All Pure Bipartite Entangled States can be Self-Tested

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani

Caltech & CQT

QIP 2018, January 16

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

- Background
- Main result
- Self-testing correlations
- Open questions

< ∃ >

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

4 E b

$$\{p(a, b|x, y)\}_{x, y \in \mathcal{X} \times \mathcal{Y}}$$
(1)

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\{p(a, b|x, y)\}_{x, y \in \mathcal{X} \times \mathcal{Y}}$$
(1)

• We refer to each such collection as a *correlation*. And we call it *quantum* if it's obtained via some quantum strategy.

$$\{p(a, b|x, y)\}_{x, y \in \mathcal{X} \times \mathcal{Y}}$$
(1)

- We refer to each such collection as a *correlation*. And we call it *quantum* if it's obtained via some quantum strategy.
- A quantum strategy is specified by a joint state $|\psi\rangle$, and projective measurements $\{\Pi_x^a\}_{x\in\mathcal{X}}$ and $\{\Pi_y^b\}_{y\in\mathcal{Y}}$ for Alice and Bob respectively, such that

$$p(a, b|x, y) = \langle \psi | \Pi_x^a \Pi_y^b | \psi \rangle$$
 (2)

伺下 イヨト イヨト

$$\{p(a, b|x, y)\}_{x, y \in \mathcal{X} \times \mathcal{Y}}$$
(1)

- We refer to each such collection as a *correlation*. And we call it *quantum* if it's obtained via some quantum strategy.
- A quantum strategy is specified by a joint state $|\psi\rangle$, and projective measurements $\{\Pi_x^a\}_{x\in\mathcal{X}}$ and $\{\Pi_y^b\}_{y\in\mathcal{Y}}$ for Alice and Bob respectively, such that

$$p(a, b|x, y) = \langle \psi | \Pi_x^a \Pi_y^b | \psi \rangle$$
(2)

ヨト イヨト イヨト

Let C^{m,n,r,s}_q be the set of quantum correlations, where
 X, Y, A, B have sizes m, n, r, s respectively.

• The aim is to certify the behaviour of a quantum system, based only on the observed correlations.

- The aim is to certify the behaviour of a quantum system, based only on the observed correlations.
- Nothing is assumed other than a no-signalling constraint on Alice and Bob, and that they obey quantum mechanics.

- The aim is to certify the behaviour of a quantum system, based only on the observed correlations.
- Nothing is assumed other than a no-signalling constraint on Alice and Bob, and that they obey quantum mechanics.

Definition: (self-testing, informal)

We say that a correlation *self-tests* a state $|\psi\rangle_{target}$ if it can be uniquely achieved when Alice and Bob make local measurements on $|\psi\rangle_{target}$, up to local isometries.

Questions $x, y \in \{0, 1\}$, answers $a, b \in \{-1, 1\}$. Maximal violation of CHSH:

$$\langle \psi | A_0(B_0 + B_1) + A_1(B_0 - B_1) | \psi \rangle = 2\sqrt{2}$$

伺 ト イヨト イヨト

Questions $x, y \in \{0, 1\}$, answers $a, b \in \{-1, 1\}$. Maximal violation of CHSH:

$$\langle \psi | A_0(B_0 + B_1) + A_1(B_0 - B_1) | \psi \rangle = 2\sqrt{2}$$

The correlation in the quantum correlations set $C_q^{2,2,2,2}$ that achieves this maximal violation self-tests the maximally entangled pair of qubits¹.

¹S. Popescu, D. Rohrlich (1992)

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

Some applications of self-testing in cryptography

²C. A. Miller, Y. Shi (2014) ³U. Vazirani, T. Vidick (2014)

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

Some applications of self-testing in cryptography

• Randomness expansion and key distribution ^{2 3}

²C. A. Miller, Y. Shi (2014)
³U. Vazirani, T. Vidick (2014)
⁴B. W. Reichardt, F. Unger, U. Vazirani (2012)
⁵M. McKague (2013)

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

4 3 5 4

Some applications of self-testing in cryptography

- Randomness expansion and key distribution ^{2 3}
- Delegated computation ^{4 5}

²C. A. Miller, Y. Shi (2014)
³U. Vazirani, T. Vidick (2014)
⁴B. W. Reichardt, F. Unger, U. Vazirani (2012)
⁵M. McKague (2013)

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

.

So far, which (bipartite) states can we self-test?

Maximally Entangled Qubits (Singlet) [Mayers-Yao 2004]

n Singlets in parallel [McKague 2015]

All pure Partially Entangled Qubits [Bamps-Pironio 2015]

A small class of Partially Entangled Qudits, for $d = 2^n$ [C. 2016]

Maximally Entangled Qutrits (numerical) [Salavrakos et al. 2016]

A certain Pair of Partially Entangled Qutrits [Yang et al. 2014]

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

→ < Ξ → <</p>

Theorem:

Let $|\psi\rangle_{target} = \sum_{i=0}^{d-1} c_i |ii\rangle$. There exists a correlation in $C_q^{3,4,d,d}$ that self-tests $|\psi\rangle_{target}$. Moreover, the local measurements that achieve it are also unique up to local isometries.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem:

Let $|\psi\rangle_{target} = \sum_{i=0}^{d-1} c_i |ii\rangle$. There exists a correlation in $C_q^{3,4,d,d}$ that self-tests $|\psi\rangle_{target}$. Moreover, the local measurements that achieve it are also unique up to local isometries.

