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Correlations:

A given strategy by Alice and Bob determines a collection of
conditional probability distributions of answers given questions

{p(a, b|x , y)}x ,y∈X×Y (1)

We refer to each such collection as a correlation. And we call
it quantum if it’s obtained via some quantum strategy.
A quantum strategy is specified by a joint state |ψ〉, and
projective measurements {Πa

x}x∈X and {Πb
y}y∈Y for Alice and

Bob respectively, such that

p(a, b|x , y) = 〈ψ|Πa
xΠb

y |ψ〉 (2)

Let Cm,n,r ,sq be the set of quantum correlations, where
X ,Y,A,B have sizes m, n, r , s respectively.

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested



Correlations:

A given strategy by Alice and Bob determines a collection of
conditional probability distributions of answers given questions

{p(a, b|x , y)}x ,y∈X×Y (1)

We refer to each such collection as a correlation. And we call
it quantum if it’s obtained via some quantum strategy.

A quantum strategy is specified by a joint state |ψ〉, and
projective measurements {Πa

x}x∈X and {Πb
y}y∈Y for Alice and

Bob respectively, such that

p(a, b|x , y) = 〈ψ|Πa
xΠb

y |ψ〉 (2)

Let Cm,n,r ,sq be the set of quantum correlations, where
X ,Y,A,B have sizes m, n, r , s respectively.

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested



Correlations:

A given strategy by Alice and Bob determines a collection of
conditional probability distributions of answers given questions

{p(a, b|x , y)}x ,y∈X×Y (1)

We refer to each such collection as a correlation. And we call
it quantum if it’s obtained via some quantum strategy.
A quantum strategy is specified by a joint state |ψ〉, and
projective measurements {Πa

x}x∈X and {Πb
y}y∈Y for Alice and

Bob respectively, such that

p(a, b|x , y) = 〈ψ|Πa
xΠb

y |ψ〉 (2)

Let Cm,n,r ,sq be the set of quantum correlations, where
X ,Y,A,B have sizes m, n, r , s respectively.

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested



Correlations:

A given strategy by Alice and Bob determines a collection of
conditional probability distributions of answers given questions

{p(a, b|x , y)}x ,y∈X×Y (1)

We refer to each such collection as a correlation. And we call
it quantum if it’s obtained via some quantum strategy.
A quantum strategy is specified by a joint state |ψ〉, and
projective measurements {Πa

x}x∈X and {Πb
y}y∈Y for Alice and

Bob respectively, such that

p(a, b|x , y) = 〈ψ|Πa
xΠb

y |ψ〉 (2)

Let Cm,n,r ,sq be the set of quantum correlations, where
X ,Y,A,B have sizes m, n, r , s respectively.

Andrea Coladangelo, Koon Tong Goh and Valerio Scarani All Pure Bipartite Entangled States can be Self-Tested



Device-independent self-testing

The aim is to certify the behaviour of a quantum system,
based only on the observed correlations.

Nothing is assumed other than a no-signalling constraint on
Alice and Bob, and that they obey quantum mechanics.

Definition: (self-testing, informal)

We say that a correlation self-tests a state |ψ〉target if it can
be uniquely achieved when Alice and Bob make local
measurements on |ψ〉target , up to local isometries.
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Example: CHSH

Questions x , y ∈ {0, 1}, answers a, b ∈ {−1, 1}.
Maximal violation of CHSH:

〈ψ|A0(B0 + B1) + A1(B0 − B1) |ψ〉 = 2
√
2

The correlation in the quantum correlations set C2,2,2,2
q that

achieves this maximal violation self-tests the maximally entangled
pair of qubits1S. Popescu, D. Rohrlich (1992).
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Some applications of self-testing in cryptography

Randomness expansion and key distribution 2 3

Delegated computation 4 5

2C. A. Miller, Y. Shi (2014)
3U. Vazirani, T. Vidick (2014)
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So far, which (bipartite) states can we self-test?

2 2 Maximally Entangled 
Qubits (Singlet)
[Mayers-Yao 2004]

2 2 All pure Partially
Entangled Qubits
[Bamps-Pironio 2015]  

3 3 Maximally Entangled 
Qutrits (numerical)
[Salavrakos et al. 2016]

3 3 A certain Pair of 
Partially Entangled 
Qutrits
[Yang et al. 2014]

2n 2n
A small class of 
Partially Entangled 
Qudits, for d = 2n

[C. 2016]

2n 2n n Singlets in parallel
[McKague 2015]
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It seems like a lot of states 
can be self-tested…

... but can we self-test 
all bipartite entangled 

states?
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Our Result

Theorem:

Let |ψ〉target =
∑d−1

i=0 ci |ii〉. There exists a correlation in
C3,4,d ,d
q that self-tests |ψ〉target . Moreover, the local

measurements that achieve it are also unique up to local
isometries.

