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TOPOLOGICAL
STABILIZER CODES

Qubits on a manifold, (geometrically) local stabilizer
generators, logical information encoded non-locally.

Well-known models: toric and color codes.

Can be built in the lab: 2D and local measurements! —

Desired properties:
- fault-tolerant logical gates,
- efficient decoders, |
- Figh threshold |~

Decoder: algorithm finding correction from stabilizer measurements.

Threshold p:» = max error rate the code & decoder can tolerate.



OUTLINE

This talk: local (in space/time) decoders w/ provable thresholds.

Many toric/color code decoders: non-local, local but heuristic (Harrington,
Dennis, Fowler, Breuckmann, Herold, Duclos-Cianci, Haah, Hastings, Brown,...).

1. Generalization of Toom’s rule to any lattice.

2. Local TC decoder w/ non-zero threshold.

3. Reduction of CC decoding to TC decoding.

4. 3D CC thresholds via stat-mech mappings (arXiv: 1708.07131)



NEED FOR (LOCAL)
FRROR CORRECTION

Errors can accumulate! To prevent that — diagnose and correct errors.

Example: classical memory protecting one bit *1

- repetition code, 1111111

- decoder — majority vote. 11-11-111 11

Noise flips some bits. Collecting (global) information 1{1[-1]1]1

takes time — new errors can appear! 1]1(1|1(1
. 1111111 (-1

Goal: suppress/remove errors by local operations.

Toom’s rule: flip bit (face) if it differs from both N and E neighbors.

1 Toom 1
-111 111




DECODING PROBLEM

Unlike classical bits, quantum information can’t be accessed directly.

Decoding: find position of errors from
violated stabilizers (excitations).

Stabilizer (CSS) codes: measure X/Z-stabilizers and correct Z/X-errors
2D toric code (Kitaev):

separately.We consider ideal measurements.
- qubits = edges,

- stabilizers = Z-faces & X-vertices, a
- Z-errors = edges,
- excitations = vertices.

Decoding successful if error and correction differ by stabilizer.



TOOM'S RULE AS DECODER

Toric/color code in d dim w/ (k-1)- & (d-k-1)-dim excitations, k=1,...,d-1.

3D toric code: é
- qubits = faces,
- stabilizers = X-edges, Z-cubes. n?ﬂ ' Ei

Decode Z errors = flip faces w/ boundary matching loop-like excitations.

Toom’s rule — a rule for (re)moving domain walls, i.e.“move NE corners”.
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PROBLEMS W/ GENERALIZATION

Is there a rule a la Toom (to move domain walls) on any lattices!?

Not obvious how to generalize beyond the square/cubic lattices. Simple
rules fail, e.g.“move NE corners”.

% o

We want a deterministic rule — simpler to analyze!

We focus on triangulated lattices.



LOCAL EFFICIENT DECODERS:
TORIC AND COLOR CODES

Questions:
- Toom’s rule on any lattice?
- does decoding w/ Toom’s rule work!?

Sweep Rule — a generalization of Toom’s rule to any d-dim lattice and
lk-dim domain walls for k=1,...,d-1.

Threshold for local toric code decoders based on the Sweep Rule.

Local color code decoders in d>3 dim by using any toric code decoder.



SWEEP RULE

extremal

Change of perspective:
not faces but vertices!

Introduce the sweep direction.

Extremal vertex v:

local restriction of the domain wall
is in the sweep direction from v.

not
extremal

Sweep Rule: if vertex extremal, flip faces in the sweep direction.

Sweep Rule in d=2 dim defined similarly. Important to flip right cells!




PROPERTIES OF SWEEP RULE

= The sweep direction induces a partial order < over the set of vertices.
Alternative picture: vertices in spacetime, path & causal path.

= Two notions:
- cone(v) = {vertices u | u<v}
- sup(S) = least lower bound of S

= Correction region:
domain wall S stays within cone(sup(S)).

= Monotone:
max length of the causal path between
sup(S) and any vertex of domain wall S.
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SWEEP DECODER

Toric code in d=3 dim w/ k-dim excitations for k=1,...,d-2.

Sweep Decoder

|. repeat M times: simultaneously apply the Sweep Rule for every vertex v,
2. correction = flipped faces.

Decoder can fail because:
(a) domain walls have not been removed in M time steps,
(b) correction introduced logical error.

Our result: Sweep Decoder has non-zero threshold pc:
if error rate p<pc then pr(success)— | in the limit of lattice size L— 0.




KEY LEMMAS

We use ideas of Gacs, Harrington, Bravyi&Haah.

Level-0 chunk = single error, level-1 chunk = nearby pair of errors, ...,
level-n chunk = two disjoint level-(n-1) chunks & diameter < Q"/2.

