Low-degree testing for quantum states

arXiv: 1710.03062 & 1801.03821

Anand Natarajan ¹ Thomas Vidick ²

¹MIT

²Caltech

January 16, 2018

- Motivating question: how to classically verify an untrusted quantum device?
- In this talk: testing for entanglement between spatially separated, noncommunicating quantum devices

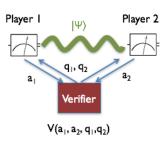
- Motivating question: how to classically verify an untrusted quantum device?
- In this talk: testing for entanglement between spatially separated, noncommunicating quantum devices
 - Two servers on opposite sides of the world,

- Motivating question: how to classically verify an untrusted quantum device?
- In this talk: testing for entanglement between spatially separated, noncommunicating quantum devices
 - Two servers on opposite sides of the world,
 - Or far-apart regions on a single chip

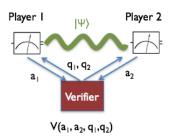
Classical verifier interacts with k
 (≥ 2) noncommunicating quantum
 players

- Classical verifier interacts with k
 (≥ 2) noncommunicating quantum
 players
- Players' strategy:

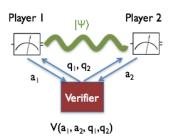
- Classical verifier interacts with k
 (≥ 2) noncommunicating quantum players
- Players' **strategy**: k-partite state $|\psi\rangle$, measurements $\{M_{a,i}^a\}_a$.



- Classical verifier interacts with k
 (≥ 2) noncommunicating quantum players
- Players' **strategy**: k-partite state $|\psi\rangle$, measurements $\{M_{a,i}^a\}_a$.
 - On receiving question q from verifier, player i applies $\{M_{q,i}^a\}_a$ to its share of $|\psi\rangle$ and returns outcome a



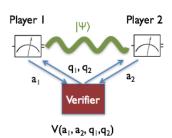
- Classical verifier interacts with k
 (≥ 2) noncommunicating quantum
 players
- Players' **strategy**: k-partite state $|\psi\rangle$, measurements $\{M_{a,i}^a\}_a$.
 - On receiving question q from verifier, player i applies $\{M_{q,i}^a\}_a$ to its share of $|\psi\rangle$ and returns outcome a
- At the end, verifier decides to accept or reject.



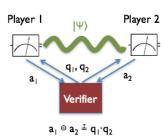
- Classical verifier interacts with k
 (≥ 2) noncommunicating quantum players
- Players' **strategy**: k-partite state $|\psi\rangle$, measurements $\{M_{a,i}^a\}_a$.
 - On receiving question q from verifier, player i applies $\{M_{q,i}^a\}_a$ to its share of $|\psi\rangle$ and returns outcome a
- At the end, verifier decides to accept or reject.
- Test strategies up to local isometry :

$$|\psi\rangle \mapsto (U_1 \otimes U_2)|\psi\rangle$$

 $M_{q,i}^a \mapsto U_i M_{q,1}^a U_i^\dagger$

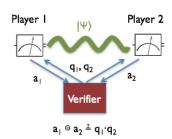


CHSH test: 1 round, 2 players, 1-bit messages



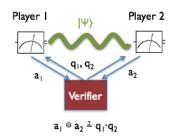
CHSH test: 1 round, 2 players, 1-bit messages

 If players are classical, succeed with p ≤ 3/4.



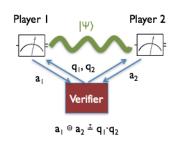
CHSH test: 1 round, 2 players, 1-bit messages

- If players are classical, succeed with p ≤ 3/4.
- Optimal entangled strategy succeeds with $p=\omega^*_{CHSH}\approx 0.85$, with shared state $|\psi\rangle=|\text{EPR}\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$



CHSH test: 1 round, 2 players, 1-bit messages

- If players are classical, succeed with p ≤ 3/4.
- Optimal entangled strategy succeeds with $p=\omega^*_{CHSH}\approx$ 0.85, with shared state $|\psi\rangle=|\text{EPR}\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

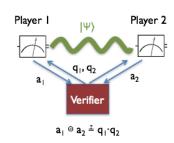


Theorem (SW88, MYS12)

Any strategy succeeding with $p=\omega_{CHSH}^*-\varepsilon$ must be $\delta(\varepsilon)=O(\sqrt{\varepsilon})$ -close to the optimal strategy under local isometry.