(Mixed states can’t be self-tested.)
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Tilted CHSH

Tilted CHSH inequality:6

〈ψ|αA0 + A0(B0 + B1) + A1(B0 − B1) |ψ〉 ≤ 2 + α (3)

Maximal quantum violation is Iα =
√
8 + 2α2

Maximal quantum violation self-tests the tilted EPR pair

|ψθ〉 = cos θ |00〉+ sin θ |11〉 (4)

for sin θ =
√

4−α2

4+α2 .

6A. Acín, S. Massar, S. Pironio (2012)
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Tilted CHSH

The self-testing result is also robust: 7

〈ψ|αA0 + A0(B0 + B1) + A1(B0 − B1) |ψ〉 ≥ Iα − ε

⇒|ψ〉 is O(
√
ε)-close to |ψθ〉, up to a local isometry.

Maximal violation also self-tests the measurements (with the
same robustness):

A0 = Z , B0 = cosµZ + sinµX ,
A1 = X , B1 = cosµZ − sinµX

7C.Bamps and S.Pironio (2015)
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Represent correlations via correlation tables. We specify a
correlation by specifying, for each possible question
(x , y) ∈ X × Y, the table Tx ,y with entries
Tx ,y (a, b) := p(a, b|x , y).

For example, the ideal tilted CHSH correlation for angle θ is
specified by four tables, one for each (x , y) ∈ {0, 1}2, of the
form

pθ(1, 1|x , y) pθ(1,−1|x , y)

pθ(−1, 1|x , y) pθ(−1,−1|x , y)
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Some Intuition behind the Self-Testing Correlations

Recall that we are trying to self-test |ψ〉 =
∑d−1

i=0 ci |ii〉

The structure of our correlations is inspired by [Yang and
Navascués (2013)]:
Question sets X = {0, 1, 2},Y = {0, 1, 2, 3},
Answer sets A = B = {0, 1, .., d − 1}.
Intuitively, we want to make use of the tilted CHSH
self-test to certify |ψ〉target “portion by portion” .

We start with the case d = 4. So
|ψ〉target = c0 |00〉+ c1 |11〉+ c2 |22〉+ c3 |33〉.

For x , y ∈ {0, 1} we use Alice and Bob’s {0, 1} answers to certify
the portion c0 |00〉+ c1 |11〉, and their {2, 3} answers to certify
c2 |22〉+ c3 |33〉.
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The ideal measurements

X = {0, 1, 2},Y = {0, 1, 2, 3} and A = B = {0, 1, .., 3}

Ideal state:

Let A(θ)
0 ,A

(θ)
1 , B(θ)

0 ,B
(θ)
1 be the ideal tilted CHSH qubit

measurements for θ = arctan c1
c0
.

And A
(φ)
0 ,A

(φ)
1 , B(φ)

0 ,B
(φ)
1 for φ = arctan c3

c2
.

Ideal measurements ~A0,~A1,~A2,~B0, ~B1,~B2,~B3:
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The ideal measurements
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1 , B(φ)

0 ,B
(φ)
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.

Ideal measurements ~A0,~A1,~A2,~B0, ~B1,~B2,~B3:

Ã0 :=

[
A
(θ)
0 0
0 A

(φ)
0

]
B̃0 :=

[
B

(θ)
0 0
0 B

(φ)
0

]

Ã1 :=

[
A
(θ)
1 0
0 A

(φ)
1

]
, B̃1 :=

[
B

(θ)
1 0
0 B

(φ)
1

]
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measurements for θ = arctan c1
c0
.

And A
(φ)
0 ,A

(φ)
1 , B(φ)

0 ,B
(φ)
1 for φ = arctan c3

c2
.

