a factor graph

Bits Parity check-nodes

Definition of a (v, d) expander graph
For all S C {Bits}, if |S| < 7yn then:

IF(S) = (1 - 6)di]S|
IF(S)] < du]S]

Expander graph

— Parity check matrix

— Classical expander code
— Quantum expander code
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Decoder for quantum expander codes

o Classical case (bit-flip algorithm):
o As long as it is possible to flip a single bit to decrease the syndrome
weight, flip this bit
o This efficient algorithm corrects any adversarial error of size up to
©(n) for classical expander codes [Sipser & Spielman, '96]
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Decoder for quantum expander codes

o Classical case (bit-flip algorithm):

o As long as it is possible to flip a single bit to decrease the syndrome
weight, flip this bit

e This efficient algorithm corrects any adversarial error of size up to
©(n) for classical expander codes [Sipser & Spielman, '96]

@ Quantum case (small-set-flip algorithm):

o The “qubit-flip” algorithm doesn't work

o ldea: try to flip several qubits at each step

o As long as it is possible to flip a subset of a generator to decrease
the syndrome weight, flip this subset
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Decoder for quantum expander codes

o Classical case (bit-flip algorithm):

o As long as it is possible to flip a single bit to decrease the syndrome
weight, flip this bit

e This efficient algorithm corrects any adversarial error of size up to
©(n) for classical expander codes [Sipser & Spielman, '96]

@ Quantum case (small-set-flip algorithm):

o The “qubit-flip” algorithm doesn’t work

o ldea: try to flip several qubits at each step

o As long as it is possible to flip a subset of a generator to decrease
the syndrome weight, flip this subset

Theorem [Leverrier & Tillich & Zémor '15]

This efficient algorithm corrects any adversarial error of size up to ©(+/n)
for quantum expander codes
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Summary of our contribution

Question: What happens for random errors of size ©(n)?

Theorem: what we proved

For a probability of error p < p:
PP(small-set-flip corrects the error) = 1 — 1/e(v")

Idea. The algorithm is local with respect to the adjacency graph
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The number of flips is linear in the size of the initial error

Definition: a-subset, a € (0, 1]

X is an a-subset of E if | X N E| > a|X]|

e Each connected component X is an a-subset of {red dots} N X
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Theorem: what we proved

For a probability of error p < pih:
P(small-set-flip corrects the error) = 1 — 1/e2(v")
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Theorem: what we proved

For a probability of error p < pih:
P(small-set-flip corrects the error) = 1 — 1/e2(v")

v

Key lemma: percolation

Let o € (0,1] and a probability of error p < cst(a, d).
With probability 1 — 1/e2(v7):

o If X is a connected a-subset of the error then | X| < c\/n

\
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Theorem: what we proved

For a probability of error p < pih:
P(small-set-flip corrects the error) = 1 — 1/e2(v")

v

Key lemma: percolation

Let o € (0,1] and a probability of error p < cst(a, d).
With probability 1 — 1/e?(V):

o If X is a connected a-subset of the error then | X| < c\/n

A\

Sketch of the proof of the theorem:
Take a random error and run the small-set-flip algorithm. Let X be a
connected component of the marked qubits:

@ X is an a-subset of the error
o |X| <cyn
@ X is corrected

This is true for any X — the entire error is corrected
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Conclusion

Quantum expander codes:

@ Are LDPC quantum codes

@ Have a constant rate

e Have a good minimal distance: d = ©(/n)
The decoder:

@ Corrects any adversarial error of size up to ©(y/n)

@ For a probability of error p < py, : P(correction) = 1 — 1/
Corollary:

o Fault tolerant quantum computation with constant overhead is
possible
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Conclusion

Quantum expander codes:

@ Are LDPC quantum codes

@ Have a constant rate

e Have a good minimal distance: d = ©(/n)
The decoder:

o Corrects any adversarial error of size up to O(y/n)

@ For a probability of error p < py, : P(correction) = 1 — 1/
Corollary:

o Fault tolerant quantum computation with constant overhead is
possible

Future work (py, ~ 1071°):
@ Run simulations

@ Improve our numerical value for the threshold
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Conclusion

Quantum expander codes:

@ Are LDPC quantum codes

@ Have a constant rate

e Have a good minimal distance: d = ©(/n)
The decoder:

o Corrects any adversarial error of size up to O(y/n)

@ For a probability of error p < py, : P(correction) = 1 — 1/
Corollary:

o Fault tolerant quantum computation with constant overhead is
possible

Future work (py, ~ 1071°):
@ Run simulations

@ Improve our numerical value for the threshold

Thank you for your attention
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Known constructions of quantum LDPC codes

k Correction up to size | Efficient correction up to size
Toric code [Kit03] 2 O(v/n) O(v/n)
Hyperbolic 2D [FML02]|©(n) O(log n) O(log n)
Hyperbolic 4D 0.2 03
[GL14], [Has13], [LL17] [O(7) | (), O(™) Ollogn)
Expander codes
[TZ14], [LTZ15] o(n) o(vn) O(vn)

[Kit03] A Yu Kitaev. “Fault-tolerant quantum computation by anyons”. (2003)

[FMLO2] Michael H Freedman, David A Meyer, and Feng Luo. “Z2-systolic freedom and quantum
codes”. (2002)

[GL14] Larry Guth and Alexander Lubotzky. “Quantum error correcting codes and 4-dimensional
arithmetic hyperbolic manifolds”. (2014)

[Has13] Matthew B Hastings. “Decoding in Hyperbolic Spaces: LDPC Codes With Linear Rate
and Efficient Error Correction”. (2013)

[LL17] Vivien Londe and Anthony Leverrier. “Golden codes: 4D hyperbolic regular quantum
codes”. (2017)

[TZ14] Jean-Pierre Tillich and Gilles Zémor. “Quantum LDPC codes with positive rate and
minimum distance proportional to the square root of the blocklength”. (2014)

[LTZ15] Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zémor. “Quantum expander codes”.
(2015)
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n = 10,fn = 5,Cﬁ = 2,Cb = f%cﬁ =4
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