CHSH test: 1 round, 2 players, 1-bit messages

- If players are classical, succeed with p ≤ 3/4.
- Optimal entangled strategy succeeds with $p=\omega^*_{CHSH}\approx 0.85$, with shared state $|\psi\rangle=|\text{EPR}\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$



Theorem (SW88, MYS12)

Any strategy succeeding with $p=\omega^*_{CHSH}-\varepsilon$ must be $\delta(\varepsilon)=O(\sqrt{\varepsilon})$ -close to the optimal strategy under local isometry.

CHSH game is a "**self-test**" for the state $|EPR\rangle$ with **robustness** $\delta(\varepsilon)$.

Magic Square game: 1 round, 2 players, 2-bit messages

Magic Square game: 1 round, 2 players, 2-bit messages

• If players are classical, succeed with $p \le 8/9$.

Magic Square game: 1 round, 2 players, 2-bit messages

- If players are classical, succeed with $p \le 8/9$.
- Optimal entangled strategy succeeds with $p=\omega_{MS}^*=$ 1, using state $|\psi\rangle=|{\rm EPR}\rangle^{\otimes 2}.$

Magic Square game: 1 round, 2 players, 2-bit messages

- If players are classical, succeed with $p \le 8/9$.
- Optimal entangled strategy succeeds with $p=\omega_{MS}^*=$ 1, using state $|\psi\rangle=|{\rm EPR}\rangle^{\otimes 2}.$

Theorem (WBMS15)

Any strategy succeeding with $p = \omega_{MS}^* - \varepsilon$ must be $\delta(\varepsilon) = O(\sqrt{\varepsilon})$ -close to the optimal strategy under local isometry.

Magic Square game: 1 round, 2 players, 2-bit messages

- If players are classical, succeed with $p \le 8/9$.
- Optimal entangled strategy succeeds with $p=\omega_{MS}^*=$ 1, using state $|\psi\rangle=|{\rm EPR}\rangle^{\otimes 2}.$

Theorem (WBMS15)

Any strategy succeeding with $p=\omega_{MS}^*-\varepsilon$ must be $\delta(\varepsilon)=O(\sqrt{\varepsilon})$ -close to the optimal strategy under local isometry.

Magic Square game is a **self-test** for the state $|\text{EPR}\rangle^{\otimes 2}$ with **robustness** $\delta(\varepsilon)$ and **perfect completeness**.

ullet A **self-test** for $|\psi\rangle$ is a multiplayer interactive protocol with

- A **self-test** for $|\psi\rangle$ is a multiplayer interactive protocol with
 - Completeness: Players sharing $|\psi\rangle$ can succeed with **optimal** probability p^* .

- ullet A **self-test** for $|\psi
 angle$ is a multiplayer interactive protocol with
 - Completeness: Players sharing $|\psi\rangle$ can succeed with **optimal** probability p^* .
 - Robustness: Players succeeding with probability $p^* \varepsilon$ must share a state $\delta(\varepsilon)$ close to $|\psi\rangle$ (up to local isometry).

- ullet A **self-test** for $|\psi\rangle$ is a multiplayer interactive protocol with
 - Completeness: Players sharing $|\psi\rangle$ can succeed with **optimal** probability p^* .
 - Robustness: Players succeeding with probability $p^* \varepsilon$ must share a state $\delta(\varepsilon)$ close to $|\psi\rangle$ (up to local isometry).
- To test a qubit, test **Pauli operators** X, Z acting on it:

- ullet A **self-test** for $|\psi\rangle$ is a multiplayer interactive protocol with
 - Completeness: Players sharing $|\psi\rangle$ can succeed with **optimal** probability p^* .
 - Robustness: Players succeeding with probability $p^* \varepsilon$ must share a state $\delta(\varepsilon)$ close to $|\psi\rangle$ (up to local isometry).
- To test a qubit, test **Pauli operators** X, Z acting on it:
 - Any nontrivial representation of Pauli relations

$$X^2 = Z^2 = Id, XZ = -ZX$$

requires dimension at least $2 \Longrightarrow 1$ qubit.

