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Function f known to both
Goal: Compute f(x,y) by communicating over a noiseless channel
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Function f known to both

Goal: Compute f(x,y) by communicating over a noiseless channel
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-Can we get the same advantage in the noisy quantum communication setting?
-How robust is communication complexity against noise?
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0 Communication Complexity

Two parties (Alice & Bob) with classical inputs x and y, resp.
Function f known to both

Goal: Compute f(x,y) by communicating over a noiseless channel

* Quantum resources are powerful [Raz99,KR11, ...]
* Interaction is a powerful resource [KNTZ01, ...]
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-Can we get the same advantage in the noisy quantum communication setting?

-How robust is communication complexity against noise?

0 Channel Coding

Achieve noiseless one-way communication using a noisy one-way channel

Channel capacity : Optimal asymptotic achievable rate of such a procedure
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Two parties (Alice & Bob) with classical inputs x and y, resp.
Function f known to both
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Quantum resources are powerful [Raz99,KR11, ...] &
Interaction is a powerful resource [KNTZ01, ...]

-Can we get the same advantage in the noisy quantum communication setting?
-How robust is communication complexity against noise?

0 Channel Coding

Achieve noiseless one-way communication using a noisy one-way channel

Channel capacity : Optimal asymptotic achievable rate of such a procedure 12

Studied extensively in one-way setting (classical & quantum) [Shannon, HSW , LSD, ...]
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Motivation

0 Communication Complexity

Two parties (Alice & Bob) with classical inputs x and y, resp.
Function f known to both

Goal: Compute f(x,y) by communicating over a noiseless channel
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Quantum resources are powerful [Raz99,KR11, ...]
Interaction is a powerful resource [KNTZ01, ...]

-Can we get the same advantage in the noisy quantum communication setting?
-How robust is communication complexity against noise?

0 Channel Coding

Achieve noiseless one-way communication using a noisy one-way channel

Channel capacity : Optimal asymptotic achievable rate of such a procedure 12

Studied extensively in one-way setting (classical & quantum) [Shannon, HSW , LSD, ...]

-What about two-way/interactive capacity of a channel?
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How many two-way uses of channel N is needed to simulate n two-way uses of the identity channel?




Noisy Interactive Quantum Communication

| Vin ) ABER = ABCR |y
Noiseless protocol IN —— Simulation protocol ' ¥ W) —_ |
A C '
|U/|/ °F Al AT B [
L c E, . o
il ny 5,
| ‘B '
n two-way uses of U I : n’ two-way uses of [ N <?:I I BB
|dentity channel | : C I ; noisy channel N E bl
AT 55— | N
| U ALA B—-r—m |
¢ LY B E
| | «— .

1 B L L <t N [« | [B
n+1 E
A C n'+1 B
‘\‘\ / A' | A‘\K
Question: How efficiently is it possible to simulate I using a noisy two-way communication channel N? S Yot
How many two-way uses of channel N is needed to simulate n two-way uses of the identity channel?

Communication rate: R:=n/n’
Interactvie/two-way capacity of N: Optimal communication rate in the limit of large n and vanishing distance §
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Previous Work

Classical :

0 Noisy interactive communication problem introduced by Schulman [Sch92,5ch93]

Possible to simulating noiseless interactive communication over a two-way noisy channel with constant overhead (C > 0)

o Active field of research:
» Results focused on improving tolerable error-rate and computational efficiency :
[BR11, GMS11, BK12, FGOS13, BN13, BE14, GH14, GHS14, BKN14, EGH15, ...]
Mostly based on tree codes, Huge communication overhead even for vanishing error rate

« [KR13], [Hae14] introduced capacity approaching codes :

Characterized interactive capacity up to leading order : C—1 with error-rate e— 0

Random noise: C> 1 —0(\/Je) , Adversarial noise:C > 1 — 0( felog log %)

* More recent results: [BEGH16, GH17, HV17, BE17, ...]

Quantum :

0 Recently, [BNTTU14] proved constant factor communication overhead is possible (C > 0)

Computationally inefficient, Huge communication overhead even for vanishing error rate (C < 1)
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» First computationally efficient coding scheme

Computational complexity of coding operations: 0(n?)

* Plain quantum model: No pre-shared resources
Outperforms conjectured optimal bound in plain classical model!




Main Result

Theorem: Rate 1 — 0(v/€) is achievable, with success prob. 1 — 272™€) over fully adversarial qubit channel
of error rate at most €.

* First capacity approaching result in noisy interactive quantum communication

Characterizing interactive/two-way capacity to leading order: : C — 1 as error-rate e — 0

» First computationally efficient coding scheme
Computational complexity of coding operations: 0(n?)

* Plain quantum model: No pre-shared resources
Outperforms conjectured optimal bound in plain classical model!

