SHORTER GATE SEQUENCES FOR QUANTUM COMPUTING BY MIXING UNITARIES

PHYSICAL REVIEW A **95**, 042306 (2017 ARXIV:1612.02689

• Earl Campbell

BIG PICTURE

Can Randomisation help?

then do **X**, but if

Gate-synthesis /compiling

Gate set ${\mathcal G}$

A collection of unitaries used to build circuits

e.g. from $\mathcal{G} = \{A, B, C\}$ we can build $ABC, ABBC, CBC, ~\mathrm{etc}$

Universality - Informal statement

 ${\cal G}$ is **universal** if it can implement any unitary (upto finite precision)

Universality - Formal statement

 \mathcal{G} is **universal** if for any target unitary V and $\epsilon > 0$ there exists a finite circuit $U \in \langle \mathcal{G} \rangle$ such that $d(U, V) \leq \epsilon$

Example

Clifford+T or Clifford+Toffoli

Cost model $\,\mathfrak{C}:\mathcal{G}\to\mathbb{R}_+$

Each elementary gate given a positive valued "cost" This induces a circuit cost

if
$$U = \prod_i G_i$$
 then $\mathfrak{C}(U) = \sum_i \mathfrak{C}(G_i)$

Example

Uniform cost model:

 $\mathfrak{C}(G)=1 \ \mbox{for all} \ G\in \mathcal{G}$

Magic state cost model / T-count: $\mathfrak{C}(T) = 1 \ \text{and} \ \mathfrak{C}(C) = 0 \ \text{ for all } C \text{ in the Clifford group.}$

GATE SYNTHESIS / COMPILING

Earl Campbell

For *efficient* compilers The promise function $f(\epsilon)$ is often polylog $f(\epsilon) \leq A \log(1/\epsilon)^{\gamma}$

An **optimal** compiler will have the lowest possible $\mathfrak{C}(U)$ and $f(\epsilon)$

Solovay-Kitaev

Consider any universal gate set ${\cal G}$ (generating a group) with uniform cost.

We can efficiently solve the compiling problem using $\mathfrak{C}(U) \leq O(\log(1/\epsilon)^{\gamma})$ where γ is a constant dependent on \mathcal{G}

Comments:

For Clifford+T, the Solovay-Kitaev method gives $\gamma \leq 3.97$ See: Dawson & Nielsen QIC, **6** 81 (2006)

Solovay-Kitaev is efficient but not optimal.

Modern methods

Let \mathcal{G} be Clifford+T and consider the T-count.

```
We can efficiently solve the compiling problem using \mathfrak{C}(U) \leq O(\log(1/\epsilon))
```

```
Refs:
Kliuchnikov, Maslov, Mosca, QIC 13 607 (2013) — arXiv:1206.5236
Ross and Selinger QIC 16 901 (2016) — arXiv:1403.2975
```

Comments:

Solver is optimal (under mild assumptions)

Asymptotically $\mathfrak{C}(U) \leq O(\log(1/\epsilon))$ is much better than $\mathfrak{C}(U) \leq O(\log(1/\epsilon)^{3.97})$

Practically means 100s of gates rather than 10,000s of gates

Convenient command line tool

GATE SYNTHESIS / COMPILING

• Earl Campbell

Random compiling problem

Given a V and $\epsilon > 0$ output a probability distribution of circuits, realising

$$\mathcal{E}(\rho) = \sum_i p_i U_i \rho U_i^\dagger$$
 such that $d(\mathcal{E}, \mathcal{V}) \leq \epsilon$ and minimise $\mathfrak{C}(\mathcal{E})$

Def:
$$\mathcal{U}(\cdot):=U\cdot U^{\dagger}$$

Cost models for random circuits

Our results for worst-case

But average cost also interesting

$$\mathfrak{C}(\mathcal{E}) := \max(\mathfrak{C}(U_i))$$

$$\mathfrak{C}(\mathcal{E}) := \sum_i p_i \mathfrak{C}(U_i)$$

Measuring noise & Coherence

i

Desiderata for $d(\mathcal{E}, \mathcal{V})$: must compose nicely

$$d(_V _, _\mathcal{E} _) = d(_V _, _\mathcal{E} _)$$

What distance we use matters!

Average infidelity

$$d_F(\mathcal{E}, U) := 1 - \int_{\psi} F(\mathcal{E}(\psi), U | \psi \rangle) = 1 - \int_{\psi} \langle \psi | U^{\dagger} \mathcal{E}(|\psi\rangle \langle \psi |) U | \psi \rangle$$

looks simple,

- often used to report experimental results.
- **fails** our desiderata!

What distance we use matters!

Diamond norm distance

$$\begin{aligned} d_{\diamond}(\mathcal{E},\mathcal{U}) &:= \frac{1}{2} ||\mathcal{E} - \mathcal{U}||_{\diamond} = \frac{1}{2} \max_{\rho} \frac{||(\mathcal{E} \otimes \mathbb{I})(\rho) - (\mathcal{U} \otimes \mathbb{I})(\rho)||_{1}}{||\rho||_{1}} \\ \end{aligned}$$
where $||X||_{1} := \operatorname{Tr}[\sqrt{X^{\dagger}X}]$ is the Schatten 1-norm

- composed nicely (yes to desiderata);
- due to nice properties, used in proofs, e.g. of threshold theorem.
- So <1% threshold statements refer to diamond distance!</p>

Algorithm level "coherent noise":

Consider gate set
$$\mathcal{G} = \{A, B, C\}$$

each individual gate is perfect

When we compile a target gate V

we perform $U \sim ABACABABABA = Ve^{i\delta}$

The approximation error (due to finite sequence length) is a coherent error $e^{i\delta}$.