(Mixed states can't be self-tested.)

I = I → I

$$\langle \psi | \alpha A_0 + A_0 (B_0 + B_1) + A_1 (B_0 - B_1) | \psi \rangle \le 2 + \alpha$$
 (3)

⁶A. Acín, S. Massar, S. Pironio (2012) Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite En

All Pure Bipartite Entangled States can be Self-Tested

$$\langle \psi | \alpha A_0 + A_0 (B_0 + B_1) + A_1 (B_0 - B_1) | \psi \rangle \le 2 + \alpha$$
 (3)

⁶A. Acín, S. Massar, S. Pironio (2012)

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

$$\langle \psi | \alpha A_0 + A_0 (B_0 + B_1) + A_1 (B_0 - B_1) | \psi \rangle \le 2 + \alpha$$
 (3)

• Maximal quantum violation is $I_{\alpha} = \sqrt{8 + 2\alpha^2}$

⁶A. Acín, S. Massar, S. Pironio (2012) Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

$$\langle \psi | \alpha A_0 + A_0 (B_0 + B_1) + A_1 (B_0 - B_1) | \psi \rangle \le 2 + \alpha$$
 (3)

- Maximal quantum violation is $I_{lpha} = \sqrt{8+2lpha^2}$
- Maximal quantum violation self-tests the tilted EPR pair

$$|\psi_{\theta}\rangle = \cos\theta |00\rangle + \sin\theta |11\rangle$$
 (4)

for
$$\sin \theta = \sqrt{\frac{4-\alpha^2}{4+\alpha^2}}$$
.

⁶A. Acín, S. Massar, S. Pironio (2012)

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

Tilted CHSH

• The self-testing result is also robust: ⁷

$$\left\langle \psi \right| lpha A_0 + A_0 (B_0 + B_1) + A_1 (B_0 - B_1) \left| \psi \right\rangle \geq I_lpha - \epsilon$$

 $\Rightarrow |\psi\rangle$ is $O(\sqrt{\epsilon})$ -close to $|\psi_{ heta}\rangle$, up to a local isometry.

⁷C.Bamps and S.Pironio (2015)

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

・ 同 ト ・ ヨ ト ・ ヨ

Tilted CHSH

• The self-testing result is also robust: ⁷

$$\langle \psi | \alpha A_0 + A_0 (B_0 + B_1) + A_1 (B_0 - B_1) | \psi \rangle \ge I_{lpha} - \epsilon$$

 $\Rightarrow |\psi\rangle$ is $O(\sqrt{\epsilon})$ -close to $|\psi_{\theta}\rangle$, up to a local isometry.

• Maximal violation also self-tests the measurements (with the same robustness):

$$\begin{aligned} A_0 &= Z, \qquad B_0 &= \cos \mu Z + \sin \mu X, \\ A_1 &= X, \qquad B_1 &= \cos \mu Z - \sin \mu X \end{aligned}$$

⁷C.Bamps and S.Pironio (2015)

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

Represent correlations via *correlation tables*. We specify a correlation by specifying, for each possible question (x, y) ∈ X × Y, the table T_{x,y} with entries T_{x,y}(a, b) := p(a, b|x, y).

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Represent correlations via correlation tables. We specify a correlation by specifying, for each possible question (x, y) ∈ X × Y, the table T_{x,y} with entries T_{x,y}(a, b) := p(a, b|x, y).
- For example, the ideal tilted CHSH correlation for angle θ is specified by four tables, one for each $(x, y) \in \{0, 1\}^2$, of the form

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

Some Intuition behind the Self-Testing Correlations

Recall that we are trying to self-test $|\psi\rangle = \sum_{i=0}^{d-1} c_i |ii\rangle$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

A B A A B A

Some Intuition behind the Self-Testing Correlations

Recall that we are trying to self-test $|\psi\rangle = \sum_{i=0}^{d-1} c_i |ii\rangle$

• The structure of our correlations is inspired by [Yang and Navascués (2013)]: Question sets $\mathcal{X} = \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\}$, Answer sets $\mathcal{A} = \mathcal{B} = \{0, 1, ..., d - 1\}$.

Some Intuition behind the Self-Testing Correlations

Recall that we are trying to self-test $|\psi\rangle = \sum_{i=0}^{d-1} c_i |ii\rangle$

- The structure of our correlations is inspired by [Yang and Navascués (2013)]: Question sets $\mathcal{X} = \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\}$, Answer sets $\mathcal{A} = \mathcal{B} = \{0, 1, ..., d - 1\}$.
- Intuitively, we want to make use of the tilted CHSH self-test to certify $|\psi\rangle_{\rm target}$ "portion by portion".

