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Background

Suppose Alice’s and Bob’s labs exist in an entangled state. Each lab can perform n
quantum experiments and each experiment has k outcomes.

Experiments: 1 ≤ v ,w ≤ n; Outcomes: 1 ≤ i , j ≤ k

p(i , j |v ,w) is the joint conditional probability that Alice gets outcome i and Bob gets
outcome j , provided that they perform experiments v and w , respectively. This describes
a n2k2-tuple, called a correlation.

Tsirelson [Ts1993] considered different mathematical models to describe these
correlations and studied relationships among them.
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The tensor model and the commuting quantum model

Definition (Quantum correlations)

A correlation (p(i , j |v ,w)) is called a quantum correlation if

there exist finite-dimensional Hilbert spaces HA and HB , PVMs {Pv,i}ki=1 ⊂ B(HA),
{Qw,j}kj=1 ⊂ B(HB) for each v ,w , and

a unit vector h ∈ HA ⊗HB such that

p(i , j |v ,w) = 〈(Pv,i ⊗ Qw,j)h, h〉 .

The resulting set is denoted by Cq(n, k).

Definition (Commuting quantum correlations)

A correlation (p(i , j |v ,w)) is called a commuting quantum correlation if

there exist a Hilbert space H (possibly infinite dimensional), PVMs
{Pv,i}ki=1, {Qw,j}kj=1 ⊂ B(H) for each v ,w , such that Pv,iQw,j = Qw,jPv,i , and

a unit vector h ∈ H such that

p(i , j |v ,w) = 〈(Pv,iQw,j)h, h〉 .

The resulting set is denoted by Cqc(n, k).
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Tsirelson’s questions

We have

Cq(n, k) ⊆ Cq(n, k) ⊆ Cqc(n, k), ∀n, k ∈ N.

Known that all these correlations sets are convex, and Cqc(n, k) is closed.
Tsirelson’s question: Is Cq(n, k) closed for all n, k?
From [JNPPSW, Ozawa], Cq(n, k) = Cqc(n, k) for all n, k is equivalent to Connes’
embedding conjecture.

Theorem (Slofstra (2017))

Cq(n, k) is not closed for n ∼ 100 and k = 8.

Theorem (Dykema, Paulsen, P. (2017))

Cq(n, k) is not closed for n = 5 and k = 2. In fact, let t ∈
[√

5−1

2
√
5
,
√

5+1

2
√
5

]
be irrational

and set

p(0, 0|v , v) = t, p(0, 1|v , v) = p(1, 0|v , v) = 0, p(1, 1|v , v) = 1− t,

p(0, 0|v ,w) =
t(5t − 1)

4
, p(1, 1|v ,w) =

(1− t)(4− 5t)

4
,

p(0, 1|v ,w) = p(1, 0|v ,w) =
5t(1− t)

4
.

Then (p(i , j |v ,w)) ∈ Cq(5, 2) \ Cq(5, 2)
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Synchronous correlations

Definition

A correlation (p(i , j |v ,w)) is called synchronous if p(i , j |v ,w) = 0 whenever v = w .

In
other words, whenever Alice and Bob run the same experiment there is zero probability of
receiving different outcomes.

For r ∈ {q, qc}, let C s
r (n, k) denote the subset of Cr (n, k) consisting of synchronous

correlations.

These synchronous subsets are themselves convex and they satisfy

C s
q (n, k) ⊆ Cq(n, k)

s
⊆ C s

qc(n, k).

Cq(n, k)
s

and C s
qc(n, k) are closed. If Cq(n, k) is closed, then C s

q (n, k) is closed.

From [DP], Cq(n, k)
s

= C s
qc(n, k) for all n, k is equivalent to Connes’ embedding

conjecture.

The good thing: We have an operator algebraic characterisation.

Theorem (PSSTW)

A correlation (p(i , j |v ,w)) belongs to C s
qc(n, k) (resp. C s

q (n, k)) if and only if there exists
a unital C∗-algebra A (resp. finite dimensional C∗-algebra) with a tracial state τ and
projections {ev,i : 1 ≤ v ≤ n, 1 ≤ i ≤ k} such that
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Graph correlation functions

For each r ∈ {q, qc}, and for each t ∈ [0, 1], we consider the slice

Γr (t) = {(p(i , j |v ,w)) ∈ C s
r (n, 2) : pA(0|v) = pB(0|w) = t ∀v ,w} ,

where pA(0|v) =
∑

j p(0, j |v ,w) and pB(0|w) =
∑

i p(i , 0|v ,w). Given a graph
G = (V ,E), define fr : [0, 1]→ R by

fr (t) = inf

 ∑
(v,w)∈E

p(0, 0|v ,w) : (p(i , j |v ,w)) ∈ Γr (t)

 .

