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Introduction

Motivating question: how to
classically verify an untrusted
quantum device?

In this talk: testing for entanglement
between spatially separated,
noncommunicating quantum
devices

Two servers on opposite sides of the
world,
Or far-apart regions on a single chip
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The model

Classical verifier interacts with k
(≥ 2) noncommunicating quantum
players

Players’ strategy:

k -partite state |ψ〉,
measurements {Ma

q,i}a.

On receiving question q from
verifier, player i applies {Ma

q,i}a to its
share of |ψ〉 and returns outcome a

At the end, verifier decides to accept
or reject.
Test strategies up to local isometry :

|ψ〉 7→ (U1 ⊗ U2)|ψ〉

Ma
q,i 7→ UiMa

q,1U†i
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Example: CHSH

CHSH test: 1 round, 2 players, 1-bit
messages

If players are classical, succeed with
p ≤ 3/4.
Optimal entangled strategy succeeds
with p = ω∗CHSH ≈ 0.85, with shared
state |ψ〉 = |EPR〉 = 1√

2
(|00〉+ |11〉)

Theorem (SW88, MYS12)
Any strategy succeeding with p = ω∗CHSH − ε must be
δ(ε) = O(

√
ε)-close to the optimal strategy under local isometry.

CHSH game is a “self-test” for the state |EPR〉 with robustness δ(ε).
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Example: Magic Square

Magic Square game: 1 round, 2 players, 2-bit messages

If players are classical, succeed with p ≤ 8/9.
Optimal entangled strategy succeeds with p = ω∗MS = 1, using
state |ψ〉 = |EPR〉⊗2.

Theorem (WBMS15)

Any strategy succeeding with p = ω∗MS − ε must be δ(ε) = O(
√
ε)-close

to the optimal strategy under local isometry.

Magic Square game is a self-test for the state |EPR〉⊗2 with
robustness δ(ε) and perfect completeness.
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Self-testing

A self-test for |ψ〉 is a multiplayer interactive protocol with

Completeness: Players sharing |ψ〉 can succeed with optimal
probability p∗.
Robustness: Players succeeding with probability p∗ − ε must share
a state δ(ε) close to |ψ〉 (up to local isometry).

To test a qubit, test Pauli operators X ,Z acting on it:

Any nontrivial representation of Pauli relations

X 2 = Z 2 = Id,XZ = −ZX

requires dimension at least 2 =⇒ 1 qubit.
〈ψ| 12 (XX + ZZ )|ψ〉 ≈ 1 =⇒ |ψ〉 ≈ |EPR〉.
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More qubits?

What if we want to test n qubits of entanglement, e.g. the state
|EPR〉⊗n?

To test n qubits, test n-qubit tensor products of Paulis acting on
them

Any nontrivial representation of Pauli relations

X (a)X (b) = X (a + b),Z (a)Z (b) = Z (a + b),

X (a)Z (b) = (−1)a·bZ (b)X (a).

requires dimension at least 2n =⇒ n qubits.
Expectation values 〈ψ|X (a)Z (b)|ψ〉 determine the shared state |ψ〉.
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More qubits: Approach 1

What if we want to test n qubits of entanglement as efficiently as
possible?

Fewest bits of communication between players and verifier
Best robustness: smallest δ(ε,n)

Approach 1: pick 2 random Paulis acting on n qubits, and test
their relations. Use rigidity of Pauli group:

MX (a)MZ (b) ≈ (−1)a·bMZ (b)MX (a) =⇒
MX (a) ≈ X (a),MZ (b) ≈ Z (b).

Theorem (NV16)

Test for |EPR〉⊗n with 3robustness δ independent of n and 7O(n) bits
of communication.
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More qubits: Approach 2

Approach 2: pick 2 random qubits i , j and test X i ,X j ,Z i ,Z j .

MX (a) :=
n∏

i=1

(MX i )
ai , MZ (a) :=

n∏
i=1

(MZ i )
ai

MX i MZ i ≈ε −MZ i MXi =⇒ MX (a)MZ (b) ≈nε −MZ (b)MX (a).

Theorem (CRSV16)

Test for |EPR〉⊗n with 7robustness δ = O(n5/2ε) and 3O(log(n)) bits
of communication.
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More qubits: Our result

Theorem (Quantum low-degree test)
There exists a 1-round, 2-player protocol with O(poly log(n))-bit
questions and answers such that any players succeeding with
probability 1− ε must share a state that is δ(ε)-close to |EPR〉⊗n,
where δ is independent of n.

