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Introduction

@ Motivating question: how to
classically verify an untrusted
quantum device?

@ In this talk: testing for entanglement
between spatially separated,
noncommunicating quantum
devices

e Two servers on opposite sides of the 8
world,
e Or far-apart regions on a single chip
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The model

@ Classical verifier interacts with k
(> 2) noncommunicating quantum
players

@ Players’ strategy: k-partite state |v),

a
measurements {MqJ}a. Player | Player 2

[*)
@ On receiving question g from ’\M
verifier, player i applies {Mg ;}4 to its
share of |¢) and returns outcome a . q..%
1

@ At the end, verifier decides to accept
or reject.

@ Test strategies up to local isometry : V(@23 q,,92)

) = (U @ Up) )
MZ; — UMz, U]
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Example: CHSH

CHSH test: 1 round, 2 players, 1-bit
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Example: CHSH

CHSH test: 1 round, 2 players, 1-bit
messages I¥)

@ If players are classical, succeed with ’\M
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@ Optimal entangled strategy succeeds
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Example: CHSH

CHSH test: 1 round, 2 players, 1-bit Player | w

messages
TRAAN A

@ If players are classical, succeed with
p<3/4 NG~

@ Optimal entangled strategy succeeds
with p = wgygy ~ 0.85, with shared

state |¢) = [EPR) = —5(|00) + [11)) 2,923,249,

Player 2

Theorem (SW88, MYS12)

Any strategy succeeding with p = wg,gy — € must be
d(e) = O(/¢)-close to the optimal strategy under local isometry.
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Example: CHSH

CHSH test: 1 round, 2 players, 1-bit
messages

@ If players are classical, succeed with ’\M
p< 3/4' a, ql'%

@ Optimal entangled strategy succeeds
with p = wgygy ~ 0.85, with shared
state |¢) = [EPR) = —5(|00) + [11)) 293,249,

Player | %) Player 2

Theorem (SW88, MYS12)

Any strategy succeeding with p = wg,gy — € must be
d(e) = O(/¢)-close to the optimal strategy under local isometry.

CHSH game is a “self-test” for the state |EPR) with robustness ¢(<).
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Example: Magic Square

Magic Square game: 1 round, 2 players, 2-bit messages
@ If players are classical, succeed with p < 8/9.

@ Optimal entangled strategy succeeds with p = wy,s = 1, using
state |¢)) = |EPR)®2.

Theorem (WBMS15)

Any strategy succeeding with p = wy,s — € must be 6(c) = O(+/<)-close
to the optimal strategy under local isometry.
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Example: Magic Square

Magic Square game: 1 round, 2 players, 2-bit messages
@ If players are classical, succeed with p < 8/9.

@ Optimal entangled strategy succeeds with p = wy,s = 1, using
state |¢)) = |EPR)®2.

Theorem (WBMS15)

Any strategy succeeding with p = wy,s — € must be 6(c) = O(+/<)-close
to the optimal strategy under local isometry.

Magic Square game is a self-test for the state |EPR)®? with
robustness §(¢) and perfect completeness.

Natarajan,Vidick (MIT & Caltech) January 16, 2018 5/16
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e Completeness: Players sharing |¢) can succeed with optimal
probability p*.
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a state d(¢) close to |¢)) (up to local isometry).
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requires dimension at least 2 = 1 qubit.
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Self-testing

@ A self-test for |¢) is a multiplayer interactive protocol with

e Completeness: Players sharing |¢) can succeed with optimal
probability p*.

o Robustness: Players succeeding with probability p* — ¢ must share
a state d(¢) close to |¢)) (up to local isometry).

@ To test a qubit, test Pauli operators X, Z acting on it:
e Any nontrivial representation of Pauli relations

X2=22=1d,XZ=-ZX

requires dimension at least 2 = 1 qubit.
o (Y|3(XX+ZZ)[p) ~1 = |¢) ~ |[EPR).
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@ What if we want to test n qubits of entanglement, e.g. the state
|EPR)®"?
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More qubits?