- A **self-test** for $|\psi\rangle$ is a multiplayer interactive protocol with
 - Completeness: Players sharing $|\psi\rangle$ can succeed with **optimal** probability p^* .
 - Robustness: Players succeeding with probability $p^* \varepsilon$ must share a state $\delta(\varepsilon)$ close to $|\psi\rangle$ (up to local isometry).
- To test a qubit, test **Pauli operators** X, Z acting on it:
 - Any nontrivial representation of Pauli relations

$$X^2 = Z^2 = Id, XZ = -ZX$$

requires dimension at least $2 \Longrightarrow 1$ qubit.

• $\langle \psi | \frac{1}{2} (XX + ZZ) | \psi \rangle \approx 1 \Longrightarrow | \psi \rangle \approx | \text{EPR} \rangle$.

• What if we want to test n qubits of entanglement, e.g. the state $|EPR\rangle^{\otimes n}$?

- What if we want to test n qubits of entanglement, e.g. the state $|EPR\rangle^{\otimes n}$?
- To test n qubits, test n-qubit tensor products of Paulis acting on them

- What if we want to test n qubits of entanglement, e.g. the state $|EPR\rangle^{\otimes n}$?
- To test n qubits, test n-qubit tensor products of Paulis acting on them
 - Any nontrivial representation of Pauli relations

$$X(a)X(b) = X(a+b), Z(a)Z(b) = Z(a+b),$$

$$X(a)Z(b) = (-1)^{a\cdot b}Z(b)X(a).$$

requires dimension at least $2^n \Longrightarrow n$ qubits.

- What if we want to test n qubits of entanglement, e.g. the state $|EPR\rangle^{\otimes n}$?
- To test n qubits, test n-qubit tensor products of Paulis acting on them
 - Any nontrivial representation of Pauli relations

$$X(a)X(b) = X(a+b), Z(a)Z(b) = Z(a+b),$$

$$X(a)Z(b) = (-1)^{a\cdot b}Z(b)X(a).$$

requires dimension at least $2^n \Longrightarrow n$ qubits.

• Expectation values $\langle \psi | \mathbf{X}(a) \mathbf{Z}(b) | \psi \rangle$ determine the shared state $| \psi \rangle$.

More qubits: Approach 1

• What if we want to test n qubits of entanglement as efficiently as possible?

More qubits: Approach 1

- What if we want to test n qubits of entanglement as efficiently as possible?
 - Fewest bits of communication between players and verifier

- What if we want to test n qubits of entanglement as efficiently as possible?
 - Fewest bits of communication between players and verifier
 - Best **robustness**: smallest $\delta(\varepsilon, n)$

- What if we want to test n qubits of entanglement as efficiently as possible?
 - Fewest bits of communication between players and verifier
 - Best **robustness**: smallest $\delta(\varepsilon, n)$
- Approach 1: pick 2 random Paulis acting on n qubits, and test their relations. Use rigidity of Pauli group:

$$M_{\mathbf{X}}(a)M_{\mathbf{Z}}(b) \approx (-1)^{a \cdot b} M_{\mathbf{Z}}(b)M_{\mathbf{X}}(a) \Longrightarrow M_{\mathbf{X}}(a) \approx \frac{\mathbf{X}}{(a)}, M_{\mathbf{Z}}(b) \approx \mathbf{Z}(b).$$

