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o Communication Complexity

• Quantum resources are powerful [Raz99,KR11, …]

• Interaction is a powerful resource [KNTZ01, …]

-Can we get the same advantage in the noisy quantum communication setting?
-How robust is communication complexity against noise?

-What about two-way/interactive capacity of a channel?
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Noisy Interactive Quantum Communication

Simulation protocol Π′

n′ two-way uses of 
noisy channel N

Question: How efficiently is it possible to simulate Π using a noisy two-way communication channel N?
How many two-way uses of channel N is needed to simulate n two-way uses of the identity channel?

Interactvie/two-way capacity of N: Optimal communication rate in the limit of large n and vanishing distance 𝛿
Communication rate:    R := n/n′
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Previous Work

Classical :

o Noisy interactive communication problem introduced by Schulman [Sch92,Sch93]

o Active field of research:  

Possible to simulating noiseless interactive communication over a two-way noisy channel with constant overhead (C > 0)

• Results focused on improving tolerable error-rate and computational efficiency :

Quantum :
o Recently, [BNTTU14] proved constant factor communication overhead is possible (C > 0) 

• More recent results: [BEGH16, GH17, HV17, BE17 , …]

• [KR13], [Hae14] introduced capacity approaching codes : 

[BR11, GMS11, BK12, FGOS13, BN13, BE14, GH14, GHS14, BKN14, EGH15, …]

Computationally inefficient, Huge communication overhead even for vanishing error rate (C ≪ 1)

Random noise: C > 𝟏 − 𝑶( 𝝐) ,    Adversarial noise: C > 𝟏 − 𝑶 𝝐 𝒍𝒐𝒈 𝒍𝒐𝒈
𝟏

𝝐

Mostly based on tree codes, Huge communication overhead even for vanishing error rate

Characterized interactive capacity up to leading order :  C 1 with error-rate 𝜖 0
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Main Result

Theorem: Rate 1 − 𝑂( 𝜖) is achievable, with success prob. 1 − 2−Ω(𝑛𝜖), over fully adversarial qubit channel 
of error rate at most 𝜖. 

Note: This work is not an extension of [BNTTU14]:

[BNTTU14] :      Based on tree codes (computationally inefficient) 

C ≪ 1 even for vanishing error 𝜖 0
Tolerates adversarial error rates up to 1/2

• Plain quantum model: No pre-shared resources
Outperforms conjectured optimal bound in plain classical model!

• First capacity approaching result in noisy interactive quantum communication
Characterizing interactive/two-way capacity to leading order: :  C 1 as error-rate 𝜖 0

• First computationally efficient coding scheme
Computational complexity of coding operations: 𝑂(𝑛2)
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o If summaries consistent, continue
o Otherwise, error detected, backtrack to earlier stage and resume

• An online error-correcting code over multiple messages

• As simulation proceeds, gain more trust in earlier conversation           any detected error is recent with 
high prob. 

• Efficient: involves evaluating hash functions
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Noisy Interactive Communication: Natural Approach

Haeupler’s Template (Classical)

o Both parties conduct their original conversation as if there were no noise
o At regular intervals exchange concise summaries of the conversation so far
o If summaries consistent, continue
o Otherwise, error detected, backtrack to earlier stage and resume

• How frequently check for inconsistency?

Requirement: communication wasted by a single error should be constant!
• How to backtrack?

Remarks :

More checks        communication lost even if no error
More checks       detect errors earlier, less communication lost



Our Framework

Follow natural approach!

Make sure both parties know joint quantum state before deciding their next action!

o Introduce sufficient but concise data structure to track :
• Stage in protocol
• Type of action in each iteration
• Teleportation measurement outcomes
• Received instructions for teleportation decoding
• Recovery operations
• Which MESs to use next for teleportation
• …

o Each party maintains their own data and an estimate of other party’s data

o At the beginning of each iteration, check if the estimates match the actual data (by hashing)
No           resolve the inconsistency in classical data

Adapt synchronization mechanism developed by [Hae14] in classical setting
Yes           Compute the joint state             Decide next action
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Our Framework

In each iteration, Alice & Bob engage in one of three actions :

1. Simulate next block in Π
2. Reveres the last block of simulation
3. Exchange classical data
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Our Framework

In each iteration, Alice & Bob engage in one of three actions :

1. Simulate next block in Π
2. Reveres the last block of simulation
3. Exchange classical data

Error or hash collision         different actions!

U

1

1

U

1

2

U

1

1



rU

1

rU

A B

A

A

A

C

B

B

C

C

C



Out-of-Sync Teleportation

What if Alice proceeds with simulation of Π (forward or reverse) while 
Bob exchanges classical data?!  

• Alice : teleports quantum data, interprets Bob’s classical data as 
teleportation measurement outcomes

• Bob : sends classical data, interprets Alice’s instructions for 

teleportation decoding as classical data

• They become out-of-sync on which MESs to use to teleport next
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Out-of-Sync Teleportation

What if Alice proceeds with simulation of Π (forward or reverse) while 
Bob exchanges classical data?!  

• Alice : teleports quantum data, interprets Bob’s classical data as 
teleportation measurement outcomes

• Bob : sends classical data, interprets Alice’s instructions for 

teleportation decoding as classical data

• They become out-of-sync on which MESs to use to teleport next

Can Alice and Bob recover from this?!
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Out-of-Sync Teleportation

o Information does not leak to environment (adversary)
Quantum data reside somewhere in the closed system
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Out-of-Sync Teleportation

o Information does not leak to environment (adversary)

• Resolve inconsistencies in classical data
• Determine which MES to use next 
• “Complete the teleportations” 

Quantum data reside somewhere in the closed system
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o Need to redirect quantum data back to 𝐴, 𝐵, 𝐶 registers
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Framework for Plain Model
o A similar data structure is used to maintain a global view of simulation 

o To protect the messages : Teleportation             Quantum Vernam Cipher [Leu00]

Key features:  Allows for recycling MESs when no errors
Detection of errors with distributed syndrome

o Distributing small amount of entanglement is sufficient

• Use a fraction to generate a secret key
• Use the rest for quantum hashing and QVC
• Recycle entanglement as needed

o Use quantum hashing due to [BDSW96] to detect errors

o New Obstacles : out-of-sync QVC, out-of-sync hashing, out-of-sync recycling
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Open Questions

• Is 1 − 𝑂( 𝜖) the optimal achievable rate? 

• If so, what is the constant in 𝑂( 𝜖)? 

• What about non-alternating protocols? 

• What if local operations are also noisy? Extension to fault-tolerant setting 

• Privacy-preserving interactive communication 

• … 

Thanks!



Crude Analysis for Rate

Noiseless protocol of length 𝑛 , 𝑛
𝑟

blocks of length 𝑟

Communication in each iteration = 𝑟 + 𝑂(1) (for checks)  

Number of errors = 𝜖 ⋅ 𝑛
𝐶
= 𝑂(𝜖𝑛)

Number of iterations to recover from an error = 𝑂(1)

Total # of iterations = # of iteration of forward simulation + # of iterations of recovery = 𝑛
𝑟
+ 𝑂(𝜖𝑛)

Total communication = 𝑛

𝑟
+ 𝑂 𝜖𝑛 𝑟 + 𝑂(1) = 𝑛 1 + 𝑂 𝜖𝑟 +

1

𝑟
= 𝑛 1 + 𝑂 𝜖 for  𝑟 = Θ

1

𝜖

𝑅 =
𝑛

𝑛 1 + 𝑂 𝜖
= 1 − 𝑂 𝜖