@ What if we want to test n qubits of entanglement, e.g. the state
|EPR)®"?

@ To test n qubits, test n-qubit tensor products of Paulis acting on
them

e Any nontrivial representation of Pauli relations

X(a)X(b) = X(a+ b),Z(a)Z(b) = Z(a+ b),
X(a)Z(b) = (-1)*°Z(b)X(a).

requires dimension at least 2" = n qubits.
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More qubits?

@ What if we want to test n qubits of entanglement, e.g. the state
|EPR)®"?

@ To test n qubits, test n-qubit tensor products of Paulis acting on
them

e Any nontrivial representation of Pauli relations
X(a)X(b) = X(a+b),Z(a)Z(b) =Z(a+ b),
X(a)Z(b) = (-1)*°Z(b)X(a).

requires dimension at least 2" = n qubits.
o Expectation values ()| X(a)Z(b)|¢) determine the shared state |¢).
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More qubits: Approach 1

@ What if we want to test n qubits of entanglement as efficiently as
possible?
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More qubits: Approach 1

@ What if we want to test n qubits of entanglement as efficiently as
possible?
e Fewest bits of communication between players and verifier
o Best robustness: smallest é(¢, n)

@ Approach 1: pick 2 random Paulis acting on n qubits, and test
their relations. Use rigidity of Pauli group:
Mx(a)Mz(b) ~ (=1)*°Mz(b)Mx(a) —
Mx(a) ~ X(a), Mz(b) ~ Z(b).

Theorem (NV16)

Test for |EPR)®" with « robustness & independent of n and XO(n) bits
of communication.
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More qubits: Approach 2

@ Approach 2: pick 2 random qubits /,j and test X;, X}, Z;, Z;.
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@ Approach 2: pick 2 random qubits /,j and test X;, X}, Z;, Z;.

n

My(a) == [[(Mx)* . Mz(a) = [](Mz,)?
A =1

i=1 =
My, Mz, ~¢ —Mz My, = Mx(a)Mz(b) ~p. —Mz(b)Mx(a).

Theorem (CRSV16)
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More qubits: Approach 2

@ Approach 2: pick 2 random qubits /,j and test X;, X}, Z;, Z;.

n

My(a) == [[(Mx)* . Mz(a) = [](Mz,)?
A =1

i=1 =
My, Mz, ~¢ —Mz My, = Mx(a)Mz(b) ~p. —Mz(b)Mx(a).

Theorem (CRSV16)

Test for |EPR)®" with Xrobustness 6 = O(n®/?<) and v O(log(n)) bits
of communication.
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More qubits: Our result

Theorem (Quantum low-degree test)

There exists a 1-round, 2-player protocol with O(poly log(n))-bit
questions and answers such that any players succeeding with
probability 1 — e must share a state that is 5(¢)-close to [EPR)®",
where ¢ is independent of n.
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More qubits: Our result

Theorem (Quantum low-degree test)

There exists a 1-round, 2-player protocol with O(poly log(n))-bit
questions and answers such that any players succeeding with
probability 1 — e must share a state that is 5(¢)-close to [EPR)®",
where ¢ is independent of n.

@ Test certifies nP2Y'09(")-size subset of Pauli operators, arising from
low degree polynomials.
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@ Motivation: what is the power of interactive proof systems with
entangled quantum provers (MIP*)?
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Self-testing and complexity theory

@ Motivation: what is the power of interactive proof systems with
entangled quantum provers (MIP*)?

e = hardness of approximating the value of a protocol (maximal
success probability of any entangled strategy)
@ Classically: NP-hard to approximate unentangled value up to
constant error (MIP = NEXP)
@ Quantumly:
e NP-hard to approximate entangled value up to constant error with 3
or more players.
@ Conjecture (“games QPCP”): it is QMA-hard to approximate
entangled value up to constant error
@ To show QMA-hardness of entangled value, design self-test for a
QMA witness state |¢) (e.g. ground state of local Hamiltonian)
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Results: Complexity Theory

It is NP-hard to approximate the entangled value of a 2-player nonlocal
game, up to constant additive error.
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It is NP-hard to approximate the entangled value of a 2-player nonlocal
game, up to constant additive error.