- What if we want to test n qubits of entanglement as efficiently as possible?
 - Fewest bits of communication between players and verifier
 - Best **robustness**: smallest $\delta(\varepsilon, n)$
- Approach 1: pick 2 random Paulis acting on n qubits, and test their relations. Use rigidity of Pauli group:

$$M_{\mathbf{X}}(a)M_{\mathbf{Z}}(b) \approx (-1)^{a \cdot b} M_{\mathbf{Z}}(b)M_{\mathbf{X}}(a) \Longrightarrow M_{\mathbf{X}}(a) \approx \frac{\mathbf{X}}{(a)}, M_{\mathbf{Z}}(b) \approx \mathbf{Z}(b).$$

- What if we want to test n qubits of entanglement as efficiently as possible?
 - Fewest bits of communication between players and verifier
 - Best **robustness**: smallest $\delta(\varepsilon, n)$
- Approach 1: pick 2 random Paulis acting on n qubits, and test their relations. Use rigidity of Pauli group:

$$M_{\mathbf{X}}(a)M_{\mathbf{Z}}(b) \approx (-1)^{a \cdot b} M_{\mathbf{Z}}(b)M_{\mathbf{X}}(a) \Longrightarrow M_{\mathbf{X}}(a) \approx \frac{\mathbf{X}}{(a)}, M_{\mathbf{Z}}(b) \approx \mathbf{Z}(b).$$

Theorem (NV16)

Test for $|EPR\rangle^{\otimes n}$

- What if we want to test n qubits of entanglement as efficiently as possible?
 - Fewest bits of communication between players and verifier
 - Best **robustness**: smallest $\delta(\varepsilon, n)$
- Approach 1: pick 2 random Paulis acting on n qubits, and test their relations. Use rigidity of Pauli group:

$$M_{\mathbf{X}}(a)M_{\mathbf{Z}}(b) \approx (-1)^{a \cdot b} M_{\mathbf{Z}}(b)M_{\mathbf{X}}(a) \Longrightarrow M_{\mathbf{X}}(a) \approx \frac{\mathbf{X}}{(a)}, M_{\mathbf{Z}}(b) \approx \mathbf{Z}(b).$$

Theorem (NV16)

Test for |EPR⟩ $^{\otimes n}$ *with* ✓ *robustness* δ *independent of* n

- What if we want to test n qubits of entanglement as efficiently as possible?
 - Fewest bits of communication between players and verifier
 - Best **robustness**: smallest $\delta(\varepsilon, n)$
- Approach 1: pick 2 random Paulis acting on n qubits, and test their relations. Use rigidity of Pauli group:

$$M_{\mathbf{X}}(a)M_{\mathbf{Z}}(b) \approx (-1)^{a \cdot b} M_{\mathbf{Z}}(b)M_{\mathbf{X}}(a) \Longrightarrow M_{\mathbf{X}}(a) \approx \frac{\mathbf{X}}{(a)}, M_{\mathbf{Z}}(b) \approx \mathbf{Z}(b).$$

Theorem (NV16)

Test for $|\mathsf{EPR}\rangle^{\otimes n}$ with \checkmark robustness δ independent of n and $\checkmark O(n)$ bits of communication.

• Approach 2: pick 2 random qubits i, j and test X_i, X_j, Z_i, Z_j .

• Approach 2: pick 2 random qubits i, j and test X_i, X_j, Z_i, Z_j .

$$\begin{split} M_{\mathbf{X}}(a) &:= \prod_{i=1}^n (M_{\mathbf{X}_i})^{a_i} \quad , \quad M_{\mathbf{Z}}(a) := \prod_{i=1}^n (M_{\mathbf{Z}_i})^{a_i} \\ M_{\mathbf{X}_i} M_{\mathbf{Z}_i} &\approx_{\varepsilon} - M_{\mathbf{Z}_i} M_{\mathbf{X}_i} \Longrightarrow M_{\mathbf{X}}(a) M_{\mathbf{Z}}(b) \approx_{n\varepsilon} - M_{\mathbf{Z}}(b) M_{\mathbf{X}}(a). \end{split}$$

• Approach 2: pick 2 random qubits i, j and test X_i, X_j, Z_i, Z_j .