Recall that we are trying to self-test $|\psi\rangle = \sum_{i=0}^{d-1} c_i |ii\rangle$

- The structure of our correlations is inspired by [Yang and Navascués (2013)]: Question sets $\mathcal{X} = \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\},$ Answer sets $\mathcal{A} = \mathcal{B} = \{0, 1, ..., d - 1\}.$
- Intuitively, we want to make use of the tilted CHSH self-test to certify $|\psi\rangle_{\text{target}}$ "portion by portion". We start with the case d = 4. So $|\psi\rangle_{\text{target}} = c_0 |00\rangle + c_1 |11\rangle + c_2 |22\rangle + c_3 |33\rangle$.

Recall that we are trying to self-test $|\psi\rangle = \sum_{i=0}^{d-1} c_i |ii\rangle$

• The structure of our correlations is inspired by [Yang and Navascués (2013)]: Question sets $\mathcal{X} = \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\},$

Answer sets $\mathcal{A} = \mathcal{B} = \{0, 1, .., d - 1\}.$

• Intuitively, we want to make use of the tilted CHSH self-test to certify $|\psi\rangle_{\text{target}}$ "portion by portion". We start with the case d = 4. So $|\psi\rangle_{\text{target}} = c_0 |00\rangle + c_1 |11\rangle + c_2 |22\rangle + c_3 |33\rangle.$

For $x, y \in \{0, 1\}$ we use Alice and Bob's $\{0, 1\}$ answers to certify the portion $c_0 |00\rangle + c_1 |11\rangle$, and their $\{2, 3\}$ answers to certify $c_2 |22\rangle + c_3 |33\rangle$.

• • • • • • • • •

The ideal measurements

$$\mathcal{X} = \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\}$$
 and $\mathcal{A} = \mathcal{B} = \{0, 1, .., 3\}$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

→ ★ 문 → ★ 문

$$\mathcal{X} = \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\} \text{ and } \mathcal{A} = \mathcal{B} = \{0, 1, .., 3\}$$

Ideal state: $|\Psi\rangle = c_0 |00\rangle + c_1 |11\rangle + c_2 |22\rangle + c_3 |33\rangle$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

→ ★ 문 → ★ 문

P

$$\mathcal{X} = \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\} \text{ and } \mathcal{A} = \mathcal{B} = \{0, 1, .., 3\}$$

Ideal state: $|\Psi\rangle = c_0 |00\rangle + c_1 |11\rangle + c_2 |22\rangle + c_3 |33\rangle$

Let $A_0^{(\theta)}, A_1^{(\theta)}, B_0^{(\theta)}, B_1^{(\theta)}$ be the ideal tilted CHSH qubit measurements for $\theta = \arctan \frac{c_1}{c_0}$.

(日本)(日本)(日本)(日本)

$$\mathcal{X} = \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\} \text{ and } \mathcal{A} = \mathcal{B} = \{0, 1, ..., 3\}$$

Ideal state: $|\Psi\rangle = |c_0|00\rangle + c_1|11\rangle + c_2|22\rangle + c_3|33\rangle$

Let $A_0^{(\theta)}, A_1^{(\theta)}, B_0^{(\theta)}, B_1^{(\theta)}$ be the ideal tilted CHSH qubit measurements for $\theta = \arctan \frac{c_1}{c_0}$.

▼▶ < ∃▶ < ∃▶</p>
$$\mathcal{X} = \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\} \text{ and } \mathcal{A} = \mathcal{B} = \{0, 1, .., 3\}$$

Ideal state: $|\Psi\rangle = c_0 |00\rangle + c_1 |11\rangle + c_2 |22\rangle + c_3 |33\rangle$
Let $A_0^{(\theta)}, A_1^{(\theta)}, B_0^{(\theta)}, B_1^{(\theta)}$ be the ideal tilted CHSH qubit

measurements for $\theta = \arctan \frac{c_1}{c_0}$. And $A_0^{(\phi)}, A_1^{(\phi)}, B_0^{(\phi)}, B_1^{(\phi)}$ for $\phi = \arctan \frac{c_3}{c_2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$\mathcal{X} = \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\} \text{ and } \mathcal{A} = \mathcal{B} = \{0, 1, .., 3\}$$

 $\textbf{Ideal state:} \hspace{0.2cm} |\Psi\rangle = c_0 \hspace{0.2cm} |00\rangle + c_1 \hspace{0.2cm} |11\rangle + \hspace{0.2cm} c_2 \hspace{0.2cm} |22\rangle + c_3 \hspace{0.2cm} |33\rangle$

Let $A_0^{(\theta)}, A_1^{(\theta)}, B_0^{(\theta)}, B_1^{(\theta)}$ be the ideal tilted CHSH qubit measurements for $\theta = \arctan \frac{c_1}{c_0}$. And $A_0^{(\phi)}, A_1^{(\phi)}, B_0^{(\phi)}, B_1^{(\phi)}$ for $\phi = \arctan \frac{c_3}{c_2}$.

레이 시골이 시골이

$$\mathcal{X} = \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\} \text{ and } \mathcal{A} = \mathcal{B} = \{0, 1, .., 3\}$$

Ideal state: $|\Psi
angle=c_{0}\left|00
ight
angle+c_{1}\left|11
ight
angle+c_{2}\left|22
ight
angle+c_{3}\left|33
ight
angle$

Let $A_0^{(\theta)}, A_1^{(\theta)}, B_0^{(\theta)}, B_1^{(\theta)}$ be the ideal tilted CHSH qubit measurements for $\theta = \arctan \frac{c_1}{c_0}$. And $A_0^{(\phi)}, A_1^{(\phi)}, B_0^{(\phi)}, B_1^{(\phi)}$ for $\phi = \arctan \frac{c_3}{c_2}$.