Lemma I: for Sufﬁciently Small P ; ................................................................................................... ;

" : IR0 1@,
the probability of having a level-n chunk 8 ® ~9:level-|

Q

is suppressed doubly exponentially in n. .\. /
e N
: .0"- ."‘ “.‘

Level-n error E, = union of level-n chunks. U | "5:... -’l .
Disjoint decomposition of errors: : level-0 Iev;I'Z
E = (Eo-Ei) + (E1-E2) +...F (Emc1oEm) & Ein s

Lemma 2: if C is a level-i cluster of errors in (Ei-Ei+1), then C is “not too
big” (diam(C) < Q') and “far from other errors” (d(M, (E-M)) = Q™!/3)_



PUT TING THINGS TOGETHER

Assumptions on the lattice: (locally) Euclidean, ...

Isolated error removed in | step, level-1 cluster in ~ Q steps, ..., level-i
cluster C in time ~ Q' (use: C “not too big” & monotone).

Removal of level-i cluster C unaffected by other level-j clusters for all j=i
(use: C “far from other errors” & correction region).

Correction of C inside the cone of its boundary, which for low-level
clusters (i < log L) is a correctible region — no logical error!

Run local updates for total time ~ Q', where i ~ log L. Higher-level clusters
might not be removed, but they are very unlikely!

Failure of the decoder due to presence of high-level clusters:
pr(fail) < poly(L) exp(-cL) — 0 as L —> oo.
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NOISY MEASUREMENTS:
3D TORIC CODE NUMERICS

Realistic setting — noisy measurements w/ prob = p.

Iterate N times: add new errors, imperfectly measure stabilizers, apply
one round of local correction everywhere.

After N iterations: measure perfectly, decode, check for logical errors.

We can find threshold p#(N) and analyze its behavior in the limit N—o00.

Plogical
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OUTLINE

3.Reduction of CC decoding to TC decoding.
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TOPOLOGICAL CODE:
2D COLOR CODE

-

8§
. &

qubit stabilizer

(Dual) lattice: made of triangles and
vertices are 3-colorable.

2D color code (Bombin):
- qubits = triangles,
- stabilizers = X- & Z-vertices.

Logical Clifford gates are transversal,
code switching and gauge fixing, ...

Decoding seems to be more challenging:
excitations created in triples!

|6



HOW 1O DECODE
COLOR CODES!

Idea: color and toric codes are related (Kubica et al’l5) — can we use
existing toric code decoders!

Noise changes — correlated errors!

2D projection decoder (Delfosse’l 4)
- TC decoder on three sublattices,
- global filling.

error syndrome

2D <« \
f‘IIm\ /C decoder &




LOCAL COLOR CODE
DECODERS IN D=2 DIM

Beyond 2D not really explored! Similar ideas work.

Our result: decoder w/ local reduction and lifting in d 2 2 dim.

3D color code (bcc lattice):
- qubits = tetrahedra,
- stabilizers = X-vertices and Z-edges.

error ~ TC syndrome

3D — |ID < 0D X-type
| decoder

=bD < ID Z-type

Any toric code decoder can be used! Fully local for loop-like excitations.

Toric code thresholds allows to lower bound color code threshold!
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OUTLINE

4.3D CC thresholds via stat-mech mappings (arXiv: 1708.07131)
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THRESHOLDS

FROM STATISTICAL MECHANICS

Analytic bounds on threshold (very) low and far from actual values.

Values of thresholds relevant for:
overhead estimates, comparing codes
and decoders, experiment, ...

Dennis et al’02: connection between
toric code decoding and a classical
spin model (random-bond Ising).

Ordered phase = successful correction.

disordered
S hase
e, P threshold

O~

\.\*‘o~
.
ordered e

phase /\/

Our results: new spin models relevant for 3D color code & their phase

diagrams, thresholds of 3D color code.
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RANDOM COUPLING ISING
MODEL AND 3D COLOR CODE

3D bcc lattice: -
- qubits = tetrahedra, 7

- stabilizers = X-vertices (A) and Z-edges (B). V‘WV

Imw

.\

Z/X-errors lead to 0D point-/ |D loop-like excitations.
Logical Z/X operators are |D string-/ 2D sheet-like.

4-body w/ spins on vertices (A):  Sb ]
H = — Z HabcdSasSbScSd Habed = 1
Sa

Sd
6-body w/ spins on edges (B): Sb
S a Aabedef — +1
H = — Z HabedefSaSbScSdSeS f y Sc
Sf
For p=0 models are dual (low- and high-T expansions match). 2

arXiv: 1708.07131



NUMERICS
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3D COLOR CODE THRESHOLDS
FROM PHASE DIAGRAMS

fix disorder p_ threshold
fe1 and sweep T fe pu = 1.9%
8 —_. """""""""""""""" \ : th reShOId E‘ ''''''''''''''''''''''''''''''''''''''''''''''
6 '''''''''''''''''''''' . Pth = 27.6% 0'8—: .............. ilé.i.i""/

4-body RCIM 6-body RCIM

threshold for 2D threshold for|D
sheet-like logical X string-like logical Z
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DISCUSSION

Our results:
local decoders of toric and color codes w/ provable thresholds,
noisy measurements — 3D TC sustainable threshold ptc® = 2%.

3D color code optimal thresholds from stat-mech:
pl) = 1.9% and p®? = 27.6%.

3D gauge color code: threshold p{!) for 1D string-like (Brown et al.’l 6).

THANK YOU FOR YOUR ATTENTION!
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