$$\begin{split} M_{\mathbf{X}}(a) &:= \prod_{i=1}^n (M_{\mathbf{X}_i})^{a_i} \quad , \quad M_{\mathbf{Z}}(a) := \prod_{i=1}^n (M_{\mathbf{Z}_i})^{a_i} \\ M_{\mathbf{X}_i} M_{\mathbf{Z}_i} &\approx_{\varepsilon} - M_{\mathbf{Z}_i} M_{\mathbf{X}_i} \Longrightarrow M_{\mathbf{X}}(a) M_{\mathbf{Z}}(b) \approx_{n\varepsilon} - M_{\mathbf{Z}}(b) M_{\mathbf{X}}(a). \end{split}$$

• Approach 2: pick 2 random qubits i, j and test X_i, X_j, Z_i, Z_j .

$$\begin{split} M_{\boldsymbol{X}}(a) &:= \prod_{i=1}^n (M_{\boldsymbol{X}_i})^{a_i} \quad , \quad M_{\boldsymbol{Z}}(a) := \prod_{i=1}^n (M_{\boldsymbol{Z}_i})^{a_i} \\ M_{\boldsymbol{X}_i} M_{\boldsymbol{Z}_i} &\approx_{\varepsilon} - M_{\boldsymbol{Z}_i} M_{\boldsymbol{X}_i} \Longrightarrow M_{\boldsymbol{X}}(a) M_{\boldsymbol{Z}}(b) \approx_{n\varepsilon} - M_{\boldsymbol{Z}}(b) M_{\boldsymbol{X}}(a). \end{split}$$

Theorem (CRSV16)

Test for $|\mathsf{EPR}\rangle^{\otimes n}$

• Approach 2: pick 2 random qubits i, j and test X_i, X_j, Z_i, Z_j .

$$\begin{split} M_{\boldsymbol{X}}(a) &:= \prod_{i=1}^n (M_{\boldsymbol{X}_i})^{a_i} \quad , \quad M_{\boldsymbol{Z}}(a) := \prod_{i=1}^n (M_{\boldsymbol{Z}_i})^{a_i} \\ M_{\boldsymbol{X}_i} M_{\boldsymbol{Z}_i} &\approx_{\varepsilon} - M_{\boldsymbol{Z}_i} M_{\boldsymbol{X}_i} \Longrightarrow M_{\boldsymbol{X}}(a) M_{\boldsymbol{Z}}(b) \approx_{n\varepsilon} - M_{\boldsymbol{Z}}(b) M_{\boldsymbol{X}}(a). \end{split}$$

Theorem (CRSV16)

Test for $|\mathsf{EPR}\rangle^{\otimes n}$ with **x**robustness $\delta = O(n^{5/2}\varepsilon)$

• Approach 2: pick 2 random qubits i, j and test X_i, X_j, Z_i, Z_j .

$$\begin{split} M_{\boldsymbol{X}}(a) &:= \prod_{i=1}^n (M_{\boldsymbol{X}_i})^{a_i} \quad , \quad M_{\boldsymbol{Z}}(a) := \prod_{i=1}^n (M_{\boldsymbol{Z}_i})^{a_i} \\ M_{\boldsymbol{X}_i} M_{\boldsymbol{Z}_i} &\approx_{\varepsilon} - M_{\boldsymbol{Z}_i} M_{\boldsymbol{X}_i} \Longrightarrow M_{\boldsymbol{X}}(a) M_{\boldsymbol{Z}}(b) \approx_{n\varepsilon} - M_{\boldsymbol{Z}}(b) M_{\boldsymbol{X}}(a). \end{split}$$

Theorem (CRSV16)

Test for $|\mathsf{EPR}\rangle^{\otimes n}$ with **robustness $\delta = O(n^{5/2}\varepsilon)$ and ** $O(\log(n))$ bits of communication.

More qubits: Our result

Theorem (Quantum low-degree test)

There exists a 1-round, 2-player protocol with $O(\operatorname{poly}\log(n))$ -bit questions and answers such that any players succeeding with probability $1 - \varepsilon$ must share a state that is $\delta(\varepsilon)$ -close to $|\mathsf{EPR}\rangle^{\otimes n}$, where δ is **independent** of n.