Ideal measurements $\widetilde{A}_0,\widetilde{A}_1,\widetilde{A}_2,\widetilde{B}_0,\widetilde{B_1},\widetilde{B}_2,\widetilde{B}_3$:

The ideal measurements

$$\mathcal{X} = \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\}$$
 and $\mathcal{A} = \mathcal{B} = \{0, 1, .., 3\}$

Ideal state: $\ket{\Psi}=c_{0}\ket{00}+c_{1}\ket{11}+c_{2}\ket{22}+c_{3}\ket{33}$

Let $A_0^{(\theta)}, A_1^{(\theta)}, B_0^{(\theta)}, B_1^{(\theta)}$ be the ideal tilted CHSH qubit measurements for $\theta = \arctan \frac{c_1}{c_0}$. And $A_0^{(\phi)}, A_1^{(\phi)}, B_0^{(\phi)}, B_1^{(\phi)}$ for $\phi = \arctan \frac{c_3}{c_2}$.

Ideal measurements $\widetilde{A}_0,\widetilde{A}_1,\widetilde{A}_2,\widetilde{B}_0,\widetilde{B_1},\widetilde{B}_2,\widetilde{B}_3$:

 $egin{aligned} & ilde{\mathcal{A}}_0 &:= egin{bmatrix} \mathcal{A}_0^{(heta)} & 0 \ 0 & \mathcal{A}_0^{(\phi)} \end{bmatrix} & ilde{\mathcal{B}}_0 &:= egin{bmatrix} \mathcal{B}_0^{(heta)} & 0 \ 0 & \mathcal{B}_0^{(\phi)} \end{bmatrix} \ & ilde{\mathcal{A}}_1 &:= egin{bmatrix} \mathcal{A}_1^{(heta)} & 0 \ 0 & \mathcal{A}_1^{(\phi)} \end{bmatrix}, & ilde{\mathcal{B}}_1 &:= egin{bmatrix} \mathcal{B}_0^{(heta)} & 0 \ 0 & \mathcal{B}_1^{(\phi)} \end{bmatrix} \end{aligned}$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

(日) (四) (日) (日)

The ideal measurements

$$\mathcal{X} = \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\}$$
 and $\mathcal{A} = \mathcal{B} = \{0, 1, .., 3\}$

Ideal state: $\ket{\Psi}=c_{0}\ket{00}+c_{1}\ket{11}+c_{2}\ket{22}+c_{3}\ket{33}$

Let $A_0^{(\theta)}, A_1^{(\theta)}, B_0^{(\theta)}, B_1^{(\theta)}$ be the ideal tilted CHSH qubit measurements for $\theta = \arctan \frac{c_1}{c_0}$. And $A_0^{(\phi)}, A_1^{(\phi)}, B_0^{(\phi)}, B_1^{(\phi)}$ for $\phi = \arctan \frac{c_3}{c_2}$.

Ideal measurements $\widetilde{A}_0,\widetilde{A}_1,\widetilde{A}_2,\widetilde{B}_0,\widetilde{B_1},\widetilde{B}_2,\widetilde{B}_3$:

$$\begin{split} \tilde{A}_0 &:= \begin{bmatrix} A_0^{(\theta)} & 0\\ 0 & A_0^{(\phi)} \end{bmatrix} \sim \text{comput. basis meas.}, \qquad \tilde{B}_0 &:= \begin{bmatrix} B_0^{(\theta)} & 0\\ 0 & B_0^{(\phi)} \end{bmatrix} \\ \tilde{A}_1 &:= \begin{bmatrix} A_1^{(\theta)} & 0\\ 0 & A_1^{(\phi)} \end{bmatrix}, \qquad \qquad \tilde{B}_1 &:= \begin{bmatrix} B_1^{(\theta)} & 0\\ 0 & B_1^{(\phi)} \end{bmatrix} \end{split}$$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

$$\begin{aligned} \mathcal{X} &= \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\} \text{ and } \mathcal{A} = \mathcal{B} = \{0, 1, ..., 3\}. \\ |\Psi\rangle &= c_0 |00\rangle + c_1 |11\rangle + c_2 |22\rangle + c_3 |33\rangle \end{aligned}$$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

$$\begin{aligned} \mathcal{X} &= \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\} \text{ and } \mathcal{A} = \mathcal{B} = \{0, 1, .., 3\}. \\ |\Psi\rangle &= c_0 |00\rangle + c_1 |11\rangle + c_2 |22\rangle + c_3 |33\rangle \end{aligned}$$

a∖b	0	1	2	3
0			0	0
1	[C,	к,у	0	0
2	0	0	C	
3	0	0		к,у

• • = • • = •

$$\begin{aligned} \mathcal{X} &= \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\} \text{ and } \mathcal{A} = \mathcal{B} = \{0, 1, .., 3\}. \\ |\Psi\rangle &= c_0 |00\rangle + c_1 |11\rangle + c_2 |22\rangle + c_3 |33\rangle \end{aligned}$$

a∖b	0	1	2	3
0			0	0
1	[⁽ ,	к,у	0	0
2	0	0	C'	
3	$0 0 C_{x,y}$			к,у

where $C_{x,y}$ contains ideal tilted CHSH correlations on question (x, y) for angle $\theta = \arctan \frac{c_1}{c_0}$, weighted by $c_0^2 + c_1^2$