Note: This work is not an extension of [BNTTU14]:

[BNTTU14]:  Based on tree codes (computationally inefficient)

C « 1 even for vanishing error e — 0

Tolerates adversarial error rates up to 1/2




Development of Framework

Focus on adversarial noise (includes random noise)

Teleportation-based Model Plain Model

Perfect pre-shared entanglement
Large Alphabet Noisy classical communication
Large alphabet

No pre-shared entanglement
Noisy quantum communication
Large alphabet

Perfect pre-shared entanglement
Small Alphabet Noisy classical communication
Small alphabet
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Noisy quantum communication
Small alphabet
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0 At regular intervals exchange concise summaries of the conversation so far
o If summaries consistent, continue

o Otherwise, error detected, backtrack to earlier stage and resume
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Haeupler's Template (Classical)

0 Both parties conduct their original conversation as if there were no noise
0 At regular intervals exchange concise summaries of the conversation so far
o If summaries consistent, continue

o Otherwise, error detected, backtrack to earlier stage and resume

* An online error-correcting code over multiple messages

- Trivial encoding of each message
- Summaries measure the error syndrome

« Efficient: involves evaluating hash functions

» As simulation proceeds, gain more trust in earlier conversation —— any detected error is recent with
high prob.
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Remarks :

* How frequently check for inconsistency?

More checks — communication lost even if no error
More checks — detect errors earlier, less communication lost



Noisy Interactive Communication: Natural Approach

Haeupler's Template (Classical)

0 Both parties conduct their original conversation as if there were no noise
0 At regular intervals exchange concise summaries of the conversation so far
o If summaries consistent, continue

o Otherwise, error detected, backtrack to earlier stage and resume

Remarks :

* How frequently check for inconsistency?

More checks — communication lost even if no error
More checks — detect errors earlier, less communication lost

 How to backtrack?

Requirement: communication wasted by a single error should be constant!



Our Framework

Input protocol I
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o Each party maintains their own data and an estimate of other party’s data
0 At the beginning of each iteration, check if the estimates match the actual data (by hashing)

No —— resolve the inconsistency in classical data
Adapt synchronization mechanism developed by [Hae14] in classical setting

Yes — Compute the joint state —— Decide next action



Our Framework

In each iteration, Alice & Bob engage in one of three actions :

1. Simulate next block in I1
2. Reveres the last block of simulation
3. Exchange classical data
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In each iteration, Alice & Bob engage in one of three actions :

1. Simulate next block in I1
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Our Framework

In each iteration, Alice & Bob engage in one of three actions :

1. Simulate next block in I1
2. Reveres the last block of simulation
3. Exchange classical data

Error or hash collision — different actions!




Out-of-Sync Teleportation

What if Alice proceeds with simulation of Il (forward or reverse) while
Bob exchanges classical data?!

» Alice : teleports quantum data, interprets Bob’s classical data as
teleportation measurement outcomes

» Bob : sends classical data, interprets Alice's instructions for
teleportation decoding as classical data

» They become out-of-sync on which MESs to use to teleport next
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Out-of-Sync Teleportation

What if Alice proceeds with simulation of Il (forward or reverse) while
Bob exchanges classical data?! 1

» Alice : teleports quantum data, interprets Bob’s classical data as
teleportation measurement outcomes

————————————————————————

» Bob : sends classical data, interprets Alice's instructions for

teleportation decoding as classical data o<
» They become out-of-sync on which MESs to use to teleport next
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Out-of-Sync Teleportation

o0 Information does not leak to environment (adversary)

Quantum data reside somewhere in the closed system
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Out-of-Sync Teleportation

o0 Information does not leak to environment (adversary)
Quantum data reside somewhere in the closed system

0 Need to redirect quantum data back to 4, B, C registers

 Resolve inconsistencies in classical data
e Determine which MES to use next

« “Complete the teleportations”
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Framework for Plain Model

o A similar data structure is used to maintain a global view of simulation

o0 To protect the messages : Teleportation —— Quantum Vernam Cipher [LeuQ0]
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Key features: Allows for recycling MESs when no errors

Detection of errors with distributed syndrome
b]

P m

0 Use quantum hashing due to [BDSW96] to detect errors
o Distributing small amount of entanglement is sufficient

» Use a fraction to generate a secret key
* Use the rest for quantum hashing and QVC
» Recycle entanglement as needed

0 New Obstacles : out-of-sync QVC, out-of-sync hashing, out-of-sync recycling
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Open Questions

* Is1— 0(y/e) the optimal achievable rate?
 If so, what is the constant in 0(+/€)?
« What about non-alternating protocols?

« What if local operations are also noisy? Extension to fault-tolerant setting

* Privacy-preserving interactive communication

Thanks!



Crude Analysis for Rate

Noiseless protocol of length n, % blocks of length r

al3

Number of errors = € - — = O(en)

Number of iterations to recover from an error = 0(1)
Total # of iterations = # of iteration of forward simulation + # of iterations of recovery = §+ O(en)

Communication in each iteration = r + 0(1) (for checks)

Total communication = (; + 0(671)) (r+0(1))=n (1 + 0 (er + %)) =n (1 + 0(\/5)) for r =0 (é)
R = ik =1-0(e)
- n(1+0(O)






