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Stabilizer codes
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Single code vs. code family !
[Bravyi, Kitaev ‘98]



What is transversal?

A uniform magnetic field:

Hayden, Nezami, Popescu, Salton ‘17



What is transversal?




What is transversal?

@ QaUQpUQcUQp =1{1,2,...,n}

V) ¢ @ & 0 % Ul

Even d—1 untrustworthy parties cannot @
destroy the encoded qubits.




Can we establish limits on the possible
transversal gates on a stabilizer code?

transversal code

! !

constant depth code family



Prior work

\/Zeng, Cross, Chuang 2008 — the group of transversal gates on any
stabilizer code is not universal

‘J Conjecture: transversal gates on stabilizer codes are in the

) 3 1
New: Clifford hierarchy (proved with new quantity: the disjointness)

Eastin, Knill 2009 — the group of transversal gates on any quantum
code is not universal

Bravyi, Konig 2013 — constant-depth local circuits on topological
stabilizer codes in D-dimensions are in the D™ level of the Clifford
hierarchy

Pastawski, Yoshida 2015 — the same but for topological subsystem
codes with a threshold
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Partition & support

@ @ @ XX Partition: {Q);}
e o o

Q1UQ2U---UQN =1{1,2,...,n}
e o , . n .
E.g. the single-qubit partition Q; = {i}

* o ¢ ® ¢ Support of operator U:

® O O O O supp(U) = {i : U acts on qubits in Q;}

E.g. Z The transversal commutator fact:

If A, B transversal (w.r.t. the
same partition {Q;}), then

supp(ABATB") C supp(A)Nsupp(B).

e.g. A= X, B = Z in surface code




Distance & disjointness

X can be implemented in many different ways: X ~ Xs, s € S
Likewise, Y and Z. Let X = XS, and ), Z similarly.

Let £L={X,Y, 2} =PS. Z
Define:

“weight of smallest logical Pauli”
d; = minge, minyeq [supp(p)| = d

“weight of largest logical Pauli”
dy = maxgec minyeg [supp(p)|

“fastest rate at which G can be applied” = c-disjointness of G

1
A.(G) = —max{|A| :A C G, at most ¢ elements
c

in A have support on any Q;} for G € £

“the rate for the slowest G’ = disjointness of the code
A = minG€£ maXe>g AC(G)




Calculating disjointness

1
A.(G) = —max{|A| :A C G, at most ¢ elements
c

in A have support on any Q;}

A = minge, maxeso Ac(G)

General upper bounds: A < min(d;, N/dy)

Code specific lower bounds: (single-qubit partition)

n Surface code
A1(X)=d dy =d
A1(Z)=d dy =2d -1
Ao (Y) > d/2
= A >d/2




More disjointness facts

1) “If the code works, then there is a way to speed up Pauli application”

d¢>1iﬁA>1.

2) Given a set of regions H C {Q;} and G € L,

“It we can apply G at high rate, then we don’t need many qubits
from H to apply G once.”

compare with cleaning lemma [Bravyi-Terhal 09, Yoshida-Chuang 10]

Given H C{Q;} (|H| >d; —1) and G € L,
dg € G s.t. |H Nsupp(g)| < |H|— (d; — 1)



A bound on transversal gates

If dv < dyAM =1 then all transversal gates are in C)y.

Recall dy > 1 iff A > 1, so all transversal gates are in Cy, with
Mo = [loga(dy/d,) + 2].

proving Zeng et al.’s conjecture

Corrolaries:

— As each (), is finite, this also implies transversal non-
universality as a corollary.

— Also, asymmetry dy+ > d| is necessary for non-Clifford gates.



Disjointness examples

Surface code
A1(X)=d d =d
A1(Z)=d dy =2d—1
| A, ()) > a2 > dy < dy A
= A >d/2 So transversal gates are in C

(reproduces Bravyi-Konig)

d
105-qubit code: [Jochym-O’Connor, Laflamme ‘14
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(b)), A=T / 3




Optimality

If dy < d AM~1 then all transversal gates are in Cy.

Geometric behavior matches known code families

E.g. Reed-Muller family (d = 3 color codes)

n=2"—-1

m=4
d, =
dy =2m"1 —1
A:n/dT

[Campbell-Terhal-Vuillot ‘17

transversal Z'/?2  transversal Z/* = U € C,_1



PrOOf SkEtCh If dy < dyAM~1 then all transversal gates are in C)y.