• • • • • • • • •

$$\begin{aligned} \mathcal{X} &= \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\} \text{ and } \mathcal{A} = \mathcal{B} = \{0, 1, .., 3\}.\\ |\Psi\rangle &= \frac{c_0 |00\rangle + c_1 |11\rangle}{c_0 |00\rangle + c_1 |11\rangle} + c_2 |22\rangle + c_3 |33\rangle \end{aligned}$$

a∖b	0	1	2	3	
0			0	0	
1	[⁽ ,	k,y	0	0	
2	0	0	C		
3	0	0	$C_{x,y}$		

where $C_{x,y}$ contains ideal tilted CHSH correlations on question (x, y) for angle $\theta = \arctan \frac{c_1}{c_0}$, weighted by $c_0^2 + c_1^2$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

$$\begin{aligned} \mathcal{X} &= \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\} \text{ and } \mathcal{A} = \mathcal{B} = \{0, 1, .., 3\}. \\ |\Psi\rangle &= c_0 |00\rangle + c_1 |11\rangle + c_2 |22\rangle + c_3 |33\rangle \end{aligned}$$

a∖b	0	1	2	3
0			0	0
1	[⁽ ,	к,у	0	0
2	0	0	C'	
3	$0 0 C_{x,y}$			к,у

where $C_{x,y}$ contains ideal tilted CHSH correlations on question (x, y) for angle $\theta = \arctan \frac{c_1}{c_0}$, weighted by $c_0^2 + c_1^2$ and $C'_{x,y}$ for angle $\theta' = \arctan \frac{c_3}{c_2}$, weighted by $c_2^2 + c_3^2$

• • • • • • • • •

$$\begin{aligned} \mathcal{X} &= \{0, 1, 2\}, \mathcal{Y} = \{0, 1, 2, 3\} \text{ and } \mathcal{A} = \mathcal{B} = \{0, 1, .., 3\}. \\ |\Psi\rangle &= c_0 |00\rangle + c_1 |11\rangle + \frac{c_2 |22\rangle + c_3 |33\rangle}{c_2 |22\rangle + c_3 |33\rangle} \end{aligned}$$

a∖b	0	1	2	3
0			0	0
1	[C,	к, у	0	0
2	0	0	C	
3	0 0			к,у

where $C_{x,y}$ contains ideal tilted CHSH correlations on question (x, y) for angle $\theta = \arctan \frac{c_1}{c_0}$, weighted by $c_0^2 + c_1^2$ and $C'_{x,y}$ for angle $\theta' = \arctan \frac{c_3}{c_2}$, weighted by $c_2^2 + c_3^2$ As you can expect, then the correlation table for questions $x, y \in \{0, 1\}$ for the case of general *d* (even) is:

a∖b	0	1	2	3		<i>d</i> – 2	d-1
0	$C^{(0)}$		0	0		0	0
1	C,	с, у	0	0	• • •	0	0
2	0	0	$C_{x,y}^{(1)}$		• • •	0	0
3	0	0			• • •	0	0
÷	÷	:	:	:	·		:
<i>d</i> – 2	0	0	0 0		• • •	$c^{\left(\frac{d}{2}-1\right)}$	
d-1	0	0	0	0		$C_{x,y}$	Y

where, the *m*th block contains ideal tilted CHSH correlations for angle $\theta_m = \arctan \frac{c_{2m+1}}{c_{2m}}$, weighted by $c_{2m}^2 + c_{2m+1}^2$.

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

通っ イヨッ イヨッ

Are the correlations from the previous slide for questions $x, y \in \{0, 1\}$ uniquely achieved by measuring $|\psi\rangle_{target} = \sum_{i=0}^{d-1} c_i |ii\rangle$, up to a local isometry?

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

Are the correlations from the previous slide for questions $x, y \in \{0, 1\}$ uniquely achieved by measuring $|\psi\rangle_{target} = \sum_{i=0}^{d-1} c_i |ii\rangle$, up to a local isometry?

NO! (For one thing $\mathcal{X} = \{0, 1, 2\}$ and $\mathcal{Y} = \{0, 1, 2, 3\}$, so you should expect us to use the other questions as well)

Are the correlations from the previous slide for questions $x, y \in \{0, 1\}$ uniquely achieved by measuring $|\psi\rangle_{target} = \sum_{i=0}^{d-1} c_i |ii\rangle$, up to a local isometry?