By the above characterisation,

fq(t) = inf{
∑

(v,w)∈E

τ(evew ) : ev ∈ A projections, τ(ev ) = t ∀v ∈ V ,

A finite-dimensional C*-algebra with tracial state τ}

fqc(t) = inf{
∑

(v,w)∈E

τ(evew ) : ev ∈ A projections, τ(ev ) = t ∀v ∈ V ,

(A, τ) unital C*-algebra with tracial state τ}.
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Properties of these functions

Given a graph G = (V ,E) we have

fq ≥ fqc ≥ 0, and these are convex functions. Since
C s
qc(n, k) is closed, the infimum above is attained.

Theorem (Vertex and edge transitive graphs)

Let G = (V ,E) be a vertex and edge transitive graph on n vertices and let t ∈ [0, 1] be
irrational. If fq(t) attains the infimum then there exists a nondegenerate interval [r , s]
having rational endpoints such that t ∈ [r , s] and the restriction of fq to [r , s] is linear.

Corollary (G = K5)

If Cq(5, 2) is closed, then for each irrational t ∈ [0, 1] there exists a nondegenerate
interval [r , s] with t ∈ [r , s] such that fq|[r,s] is linear.
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A detour

Consider the following problem:

Given n ∈ N, characterise the set of all real numbers
α ∈ R such that there exist n projections P1, · · · ,Pn such that P1 + · · ·+ Pn = αI .
Denote the set of all such α by Σn.

Easy to compute:

Σ1 = {0, 1}
Σ2 = {0, 1, 2}
Σ3 =

{
0, 1, 3

2
, 2, 3

}
Not easy to compute:

Σ4 = infinite discrete set with two limit points ⊂ [0, 4]

Σ5 = infinite discrete set with two limit points ∪ (β5, 5− β5) ⊂ [0, 5]

...

Theorem (Kruglyak, Rabanovich, Samaǒilenko)

Let n ≥ 5 and let α ∈ (βn, n − βn). Then there exist finite dimensional projections
P1, · · · ,Pn such that

∑n
j=1 Pj = αI if and only if α ∈ Q.
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Theorem (Kruglyak, Rabanovich, Samaǒilenko)

Let n ≥ 5 and let α ∈ (βn, n − βn). Then there exist finite dimensional projections
P1, · · · ,Pn such that

∑n
j=1 Pj = αI if and only if α ∈ Q.
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G = K5

Theorem (Dykema, Paulsen, P.)

C s
q (5, 2) is not closed.
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Proof

1 Show that

fq(t) ≥ 5t(5t − 1) if t ∈
[

1

5
,

4

5

]
.

2 Show that fq(t) = 5t(5t − 1) for all rational t ∈ 1
5
[β5, 5− β5] ⊂

[
1
5
, 4
5

]
. Enough to

show that fq(t) ≤ 5t(5t − 1) on that interval.

Let 5t ∈ [β5, 5− β5] be rational. By the previous theorem, there exist five
projections P1, ...,P5 ∈ Mk for some k such that P1 + ...+ P5 = 5tIk . Homogenise
to get projections P̃1, ..., P̃5 ∈ M5k such that

tr5k(P̃i ) =
1

5k

5∑
j=1

Tr(Pj) =
1

5k
Tr

(
5∑

j=1

Pj

)
=

1

5k
(5tk) = t.

Hence, we have five projections P̃1, ..., P̃5 ∈ M5k such that tr5k(P̃i ) = t, and∑5
j=1 P̃j = 5tI5k . Squaring,

∑
i 6=j P̃i P̃j = 5t(5t − 1)I5k . Taking normalised trace,∑

i 6=j

tr5k(P̃i P̃j) = 5t(5t − 1).

3 Contradicts “piecewise” linearity.

54 / 60



Proof

1 Show that

fq(t) ≥ 5t(5t − 1) if t ∈
[

1

5
,

4

5

]
.

2 Show that fq(t) = 5t(5t − 1) for all rational t ∈ 1
5
[β5, 5− β5] ⊂

[
1
5
, 4
5

]
. Enough to

show that fq(t) ≤ 5t(5t − 1) on that interval.
Let 5t ∈ [β5, 5− β5] be rational.

By the previous theorem, there exist five
projections P1, ...,P5 ∈ Mk for some k such that P1 + ...+ P5 = 5tIk . Homogenise
to get projections P̃1, ..., P̃5 ∈ M5k such that

tr5k(P̃i ) =
1

5k

5∑
j=1

Tr(Pj) =
1

5k
Tr

(
5∑

j=1

Pj

)
=

1

5k
(5tk) = t.

Hence, we have five projections P̃1, ..., P̃5 ∈ M5k such that tr5k(P̃i ) = t, and∑5
j=1 P̃j = 5tI5k . Squaring,

∑
i 6=j P̃i P̃j = 5t(5t − 1)I5k . Taking normalised trace,∑

i 6=j

tr5k(P̃i P̃j) = 5t(5t − 1).

3 Contradicts “piecewise” linearity.

55 / 60



Proof

1 Show that

fq(t) ≥ 5t(5t − 1) if t ∈
[

1

5
,

4

5

]
.