Ideal measurements ~A0,~A1,~A2,~B0, ~B1,~B2,~B3:

Ã0 :=

[
A
(θ)
0 0
0 A

(φ)
0

]
∼ comput. basis meas., B̃0 :=

[
B

(θ)
0 0
0 B

(φ)
0

]

Ã1 :=

[
A
(θ)
1 0
0 A

(φ)
1

]
, B̃1 :=

[
B

(θ)
1 0
0 B

(φ)
1

]
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X = {0, 1, 2},Y = {0, 1, 2, 3} and A = B = {0, 1, .., 3}.
|Ψ〉 = c0 |00〉+ c1 |11〉+ c2 |22〉+ c3 |33〉

The ideal measurements from the last slide imply that, for
each (x , y) ∈ {0, 1}2, Tx ,y takes the form

a\b 0 1 2 3
0

Cx ,y
0 0

1 0 0
2 0 0

C ′x ,y3 0 0

where Cx ,y contains ideal tilted CHSH correlations on question
(x , y) for angle θ = arctan c1

c0
, weighted by c2

0 + c2
1

and C ′x ,y for angle θ′ = arctan c3
c2
, weighted by c2

2 + c2
3
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As you can expect, then the correlation table for questions
x , y ∈ {0, 1} for the case of general d (even) is:

a\b 0 1 2 3 · · · d − 2 d − 1
0

C
(0)
x ,y

0 0 · · · 0 0
1 0 0 · · · 0 0
2 0 0

C
(1)
x ,y

· · · 0 0
3 0 0 · · · 0 0
...

...
...

...
...

. . .
...

...

d − 2 0 0 0 0 · · ·
C

( d2−1)
x ,yd − 1 0 0 0 0 · · ·

where, the mth block contains ideal tilted CHSH correlations for
angle θm = arctan c2m+1

c2m
, weighted by c2

2m + c2
2m+1.
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Are the correlations from the previous slide for questions
x , y ∈ {0, 1} uniquely achieved by measuring
|ψ〉target =

∑d−1
i=0 ci |ii〉, up to a local isometry?

NO! (For one thing X = {0, 1, 2} and Y = {0, 1, 2, 3}, so you
should expect us to use the other questions as well)

Here is a simple counterexample for the case d = 4: Consider the
mixed state represented by the mixture{(

c2
0 +c2

1 , cos θ |00〉+sin θ |11〉
)
,
(
c2
2 +c2

3 , cos θ
′ |22〉+sin θ′ |33〉

)}
,

where θ = arctan c1
c0

and θ′ = arctan c3
c2
.
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The point is that it is NOT enough to certify just the “even-odd”
pairs (0, 1), (2, 3),..,(d − 2, d − 1).

We need to enforce the same structure also on the “odd-even” pairs
(d − 1, 0),(1, 2),..,(d − 3, d − 2).
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We also need to use questions x ∈ {0, 2} and y ∈ {2, 3}. The
ideal observables are Ã0 (already defined earlier),
and Ã2, B̃2, B̃3 same as before except shifted down by one basis
element.

For x , y ∈ {0, 1},


∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗



For x ∈ {0, 2} and y ∈ {2, 3},


∗ 0 0 ∗
0 ∗ ∗ 0
0 ∗ ∗ 0
∗ 0 0 ∗
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For the case of general d even this means that for x ∈ {0, 2} and
y ∈ {2, 3}, the correlation tables have the form:

a\b d − 1 0 1 2 · · · d − 3 d − 2
d − 1

D
(0)
x ,y

0 0 · · · 0 0
0 0 0 · · · 0 0
1 0 0

D
(1)
x ,y

· · · 0 0
2 0 0 · · · 0 0
...

...
...

...
...

. . .
...

...

d − 3 0 0 0 0 · · ·
D

( d2−1)
x ,yd − 2 0 0 0 0 · · ·

where, the mth block contains ideal tilted CHSH correlations for
angle θ′m = arctan c2m+2

c2m+1
, weighted by c2

2m+1 + c2
2m+2.
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More suggestively:

Legend

a
b

0

0

1

1

2

2

3

3

4

4
5

5 d � 1

d � 1

· · ·

...

. . .