NO! (For one thing $\mathcal{X} = \{0, 1, 2\}$ and $\mathcal{Y} = \{0, 1, 2, 3\}$, so you should expect us to use the other questions as well)

Here is a simple counterexample for the case d = 4: Consider the mixed state represented by the mixture

$$\Big\{ \Big(c_0^2 + c_1^2, \cos \theta \ket{00} + \sin \theta \ket{11} \Big), \Big(c_2^2 + c_3^2, \cos \theta' \ket{22} + \sin \theta' \ket{33} \Big) \Big\},$$
where $\theta = \arctan \frac{c_1}{c_0}$ and $\theta' = \arctan \frac{c_3}{c_2}.$

The point is that it is NOT enough to certify just the "even-odd" pairs (0, 1), (2, 3),...,(d - 2, d - 1).

• • • • • • • • •

-

The point is that it is NOT enough to certify just the "even-odd" pairs (0, 1), (2, 3),...,(d - 2, d - 1).

We need to enforce the same structure also on the "odd-even" pairs (d-1,0),(1,2),...,(d-3,d-2).

b) A (B) b) A (B) b)

We also need to use questions $\mathbf{x} \in \{\mathbf{0}, \mathbf{2}\}$ and $\mathbf{y} \in \{\mathbf{2}, \mathbf{3}\}$. The ideal observables are \tilde{A}_0 (already defined earlier), and \tilde{A}_2 , \tilde{B}_2 , \tilde{B}_3 same as before except shifted down by one basis element.

We also need to use questions $\mathbf{x} \in \{\mathbf{0}, \mathbf{2}\}$ and $\mathbf{y} \in \{\mathbf{2}, \mathbf{3}\}$. The ideal observables are \tilde{A}_0 (already defined earlier), and \tilde{A}_2 , \tilde{B}_2 , \tilde{B}_3 same as before except shifted down by one basis element.

For
$$x, y \in \{0, 1\}$$
,
$$\begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}$$

We also need to use questions $\mathbf{x} \in \{\mathbf{0}, \mathbf{2}\}$ and $\mathbf{y} \in \{\mathbf{2}, \mathbf{3}\}$. The ideal observables are \tilde{A}_0 (already defined earlier), and \tilde{A}_2 , \tilde{B}_2 , \tilde{B}_3 same as before except shifted down by one basis element.

For
$$x, y \in \{0, 1\}$$
,
$$\begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}$$

For $\mathbf{x} \in \{0, 2\}$ and $\mathbf{y} \in \{2, 3\}$,
$$\begin{bmatrix} * & 0 & 0 & * \\ 0 & * & * & 0 \\ 0 & * & * & 0 \\ * & 0 & 0 & * \end{bmatrix}$$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

For the case of general *d* even this means that for $x \in \{0, 2\}$ and $y \in \{2, 3\}$, the correlation tables have the form:

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

• • = • • = •

For the case of general *d* even this means that for $x \in \{0, 2\}$ and $y \in \{2, 3\}$, the correlation tables have the form:

a∖b	d-1	0	1	2	•••	<i>d</i> – 3	<i>d</i> – 2
d-1			0	0		0	0
0	$D_{x,y}$		0	0	• • •	0	0
1	0	0		(1)	• • •	0	0
2	0	0	$D_{\hat{x},\hat{y}}$		• • •	0	0
÷	÷	:	•	:	·	•	:
d – 3	0	0	$0 0 \cdots $		(-1)		
<i>d</i> – 2	0	0	0	0	• • •	$D_{X,\frac{1}{2}}$	y

where, the *m*th block contains ideal tilted CHSH correlations for angle $\theta'_m = \arctan \frac{c_{2m+2}}{c_{2m+1}}$, weighted by $c_{2m+1}^2 + c_{2m+2}^2$.

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

ゆ く き と く き と

More suggestively:

э

Or:

Questions $(x, y) \in \{0, 1\}^2$ serve to certify the even-odd pairs. Questions $(x, y) \in \{0, 2\} \times \{2, 3\}$ the odd-even pairs. Finally, the self-test is also robust [C., Stark '17]:

Theorem:

Let $|\psi\rangle_{target} = \sum_{i=0}^{d-1} c_i |ii\rangle$. If Alice and Bob produce, on a joint state $|\psi\rangle$, a correlation that is ϵ -close to the self-testing correlation described earlier, then their joint state is $O(d^3 \epsilon^{\frac{1}{4}})$ -close to $|\psi\rangle_{target}$, up to a local isometry.

• Can we formulate these self-tests in terms of maximal violation of some Bell inequality?

< 3 > < 3

- Can we formulate these self-tests in terms of maximal violation of some Bell inequality?
- Can we come up with non-local games that self-test a partially entangled state? What properties do they need to have?

- Can we formulate these self-tests in terms of maximal violation of some Bell inequality?
- Can we come up with non-local games that self-test a partially entangled state? What properties do they need to have?
- What about multipartite states? Less explored.