More qubits: Our result

Theorem (Quantum low-degree test)

There exists a 1-round, 2-player protocol with $O(\operatorname{poly}\log(n))$ -bit questions and answers such that any players succeeding with probability $1 - \varepsilon$ must share a state that is $\delta(\varepsilon)$ -close to $|\mathsf{EPR}\rangle^{\otimes n}$, where δ is **independent** of n.

 Test certifies n^{poly log(n)}-size subset of Pauli operators, arising from low degree polynomials.

 Motivation: what is the power of interactive proof systems with entangled quantum provers (MIP*)?

- Motivation: what is the power of interactive proof systems with entangled quantum provers (MIP*)?
 - ≈ hardness of approximating the value of a protocol (maximal success probability of any entangled strategy)

- Motivation: what is the power of interactive proof systems with entangled quantum provers (MIP*)?
 - ≈ hardness of approximating the value of a protocol (maximal success probability of any entangled strategy)
- Classically: NP-hard to approximate unentangled value up to constant error (MIP = NEXP)

- Motivation: what is the power of interactive proof systems with entangled quantum provers (MIP*)?
 - ≈ hardness of approximating the value of a protocol (maximal success probability of any entangled strategy)
- Classically: NP-hard to approximate unentangled value up to constant error (MIP = NEXP)
- Quantumly:

- Motivation: what is the power of interactive proof systems with entangled quantum provers (MIP*)?
 - ≈ hardness of approximating the value of a protocol (maximal success probability of any entangled strategy)
- Classically: NP-hard to approximate unentangled value up to constant error (MIP = NEXP)
- Quantumly:
 - NP-hard to approximate entangled value up to constant error

- Motivation: what is the power of interactive proof systems with entangled quantum provers (MIP*)?
 - ≈ hardness of approximating the value of a protocol (maximal success probability of any entangled strategy)
- Classically: NP-hard to approximate unentangled value up to constant error (MIP = NEXP)
- Quantumly:
 - NP-hard to approximate entangled value up to constant error with 3 or more players.

- Motivation: what is the power of interactive proof systems with entangled quantum provers (MIP*)?
 - ≈ hardness of approximating the value of a protocol (maximal success probability of any entangled strategy)
- Classically: NP-hard to approximate unentangled value up to constant error (MIP = NEXP)
- Quantumly:
 - NP-hard to approximate entangled value up to constant error with 3 or more players.
 - Conjecture ("games QPCP"): it is QMA-hard to approximate entangled value up to constant error

- Motivation: what is the power of interactive proof systems with entangled quantum provers (MIP*)?
 - ≈ hardness of approximating the value of a protocol (maximal success probability of any entangled strategy)
- Classically: NP-hard to approximate unentangled value up to constant error (MIP = NEXP)
- Quantumly:
 - NP-hard to approximate entangled value up to constant error with 3 or more players.
 - Conjecture ("games QPCP"): it is QMA-hard to approximate entangled value up to constant error
- To show QMA-hardness of entangled value, design **self-test** for a QMA witness state $|\psi\rangle$ (e.g. ground state of local Hamiltonian)

Results: Complexity Theory

Theorem

It is NP-hard to approximate the entangled value of a 2-player nonlocal game, up to constant additive error.

Results: Complexity Theory

Theorem

It is NP-hard to approximate the entangled value of a 2-player nonlocal game, up to constant additive error.

Theorem ("Weak games QPCP")

It is QMA-hard under randomized reductions to approximate up to constant error the value of an MIP* protocol with poly log(n) rounds and bits of communication.

Results: Complexity Theory

Theorem

It is NP-hard to approximate the entangled value of a 2-player nonlocal game, up to constant additive error.

Theorem ("Weak games QPCP")

It is QMA-hard under randomized reductions to approximate up to constant error the value of an MIP* protocol with poly log(n) rounds and bits of communication.