Theorem (“Weak games QPCP”)

It is QMA-hard under randomized reductions to approximate up to
constant error the value of an MIP* protocol with poly log(n) rounds
and bits of communication.
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Results: Complexity Theory

It is NP-hard to approximate the entangled value of a 2-player nonlocal
game, up to constant additive error.

Theorem (“Weak games QPCP”)

It is QMA-hard under randomized reductions to approximate up to
constant error the value of an MIP* protocol with poly log(n) rounds
and bits of communication.

Theorem (“Hamiltonian QPCP — Games QPCP”)

If it is QMA-hard to estimate ground energy of local H up to constant
fraction, then previous theorem holds under deterministic reductions.
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Designing the Test: Intuition from Codes

@ Need to find a small, “robust” subset of the Pauli group to test.
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Designing the Test: Intuition from Codes

@ Need to find a small, “robust” subset of the Pauli group to test.

@ Approach 1: all X(a) and Z(a) for a € F5. X—too big!

@ Approach 2: only constant weight X(a), Z(a) (|]a| = O(1)). X—not
robust!

@ Our approach: {X(a),Z(a) : a € S} with S the set of columns of
generator matrix for classical linear code C encoding n bits.

e Reduces to Approach 1 (C = Hadamard code)
and 2 (C = trivial code)
o Sis vsmallif C has high rate.
e Sis v/robust if C has high distance and is locally testable.
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Designing the Test: Intuition from Codes

@ Need to find a small, “robust” subset of the Pauli group to test.
@ Approach 1: all X(a) and Z(a) for a € F5. X—too big!
@ Approach 2: only constant weight X(a), Z(a) (|]a| = O(1)). X—not
robust!
@ Our approach: {X(a),Z(a) : a € S} with S the set of columns of
generator matrix for classical linear code C encoding n bits.
e Reduces to Approach 1 (C = Hadamard code)
and 2 (C = trivial code)
e Sis vsmall if C has high rate.
e Sis v/robust if C has high distance and is locally testable.
@ Take C to be Reed-Muller code, based on multivariate polynomials
over finite fields. Locally testable by low-degree test [RS97]
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Quantum low-degree test

With probability 1/3 each, perform one of the following:
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Quantum low-degree test

With probability 1/3 each, perform one of the following:
@ Tell both players to measure in X basis, and run RS low-degree
test.
e Tests X(a)forae S
@ Tell both players to measure in Z basis, and run RS low-degree
test.
@ Tests Z(b)forbe S
@ Pick a,b € S, and play Magic Square game.
e Tests X(a)Z(b) = (—1)22Z(b)X(a)

Lemma (Main)

Suppose players’ operators Mx(a), Mz(b) acting on |) pass test with
prob 1 —e. Then 3 local isometry V s.t.

Mx(a)ly) =~ ViX(a)VIy) Mz(b)|y) ~ VIZ(b)V|yp)

fora,b e S.

v
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Open problems

@ Can we prove the games PCP conjecture?
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Open problems

@ Can we prove the games PCP conjecture?

@ Need self-tests for a richer class of Hamiltonians, or QMA-hardness
for those we can test.

@ Efficient delegated computation?

e Using post-hoc framework of [FH15], or verifier-on-a-leash
framework of [CGJV17]

@ Noise-tolerant entanglement tests?

o Need guarantees even when success probability is far from optimal,
as in [AFY17]

Natarajan,Vidick (MIT & Caltech) January 16, 2018 15/16



Thank You!

arXiv: 1710.03062 & 1801.03821
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