- Can we formulate these self-tests in terms of maximal violation of some Bell inequality?
- Can we come up with non-local games that self-test a partially entangled state? What properties do they need to have?
- What about multipartite states? Less explored.
 - Not guaranteed to have Schmidt decomposition

- Can we formulate these self-tests in terms of maximal violation of some Bell inequality?
- Can we come up with non-local games that self-test a partially entangled state? What properties do they need to have?
- What about multipartite states? Less explored.
 - Not guaranteed to have Schmidt decomposition
 - If they do they can be self-tested [Šupić, C. , Augusiak, Acín '17]

- Can we formulate these self-tests in terms of maximal violation of some Bell inequality?
- Can we come up with non-local games that self-test a partially entangled state? What properties do they need to have?
- What about multipartite states? Less explored.
 - Not guaranteed to have Schmidt decomposition
 - If they do they can be self-tested [Šupić, C. , Augusiak, Acín '17]
 - Some states cannot be self-tested due to complex conjugation ambiguity

- Can we formulate these self-tests in terms of maximal violation of some Bell inequality?
- Can we come up with non-local games that self-test a partially entangled state? What properties do they need to have?
- What about multipartite states? Less explored.
 - Not guaranteed to have Schmidt decomposition
 - If they do they can be self-tested [Šupić, C. , Augusiak, Acín '17]
 - Some states cannot be self-tested due to complex conjugation ambiguity

向下 イヨト イヨト

• Can we self-test all multipartites states modulo complex conjugation?

GOAL: For each pure bipartite entangled state, find a Bell inequality whose maximal violation is achieved uniquely by measurements on that state.

GOAL: For each pure bipartite entangled state, find a Bell inequality whose maximal violation is achieved uniquely by measurements on that state.

i.e. an inequality self-testing that state.

A candidate family

Some notation.

$$[CHSH]_p = \sum_{a,b,x,y \in \{0,1\}} (-1)^{a \oplus b - xy} p(a,b|x,y)$$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

► < E > <</p>

A candidate family

Some notation.

$$[CHSH]_p = \sum_{a,b,x,y \in \{0,1\}} (-1)^{a \oplus b - xy} p(a,b|x,y)$$

Let $p\in \mathcal{C}_q^{3,4,d,d}$,

$$[CHSH^{(m)}]_{p} = \sum_{a,b \in \{2m,2m+1\},x,y \in \{0,1\}} (-1)^{a \oplus b - xy} p(a,b|x,y)$$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

一回 ト イヨト イヨト
A candidate family

Some notation.

$$[CHSH]_{p} = \sum_{a,b,x,y \in \{0,1\}} (-1)^{a \oplus b - xy} p(a,b|x,y)$$

Let $p\in \mathcal{C}_q^{3,4,d,d}$,

$$[CHSH^{(m)}]_{p} := \sum_{a,b \in \{2m, 2m+1\}, x, y \in \{0,1\}} (-1)^{a \oplus b - xy} p(a, b|x, y)$$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

□ > 《 E > 《 E >

A candidate family

Some notation.

$$[CHSH]_p = \sum_{a,b,x,y \in \{0,1\}} (-1)^{a \oplus b - xy} p(a,b|x,y)$$

Let $p\in \mathcal{C}_q^{3,4,d,d}$,

$$[CHSH^{(m)}]_{p} = \sum_{a,b \in \{2m,2m+1\}, x,y \in \{0,1\}} (-1)^{a \oplus b - xy} p(a,b|x,y)$$

$$[tCHSH^{(m)}(\alpha)]_{p} = \alpha \left(p(a = 2m|x = 0) - p(a = 2m + 1|x = 0) \right) \\ + [CHSH^{(m)}]_{p}$$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

▲□ → ▲ 三 → ▲ 三 → …

э

Define $[CHSH^{(m)'}]_p$, $[tCHSH^{(m)'}(\alpha)]_p$ in the same way but over answers $\{2m + 1, 2m + 2\}$ and questions $x \in \{0, 2\}, y \in \{2, 3\}$.

Define $[CHSH^{(m)'}]_p$, $[tCHSH^{(m)'}(\alpha)]_p$ in the same way but over answers $\{2m + 1, 2m + 2\}$ and questions $x \in \{0, 2\}, y \in \{2, 3\}$.

Candidate Bell Operator - maximally entangled case, $|\Psi\rangle = \frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} |ii\rangle$:

$$[\mathcal{B}]_{p} = \frac{1}{2\sqrt{2}} \sum_{m=0}^{\frac{d}{2}-1} [CHSH^{(m)}]_{p} + \frac{1}{2\sqrt{2}} \sum_{m=0}^{\frac{d}{2}-1} [CHSH^{(m)'}]_{p}$$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

伺 ト イ ヨ ト イ ヨ ト

$$[\mathcal{B}]_{p} = \frac{1}{2\sqrt{2}} \sum_{m=0}^{\frac{d}{2}-1} [CHSH^{(m)}]_{p} + \frac{1}{2\sqrt{2}} \sum_{m=0}^{\frac{d}{2}-1} [CHSH^{(m)}]_{p}$$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

・ロン ・部と ・ヨン ・ヨン

æ

$$[\mathcal{B}]_{p} = \frac{1}{2\sqrt{2}} \sum_{m=0}^{\frac{d}{2}-1} [CHSH^{(m)}]_{p} + \frac{1}{2\sqrt{2}} \sum_{m=0}^{\frac{d}{2}-1} [CHSH^{(m)\prime}]_{p}$$

Hope: Any correlation that maximally violates the above must have the same block-diagonal structure as the self-testing correlations.

$$[\mathcal{B}]_{p} = \frac{1}{2\sqrt{2}} \sum_{m=0}^{\frac{d}{2}-1} [CHSH^{(m)}]_{p} + \frac{1}{2\sqrt{2}} \sum_{m=0}^{\frac{d}{2}-1} [CHSH^{(m)'}]_{p}$$

Hope: Any correlation that maximally violates the above must have the same block-diagonal structure as the self-testing correlations.