Theorem ("Hamiltonian QPCP ⇒ Games QPCP")

If it is QMA-hard to estimate ground energy of local H up to constant fraction, then previous theorem holds under deterministic reductions.

Need to find a small, "robust" subset of the Pauli group to test.

- Need to find a small, "robust" subset of the Pauli group to test.
- Approach 1: **all** X(a) and Z(a) for $a \in \mathbb{F}_2^n$.

- Need to find a small, "robust" subset of the Pauli group to test.
- Approach 1: **all** X(a) and Z(a) for $a \in \mathbb{F}_2^n$. X—too big!

- Need to find a small, "robust" subset of the Pauli group to test.
- Approach 1: **all** X(a) and Z(a) for $a \in \mathbb{F}_2^n$. X—too big!
- Approach 2: only **constant weight** X(a), Z(a) (|a| = O(1)).

- Need to find a small, "robust" subset of the Pauli group to test.
- Approach 1: **all** X(a) and Z(a) for $a \in \mathbb{F}_2^n$. X—too big!
- Approach 2: only constant weight X(a), Z(a) (|a| = O(1)). X-not robust!

- Need to find a small, "robust" subset of the Pauli group to test.
- Approach 1: **all** X(a) and Z(a) for $a \in \mathbb{F}_2^n$. X—too big!
- Approach 2: only **constant weight** X(a), Z(a) (|a| = O(1)). X-not robust!
- Our approach: $\{X(a), Z(a) : a \in S\}$ with S the set of columns of generator matrix for classical linear code C encoding n bits.

- Need to find a small, "robust" subset of the Pauli group to test.
- Approach 1: **all** X(a) and Z(a) for $a \in \mathbb{F}_2^n$. X—too big!
- Approach 2: only **constant weight** X(a), Z(a) (|a| = O(1)). X-not robust!
- Our approach: $\{X(a), Z(a) : a \in S\}$ with S the set of columns of generator matrix for classical linear code C encoding n bits.
 - Reduces to Approach 1 (*C* = Hadamard code)

- Need to find a small, "robust" subset of the Pauli group to test.
- Approach 1: **all** X(a) and Z(a) for $a \in \mathbb{F}_2^n$. X—too big!
- Approach 2: only constant weight X(a), Z(a) (|a| = O(1)). X-not robust!
- Our approach: $\{X(a), Z(a) : a \in S\}$ with S the set of columns of generator matrix for classical linear code C encoding n bits.
 - Reduces to Approach 1 (C = Hadamard code) and 2 (C = trivial code)

- Need to find a small, "robust" subset of the Pauli group to test.
- Approach 1: **all** X(a) and Z(a) for $a \in \mathbb{F}_2^n$. X—too big!
- Approach 2: only constant weight X(a), Z(a) (|a| = O(1)). X-not robust!
- Our approach: $\{X(a), Z(a) : a \in S\}$ with S the set of columns of generator matrix for classical linear code C encoding n bits.
 - Reduces to Approach 1 (C = Hadamard code) and 2 (C = trivial code)
 - S is ✓small if C has high rate.

- Need to find a small, "robust" subset of the Pauli group to test.
- Approach 1: **all** X(a) and Z(a) for $a \in \mathbb{F}_2^n$. X—too big!
- Approach 2: only constant weight X(a), Z(a) (|a| = O(1)). X-not robust!
- Our approach: $\{X(a), Z(a) : a \in S\}$ with S the set of columns of generator matrix for classical linear code C encoding n bits.
 - Reduces to Approach 1 (C = Hadamard code) and 2 (C = trivial code)
 - S is ✓small if C has high rate.
 - *S* is ✓robust if *C* has high distance and is locally testable.