—Let Ky = U be a transversal gate.
—Choose any sequence G1,Gy,G3,--- € L

—Find ¢g; € G, so that K; = |[K,_1, g;] has smaller support than K,_;.
—Since K;_; and g; are both transversal,

[supp([Kj-1,9;])| < [supp(K;—1) Nsupp(g;)|.

scrubbing lemma
Ve,3g € G, s.t. [supp(K;_1) Nsupp(g)| < [supp(K;_1)|/Ac(G)

< |supp(K;_1)|/A.

So,
supp(K1)| < dx,
Supp(K2) < dT/Aa

supp(Ks)| < dy /A2,

[supp(K )| < dy/AM~L <d, = U € Cy.




Constant depth circuits

— A circuit is ¢-local with depth 1 with respect to partition {Q);} if
it is transversal with respect to “coarse-grained” partition {R;}
where each R; is the union of at most g ();. (local # geometrically local)

— A g¢-local, depth h circuit is a sequence of h ¢-local, depth 1

circuits.
transversal 2-local, depth 1 2-local, depth 2
QA =Se=—— UA — S — S — U 4 p |
UaB UaB
Qs ~—Up ~— — =~ H
Usc
Qc '\_UC E—— v _ = 1
Ucp Ucp
0 —Upl—  ~— |—  a  HUuw




Constant depth circuits

Generalize the scrubbing lemma:

supp(K;)| < ¢"—* [supp(K;—_1)|/A
when K;_; is g-local, depth h;_;.

which leads to a generalization of our bounding theorem:

M—1
If dy H g < diAM_l then ¢-local, depth hg gates are
j=0 in C'yy.

In a code family [[n(l), k(l),d()]], dy,d;, A depend on I.

If lim ) = (0 then constant-local, constant-
[— o0 diAM_l .
depth gates are in C'y;.



Constant-depth circuits — surface code

What is the power of constant-depth, non-geometrically-local
circuits on the surface code?

dy =1 P

X+ dTZQZ—l l— 00 diA -
l translational symm. S
loZicZ?ogefati};s A= @(l) = U € 02-

<-;>

[

Generalizes Bravyi-Konig’s conclusion to non-geometrically-local circuits
(for this code)



More with disjointness...

— All these theorems work for qudits as well as qubits

— “permutation-transversal” operators PU for permutation P
(of the regions @);) and unitary U are covered by a similar bound

If 2dy < diAM_l then PU € ().
— transversal morphisms from code A to code B are covered
If d\" < dP ABIM-T then U € Oy

— Bounding transversal gates between r codeblocks can be done
in terms of the parameters d,dy, A of one codeblock.

— Transversal Toffoli is impossible on stabilizer codes.

(alternative proof and special o -
case of [Newman, Shi ‘17]) 0) 0)
t



Open questions

— We know that the disjointness bound is not always tight. Can
it be strengthened?

— What is the value of coarse-graining a partition?

— Do properties of topologically local codes generically simplify
the calculation of disjointness?

— Use these no-gos to design codes!

Thank you!



Scrubbing vs. cleaning and optimality

Replace scrubbing with cleaning in the proof.

cleaning lemma

[supp(K;—1) Nsupp(g;)| < [supp(K;_1)| — (dy — 1)

Now K ; decrease in size arithmetically:

supp(K1)| < dy
supp(K)| < dy — (dy — 1)
supp(Ks)| < dy —2(dy — 1)

supp(Kr)| < dy — (M — 1)(dy — 1)

And we get (unpublished [Beverland, Preskill ‘14])
If dy <dy+ (M —1)(d, — 1), then all transversal gates in Cjy.



Scrubbing vs. cleaning and optimality

Theorem (cleaning):
If dv <d + (M —1)(d, — 1), then all transversal gates in Cjy.

Theorem (scrubbing):
It dy <d iAM —1 then all transversal gates are in C}y.

Exponential behavior of the latter matches known code families.

E.g. Reed-Muller family (d = 3 color codes)

n=2"-1
m =4 dy =3
cos dy =2m"1 -1
A =n/dy
(Gompbell Terhel-Vuillot 11 =UeC,,_1

transversal Z1/2 transversal Z1/4