Then, there are weights w_m , w'_m , with $\sum_m w_m = \sum_m w'_m = 1$ such that

$$[\mathcal{B}]_{p} \leq \frac{1}{2\sqrt{2}} \sum_{m=0}^{\frac{d}{2}-1} w_{m} \cdot 2\sqrt{2} + \frac{1}{2\sqrt{2}} \sum_{m=0}^{\frac{d}{2}-1} w'_{m} \cdot 2\sqrt{2}$$
$$\leq 2$$

Unfortunately, the fact that we are hoping for is still a conjecture.

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

.⊒ ▶ .∢

Unfortunately, the fact that we are hoping for is still a conjecture. We can try to add penalty terms to enforce the desired block-diagonal structure.

$$\begin{split} [\mathcal{B}]_{p} &= \frac{1}{2\sqrt{2}} \sum_{m=0}^{\frac{d}{2}-1} [CHSH^{(m)}]_{p} + \frac{1}{2\sqrt{2}} \sum_{m=0}^{\frac{d}{2}-1} [CHSH^{(m)'}]_{p} \\ &- [CROSS]_{p} - [CROSS']_{p} \end{split}$$

Unfortunately, the fact that we are hoping for is still a conjecture. We can try to add penalty terms to enforce the desired block-diagonal structure.

$$\begin{split} [\mathcal{B}]_{p} &= \frac{1}{2\sqrt{2}} \sum_{m=0}^{\frac{d}{2}-1} [CHSH^{(m)}]_{p} + \frac{1}{2\sqrt{2}} \sum_{m=0}^{\frac{d}{2}-1} [CHSH^{(m)'}]_{p} \\ &- [CROSS]_{p} - [CROSS']_{p} \end{split}$$

This works for the maximally entangled case!

٠

$$[\mathcal{B}]_{\rho} = \sum_{m=0}^{\frac{d}{2}-1} \frac{1}{I_{\alpha_m}} [tCHSH^{(m)}(\alpha_m)]_{\rho} + \sum_{m=0}^{\frac{d}{2}-1} \frac{1}{I_{\alpha'_m}} [tCHSH^{(m)'}(\alpha'_m)]_{\rho}$$

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested

高 と く ヨ と く ヨ と

$$[\mathcal{B}]_{p} = \sum_{m=0}^{\frac{d}{2}-1} \frac{1}{I_{\alpha_{m}}} [tCHSH^{(m)}(\alpha_{m})]_{p} + \sum_{m=0}^{\frac{d}{2}-1} \frac{1}{I_{\alpha_{m}'}} [tCHSH^{(m)'}(\alpha_{m}')]_{p}$$

where $I_{\alpha}=\sqrt{8+2\alpha^2}$, and α_m , α'_m are the appropriate angles.

$$[\mathcal{B}]_{\rho} = \sum_{m=0}^{\frac{d}{2}-1} \frac{1}{I_{\alpha_m}} [tCHSH^{(m)}(\alpha_m)]_{\rho} + \sum_{m=0}^{\frac{d}{2}-1} \frac{1}{I_{\alpha'_m}} [tCHSH^{(m)'}(\alpha'_m)]_{\rho} - C \cdot ([CROSS]_{\rho} - [CROSS']_{\rho})$$

where $I_{\alpha} = \sqrt{8 + 2\alpha^2}$, and α_m , α'_m are the appropriate angles.

$$[\mathcal{B}]_{\rho} = \sum_{m=0}^{\frac{d}{2}-1} \frac{1}{I_{\alpha_m}} [tCHSH^{(m)}(\alpha_m)]_{\rho} + \sum_{m=0}^{\frac{d}{2}-1} \frac{1}{I_{\alpha'_m}} [tCHSH^{(m)'}(\alpha'_m)]_{\rho} - C \cdot ([CROSS]_{\rho} - [CROSS']_{\rho})$$

where $I_{\alpha} = \sqrt{8 + 2\alpha^2}$, and α_m , α'_m are the appropriate angles.

Still a conjecture for the tilted case!

$$[\mathcal{B}]_{\rho} = \sum_{m=0}^{\frac{d}{2}-1} \frac{1}{I_{\alpha_m}} [tCHSH^{(m)}(\alpha_m)]_{\rho} + \sum_{m=0}^{\frac{d}{2}-1} \frac{1}{I_{\alpha'_m}} [tCHSH^{(m)'}(\alpha'_m)]_{\rho} - C \cdot ([CROSS]_{\rho} - [CROSS']_{\rho})$$

where $I_{\alpha} = \sqrt{8 + 2\alpha^2}$, and α_m , α'_m are the appropriate angles.

Still a conjecture for the tilted case!

THANK YOU!

(Find me at coffee break if you want to chat more!)