2 Show that fq(t) = 5t(5t − 1) for all rational t ∈ 1
5
[β5, 5− β5] ⊂

[
1
5
, 4
5

]
. Enough to

show that fq(t) ≤ 5t(5t − 1) on that interval.
Let 5t ∈ [β5, 5− β5] be rational. By the previous theorem, there exist five
projections P1, ...,P5 ∈ Mk for some k such that P1 + ...+ P5 = 5tIk .

Homogenise
to get projections P̃1, ..., P̃5 ∈ M5k such that

tr5k(P̃i ) =
1

5k

5∑
j=1

Tr(Pj) =
1

5k
Tr

(
5∑

j=1

Pj

)
=

1

5k
(5tk) = t.

Hence, we have five projections P̃1, ..., P̃5 ∈ M5k such that tr5k(P̃i ) = t, and∑5
j=1 P̃j = 5tI5k . Squaring,

∑
i 6=j P̃i P̃j = 5t(5t − 1)I5k . Taking normalised trace,∑

i 6=j

tr5k(P̃i P̃j) = 5t(5t − 1).

3 Contradicts “piecewise” linearity.

56 / 60



Proof

1 Show that

fq(t) ≥ 5t(5t − 1) if t ∈
[

1

5
,

4

5

]
.

2 Show that fq(t) = 5t(5t − 1) for all rational t ∈ 1
5
[β5, 5− β5] ⊂

[
1
5
, 4
5

]
. Enough to

show that fq(t) ≤ 5t(5t − 1) on that interval.
Let 5t ∈ [β5, 5− β5] be rational. By the previous theorem, there exist five
projections P1, ...,P5 ∈ Mk for some k such that P1 + ...+ P5 = 5tIk . Homogenise
to get projections P̃1, ..., P̃5 ∈ M5k such that

tr5k(P̃i ) =
1

5k

5∑
j=1

Tr(Pj) =
1

5k
Tr

(
5∑

j=1

Pj

)
=

1

5k
(5tk) = t.

Hence, we have five projections P̃1, ..., P̃5 ∈ M5k such that tr5k(P̃i ) = t, and∑5
j=1 P̃j = 5tI5k . Squaring,

∑
i 6=j P̃i P̃j = 5t(5t − 1)I5k . Taking normalised trace,∑

i 6=j

tr5k(P̃i P̃j) = 5t(5t − 1).

3 Contradicts “piecewise” linearity.

57 / 60



Proof

1 Show that

fq(t) ≥ 5t(5t − 1) if t ∈
[

1

5
,

4

5

]
.

2 Show that fq(t) = 5t(5t − 1) for all rational t ∈ 1
5
[β5, 5− β5] ⊂

[
1
5
, 4
5

]
. Enough to

show that fq(t) ≤ 5t(5t − 1) on that interval.
Let 5t ∈ [β5, 5− β5] be rational. By the previous theorem, there exist five
projections P1, ...,P5 ∈ Mk for some k such that P1 + ...+ P5 = 5tIk . Homogenise
to get projections P̃1, ..., P̃5 ∈ M5k such that

tr5k(P̃i ) =
1

5k

5∑
j=1

Tr(Pj) =
1

5k
Tr

(
5∑

j=1

Pj

)
=

1

5k
(5tk) = t.

Hence, we have five projections P̃1, ..., P̃5 ∈ M5k such that tr5k(P̃i ) = t, and∑5
j=1 P̃j = 5tI5k . Squaring,

∑
i 6=j P̃i P̃j = 5t(5t − 1)I5k . Taking normalised trace,∑

i 6=j

tr5k(P̃i P̃j) = 5t(5t − 1).

3 Contradicts “piecewise” linearity.

58 / 60



Proof

1 Show that

fq(t) ≥ 5t(5t − 1) if t ∈
[

1

5
,

4

5

]
.

2 Show that fq(t) = 5t(5t − 1) for all rational t ∈ 1
5
[β5, 5− β5] ⊂

[
1
5
, 4
5

]
. Enough to

show that fq(t) ≤ 5t(5t − 1) on that interval.
Let 5t ∈ [β5, 5− β5] be rational. By the previous theorem, there exist five
projections P1, ...,P5 ∈ Mk for some k such that P1 + ...+ P5 = 5tIk . Homogenise
to get projections P̃1, ..., P̃5 ∈ M5k such that

tr5k(P̃i ) =
1

5k

5∑
j=1

Tr(Pj) =
1

5k
Tr

(
5∑

j=1

Pj

)
=

1

5k
(5tk) = t.

Hence, we have five projections P̃1, ..., P̃5 ∈ M5k such that tr5k(P̃i ) = t, and∑5
j=1 P̃j = 5tI5k . Squaring,

∑
i 6=j P̃i P̃j = 5t(5t − 1)I5k . Taking normalised trace,∑

i 6=j

tr5k(P̃i P̃j) = 5t(5t − 1).

3 Contradicts “piecewise” linearity.

59 / 60



Thank You.
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