C(m)
x,y

D(m)
x,y
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Or:

c0 |00i c1 |11i c2 |22i c3 |33i cd�1 · · ·cd�2 · · ·+ + + + ++ · · ·

· · ·m = 1

m = 1

m = 0

m = 0 m =
d

2
� 1

m =
d

2
� 1m =

d

2
� 1 m =

d

2
� 2

+

m = 2

c4 |44i

· · ·

Questions (x , y) ∈ {0, 1}2 serve to certify the even-odd pairs.
Questions (x , y) ∈ {0, 2} × {2, 3} the odd-even pairs.
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Finally, the self-test is also robust [C. , Stark ’17]:

Theorem:

Let |ψ〉target =
∑d−1

i=0 ci |ii〉. If Alice and Bob produce, on a
joint state |ψ〉, a correlation that is ε-close to the self-testing
correlation described earlier, then their joint state is
O(d3ε

1
4 )-close to |ψ〉target , up to a local isometry.
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Open questions

Can we formulate these self-tests in terms of maximal violation
of some Bell inequality?

Can we come up with non-local games that self-test a partially
entangled state? What properties do they need to have?
What about multipartite states? Less explored.

Not guaranteed to have Schmidt decomposition
If they do they can be self-tested [Šupić, C. , Augusiak, Acín
’17]
Some states cannot be self-tested due to complex conjugation
ambiguity
Can we self-test all multipartites states modulo complex
conjugation?
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A conjecture for a Bell inequality

GOAL: For each pure bipartite entangled state, find a Bell
inequality whose maximal violation is achieved uniquely by
measurements on that state.

i.e. an inequality self-testing that state.
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A candidate family

Some notation.

[CHSH]p =
∑

a,b,x ,y∈{0,1}

(−1)a⊕b−xyp(a, b|x , y)

Let p ∈ C3,4,d ,d
q ,

[CHSH(m)]p =
∑

a,b∈{2m,2m+1},x ,y∈{0,1}

(−1)a⊕b−xyp(a, b|x , y)

[tCHSH(m)(α)]p =α (p(a = 2m|x = 0)− p(a = 2m + 1|x = 0))

+ [CHSH(m)]p
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A candidate family

Define [CHSH(m)′]p, [tCHSH(m)′(α)]p in the same way but over
answers {2m + 1, 2m + 2} and questions x ∈ {0, 2}, y ∈ {2, 3}.

Candidate Bell Operator - maximally entangled case,
|Ψ〉 = 1√

d

∑d−1
i=0 |ii〉:

[B]p =
1

2
√
2

d
2−1∑
m=0

[CHSH(m)]p +
1

2
√
2

d
2−1∑
m=0

[CHSH(m)′]p

.
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[B]p =
1

2
√
2

d
2−1∑
m=0

[CHSH(m)]p +
1

2
√
2

d
2−1∑
m=0

[CHSH(m)′]p

Hope: Any correlation that maximally violates the above must have
the same block-diagonal structure as the self-testing correlations.

Then, there are weights wm, w ′m, with
∑

m wm =
∑

m w ′m = 1 such
that

[B]p ≤
1

2
√
2

d
2−1∑
m=0

wm · 2
√
2 +

1
2
√
2

d
2−1∑
m=0

w ′m · 2
√
2

≤ 2
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Hope: Any correlation that maximally violates the above must have
the same block-diagonal structure as the self-testing correlations.

Then, there are weights wm, w ′m, with
∑

m wm =
∑

m w ′m = 1 such
that

[B]p ≤
1

2
√
2

d
2−1∑
m=0

wm · 2
√
2 +

1
2
√
2

d
2−1∑
m=0

w ′m · 2
√
2

≤ 2
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Unfortunately, the fact that we are hoping for is still a conjecture.

We can try to add penalty terms to enforce the desired
block-diagonal structure.

[B]p =
1

2
√
2

d
2−1∑
m=0

[CHSH(m)]p +
1

2
√
2

d
2−1∑
m=0

[CHSH(m)′]p

− [CROSS ]p − [CROSS ′]p

This works for the maximally entangled case!
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Candidate Bell Operator - tilted case, |Ψ〉 =
∑d−1

i=0 ci |ii〉:

[B]p =

d
2−1∑
m=0

1
Iαm

[tCHSH(m)(αm)]p +

d
2−1∑
m=0

1
Iα′

m

[tCHSH(m)′(α′m)]p

.

where Iα =
√
8 + 2α2, and αm, α′m are the appropriate angles.
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[tCHSH(m)(αm)]p +

d
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1
Iα′

m
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− C ·
(
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)
where Iα =

√
8 + 2α2, and αm, α′m are the appropriate angles.

Still a conjecture for the tilted case!
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where Iα =

√
8 + 2α2, and αm, α′m are the appropriate angles.

Still a conjecture for the tilted case!

THANK YOU!
(Find me at coffee break if you want to chat more!)
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