- Need to find a small, "robust" subset of the Pauli group to test.
- Approach 1: **all** X(a) and Z(a) for $a \in \mathbb{F}_2^n$. X—too big!
- Approach 2: only **constant weight** X(a), Z(a) (|a| = O(1)). X-not robust!
- Our approach: $\{X(a), Z(a) : a \in S\}$ with S the set of columns of generator matrix for classical linear code C encoding n bits.
 - Reduces to Approach 1 (C = Hadamard code) and 2 (C = trivial code)
 - S is ✓small if C has high rate.
 - S is ✓robust if C has high distance and is locally testable.
- Take C to be Reed-Muller code, based on multivariate polynomials over finite fields. Locally testable by low-degree test [RS97]

With probability 1/3 each, perform one of the following:

 Tell both players to measure in X basis, and run RS low-degree test.

- Tell both players to measure in X basis, and run RS low-degree test.
 - Tests X(a) for $a \in S$

- Tell both players to measure in X basis, and run RS low-degree test.
 - Tests X(a) for $a \in S$
- Tell both players to measure in Z basis, and run RS low-degree test.

- Tell both players to measure in X basis, and run RS low-degree test.
 - Tests X(a) for $a \in S$
- Tell both players to measure in Z basis, and run RS low-degree test.
 - Tests Z(b) for $b \in S$

- Tell both players to measure in X basis, and run RS low-degree test.
 - Tests X(a) for $a \in S$
- Tell both players to measure in Z basis, and run RS low-degree test.
 - Tests Z(b) for $b \in S$
- Pick $a, b \in S$, and play Magic Square game.

- Tell both players to measure in X basis, and run RS low-degree test.
 - Tests X(a) for $a \in S$
- Tell both players to measure in Z basis, and run RS low-degree test.
 - Tests Z(b) for $b \in S$
- Pick $a, b \in S$, and play Magic Square game.
 - Tests $X(a)Z(b) = (-1)^{a \cdot b}Z(b)X(a)$

With probability 1/3 each, perform one of the following:

- Tell both players to measure in X basis, and run RS low-degree test.
 - Tests X(a) for $a \in S$
- Tell both players to measure in Z basis, and run RS low-degree test.
 - Tests Z(b) for $b \in S$
- Pick $a, b \in S$, and play Magic Square game.
 - Tests $X(a)Z(b) = (-1)^{a \cdot b}Z(b)X(a)$

Lemma (Main)

Suppose players' operators $M_{\mathbf{X}}(a)$, $M_{\mathbf{Z}}(b)$ acting on $|\psi\rangle$ pass test with prob 1 $-\varepsilon$. Then \exists local isometry V s.t.

$$M_{\mathbf{X}}(a)|\psi\rangle \approx V^{\dagger}\mathbf{X}(a)V|\psi\rangle \quad M_{\mathbf{Z}}(b)|\psi\rangle \approx V^{\dagger}\mathbf{Z}(b)V|\psi\rangle$$

for $a, b \in S$.

• Can we prove the games PCP conjecture?

- Can we prove the games PCP conjecture?
 - Need self-tests for a richer class of Hamiltonians, or QMA-hardness for those we can test.

- Can we prove the games PCP conjecture?
 - Need self-tests for a richer class of Hamiltonians, or QMA-hardness for those we can test.
- Efficient delegated computation?

- Can we prove the games PCP conjecture?
 - Need self-tests for a richer class of Hamiltonians, or QMA-hardness for those we can test.
- Efficient delegated computation?
 - Using post-hoc framework of [FH15], or verifier-on-a-leash framework of [CGJV17]

- Can we prove the games PCP conjecture?
 - Need self-tests for a richer class of Hamiltonians, or QMA-hardness for those we can test.
- Efficient delegated computation?
 - Using post-hoc framework of [FH15], or verifier-on-a-leash framework of [CGJV17]
- Noise-tolerant entanglement tests?

- Can we prove the games PCP conjecture?
 - Need self-tests for a richer class of Hamiltonians, or QMA-hardness for those we can test.
- Efficient delegated computation?
 - Using post-hoc framework of [FH15], or verifier-on-a-leash framework of [CGJV17]
- Noise-tolerant entanglement tests?
 - Need guarantees even when success probability is far from optimal, as in [AFY17]

Thank You!

arXiv: 1710.03062 & 1801.03821