Test certifies npoly log(n)-size subset of Pauli operators, arising from
low degree polynomials.
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Self-testing and complexity theory

Motivation: what is the power of interactive proof systems with
entangled quantum provers (MIP∗)?

≈ hardness of approximating the value of a protocol (maximal
success probability of any entangled strategy)

Classically: NP-hard to approximate unentangled value up to
constant error (MIP = NEXP)
Quantumly:

NP-hard to approximate entangled value up to constant error

with 3
or more players

.
Conjecture (“games QPCP”): it is QMA-hard to approximate
entangled value up to constant error

To show QMA-hardness of entangled value, design self-test for a
QMA witness state |ψ〉 (e.g. ground state of local Hamiltonian)

Natarajan,Vidick (MIT & Caltech) Low-degree testing January 16, 2018 11 / 16



Self-testing and complexity theory

Motivation: what is the power of interactive proof systems with
entangled quantum provers (MIP∗)?

≈ hardness of approximating the value of a protocol (maximal
success probability of any entangled strategy)

Classically: NP-hard to approximate unentangled value up to
constant error (MIP = NEXP)
Quantumly:

NP-hard to approximate entangled value up to constant error

with 3
or more players

.
Conjecture (“games QPCP”): it is QMA-hard to approximate
entangled value up to constant error

To show QMA-hardness of entangled value, design self-test for a
QMA witness state |ψ〉 (e.g. ground state of local Hamiltonian)

Natarajan,Vidick (MIT & Caltech) Low-degree testing January 16, 2018 11 / 16



Self-testing and complexity theory

Motivation: what is the power of interactive proof systems with
entangled quantum provers (MIP∗)?

≈ hardness of approximating the value of a protocol (maximal
success probability of any entangled strategy)

Classically: NP-hard to approximate unentangled value up to
constant error (MIP = NEXP)

Quantumly:

NP-hard to approximate entangled value up to constant error

with 3
or more players

.
Conjecture (“games QPCP”): it is QMA-hard to approximate
entangled value up to constant error

To show QMA-hardness of entangled value, design self-test for a
QMA witness state |ψ〉 (e.g. ground state of local Hamiltonian)

Natarajan,Vidick (MIT & Caltech) Low-degree testing January 16, 2018 11 / 16



Self-testing and complexity theory

Motivation: what is the power of interactive proof systems with
entangled quantum provers (MIP∗)?

≈ hardness of approximating the value of a protocol (maximal
success probability of any entangled strategy)

Classically: NP-hard to approximate unentangled value up to
constant error (MIP = NEXP)
Quantumly:

NP-hard to approximate entangled value up to constant error

with 3
or more players

.
Conjecture (“games QPCP”): it is QMA-hard to approximate
entangled value up to constant error

To show QMA-hardness of entangled value, design self-test for a
QMA witness state |ψ〉 (e.g. ground state of local Hamiltonian)

Natarajan,Vidick (MIT & Caltech) Low-degree testing January 16, 2018 11 / 16



Self-testing and complexity theory

Motivation: what is the power of interactive proof systems with
entangled quantum provers (MIP∗)?

≈ hardness of approximating the value of a protocol (maximal
success probability of any entangled strategy)

Classically: NP-hard to approximate unentangled value up to
constant error (MIP = NEXP)
Quantumly:

NP-hard to approximate entangled value up to constant error

with 3
or more players

.

Conjecture (“games QPCP”): it is QMA-hard to approximate
entangled value up to constant error

To show QMA-hardness of entangled value, design self-test for a
QMA witness state |ψ〉 (e.g. ground state of local Hamiltonian)

Natarajan,Vidick (MIT & Caltech) Low-degree testing January 16, 2018 11 / 16



Self-testing and complexity theory

Motivation: what is the power of interactive proof systems with
entangled quantum provers (MIP∗)?

≈ hardness of approximating the value of a protocol (maximal
success probability of any entangled strategy)

Classically: NP-hard to approximate unentangled value up to
constant error (MIP = NEXP)
Quantumly:

NP-hard to approximate entangled value up to constant error with 3
or more players.

Conjecture (“games QPCP”): it is QMA-hard to approximate
entangled value up to constant error

To show QMA-hardness of entangled value, design self-test for a
QMA witness state |ψ〉 (e.g. ground state of local Hamiltonian)

Natarajan,Vidick (MIT & Caltech) Low-degree testing January 16, 2018 11 / 16



Self-testing and complexity theory

Motivation: what is the power of interactive proof systems with
entangled quantum provers (MIP∗)?

≈ hardness of approximating the value of a protocol (maximal
success probability of any entangled strategy)

Classically: NP-hard to approximate unentangled value up to
constant error (MIP = NEXP)
Quantumly:

NP-hard to approximate entangled value up to constant error with 3
or more players.
Conjecture (“games QPCP”): it is QMA-hard to approximate
entangled value up to constant error

To show QMA-hardness of entangled value, design self-test for a
QMA witness state |ψ〉 (e.g. ground state of local Hamiltonian)

Natarajan,Vidick (MIT & Caltech) Low-degree testing January 16, 2018 11 / 16



Self-testing and complexity theory

Motivation: what is the power of interactive proof systems with
entangled quantum provers (MIP∗)?

≈ hardness of approximating the value of a protocol (maximal
success probability of any entangled strategy)

Classically: NP-hard to approximate unentangled value up to
constant error (MIP = NEXP)
Quantumly:

NP-hard to approximate entangled value up to constant error with 3
or more players.
Conjecture (“games QPCP”): it is QMA-hard to approximate
entangled value up to constant error

To show QMA-hardness of entangled value, design self-test for a
QMA witness state |ψ〉 (e.g. ground state of local Hamiltonian)

Natarajan,Vidick (MIT & Caltech) Low-degree testing January 16, 2018 11 / 16



Results: Complexity Theory

Theorem
It is NP-hard to approximate the entangled value of a 2-player nonlocal
game, up to constant additive error.

Theorem (“Weak games QPCP”)
It is QMA-hard under randomized reductions to approximate up to
constant error the value of an MIP∗ protocol with poly log(n) rounds
and bits of communication.

Theorem (“Hamiltonian QPCP =⇒ Games QPCP”)
If it is QMA-hard to estimate ground energy of local H up to constant
fraction, then previous theorem holds under deterministic reductions.
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Designing the Test: Intuition from Codes

Need to find a small, “robust” subset of the Pauli group to test.

Approach 1: all X (a) and Z (a) for a ∈ Fn
2.

7–too big!

Approach 2: only constant weight X (a),Z (a) (|a| = O(1)).

7–not
robust!

Our approach: {X (a),Z (a) : a ∈ S} with S the set of columns of
generator matrix for classical linear code C encoding n bits.

Reduces to Approach 1 (C = Hadamard code)

and 2 (C = trivial code)
S is 3small if C has high rate.
S is 3robust if C has high distance and is locally testable.

Take C to be Reed-Muller code, based on multivariate polynomials
over finite fields. Locally testable by low-degree test [RS97]
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Quantum low-degree test

With probability 1/3 each, perform one of the following:

Tell both players to measure in X basis, and run RS low-degree
test.

Tests X (a) for a ∈ S

Tell both players to measure in Z basis, and run RS low-degree
test.

Tests Z (b) for b ∈ S

Pick a,b ∈ S, and play Magic Square game.

Tests X (a)Z (b) = (−1)a·bZ (b)X (a)

Lemma (Main)
Suppose players’ operators MX (a),MZ (b) acting on |ψ〉 pass test with
prob 1− ε. Then ∃ local isometry V s.t.

MX (a)|ψ〉 ≈ V †X (a)V |ψ〉 MZ (b)|ψ〉 ≈ V †Z (b)V |ψ〉

for a,b ∈ S.
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Open problems

Can we prove the games PCP conjecture?

Need self-tests for a richer class of Hamiltonians, or QMA-hardness
for those we can test.

Efficient delegated computation?

Using post-hoc framework of [FH15], or verifier-on-a-leash
framework of [CGJV17]

Noise-tolerant entanglement tests?

Need guarantees even when success probability is far from optimal,
as in [AFY17]
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Noise-tolerant entanglement tests?

Need guarantees even when success probability is far from optimal,
as in [AFY17]
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Thank You!
arXiv: 1710.03062 & 1801.03821
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