For coherent noise

$$d_{\diamond}(\mathcal{U},\mathcal{V}) \sim \sqrt{d_F(\mathcal{U},\mathcal{V})}$$

so choice of distance measures is important!

Contrast physical level coherent noise

Consider a scenario where we want to implement sequence from gate set $\mathcal{G} = \{A, B, C\}$ but our experiment systematically performs $\tilde{\mathcal{G}} = \{\tilde{A}, \tilde{B}, \tilde{C}\}$

we have
$$\, \tilde{A} = A e^{i \delta_A}$$
 , $\, \tilde{B} = B e^{i \delta_B}$...

where $\,\delta\,$ are small noise terms.

Randomised compiling can help

say \mathcal{U} is target unitary $\mathcal{\tilde{U}}$ is unitary with coherent noise

E. Knill arXiv:quant-ph/0404104 Wallman & Emerson, *Phys Rev A* **94**, 052325 (2016)

Earl Campbell

so that
$$d_{\diamond}(ilde{\mathcal{U}},\mathcal{U})=\epsilon$$
 and $d_F(ilde{\mathcal{U}},\mathcal{U})\sim\epsilon^2$

then there exist twirling schemes $\mathcal{E}(\rho) = \sum_i p_i U_i \rho U_i^{\dagger}$ where $U_i = P_i \tilde{U} P_i'$ with $d_{\diamond}(\mathcal{E}, \mathcal{U}) \sim \epsilon^2$

The **RESULT**

THE RESULT

Preamble

Let ${\mathcal G}$ be a universal gate set with cost measure ${\mathfrak C}$

assume some blackbox
$$V \xrightarrow{\text{equipped with promise}} \mathfrak{C}(U) \leq f(\epsilon)$$

Theorem
...then there exists a random sequence
$$\mathcal{E}(\rho) = \sum_j p_j U_j \rho U_j^{\dagger}$$

with $d_{\diamond}(\mathcal{V}, \mathcal{E}) \leq 10\epsilon^2$ and cost $\mathfrak{C}(\mathcal{E}) \leq f(\epsilon)$

2nd Theorem (paraphrased)

For single qubit axial rotations: the assumptions can be relaxed and inequalities tightened slightly.

THE RESULT

"same cost gets you better error suppression"

Theorem ...then there exists a random sequence $\mathcal{E}(\rho) = \sum_{j} p_j U_j \rho U_j^{\dagger}$ with $d_{\diamond}(\mathcal{V}, \mathcal{E}) \leq 10\epsilon^2$ and cost $\mathfrak{C}(\mathcal{E}) \leq f(\epsilon)$

"same error suppression for lower cost?"

Corollary

if the unitary cost is polylog $\mathfrak{C}(U) \leq f(\epsilon) = A \log_2(1/\epsilon)^{\gamma}$

...then there exists a random circuit $\ \mathcal{E}(\rho) = \sum_j p_j U_j \rho U_j^\dagger$

with
$$d_{\diamond}(\mathcal{V}, \mathcal{E}) \leq \epsilon$$
 and cost $\mathfrak{C}(\mathcal{E}) \leq C^{\gamma} f(\epsilon) \sim (1/2)^{\gamma}$
$$C = \left(\frac{1}{2}\right) \left(1 + \frac{\log(A)}{\log(1/\epsilon)}\right) \rightarrow_{\epsilon \to 0} \left(\frac{1}{2}\right)$$

WE SAVE ~ 2^γ

Known "gamma" values:

For single qubit Clifford+T gate set

and T-count cost metric $\mathfrak{C}(U) \leq f(\epsilon) = 9\log(1/\epsilon)$ so $\gamma = 1$

and roughly 2x saving

	optimal unitary	random compiling
$\epsilon = 10^{-20}$	600	314 or less
$\epsilon = 10^{-10}$	300	165 or less
$\epsilon = 10^{-5}$	150	90 or less

$$\begin{array}{ll} \gamma\sim 3.97 & 2^{3.97}\sim 15-16\\ \text{Using Solovay-Kitaev for single qubits} & , \text{ so save}\\ \gamma=? & 1\ll\gamma\\ \text{For optimal multiqubit synthesis} & \text{unknown, conjecture} \end{array}$$

THE RESULT

Is derandomisation possible?

 $p_1^{(1)} p_1^{(2)} p_1^{(3)} p_1^{(4)} \cdots$

 $p_2^{(1)} p_1^{(2)} p_1^{(3)} p_1^{(4)} \cdots$

TRUE THAT:

For fixed input there is one "best" choice of unitaries that maximise fidelity

BUT:

- best unitary depends on choice of input state;
- can't be calculated without simulating the whole computation!

The **PROOF**

STEP 1. Show from "suitable" unitaries/Hamiltonians we can find random circuit with quadratically reduced error suppression.

STEP 2. Give concrete algorithm finding suitable Hamiltonians.

STEP 1. Show from "suitable" unitaries/Hamiltonians we can find random circuit with quadratically reduced error suppression.*

STEP 2. Give concrete algorithm finding suitable Hamiltonians.

* Similar "step 1" result found simultaneously by Hastings arXiv:1612.01011 QIC **17** 0488 (2017)

C Earl Campbell

STEP 1. Show from "suitable" Hamiltonians we can find random circuit

Lemma. Given target unitary V and a set of unitaries $U_j = V e^{iH_j}$ such that

(2) Hamiltonians enclose the origin

$$\exists p_j \quad 0 \le p_j \quad \sum p_j = 1$$

then
$$\mathcal{E}(\rho) = \sum_j p_j U_j \rho U_j^\dagger$$
 satisfies $d_\diamond(\mathcal{E},\mathcal{V}) \leq 1.1 * \delta^2$

Sketch

start with

$$d_{\diamond}(\mathcal{E}, \mathcal{V}) = d_{\diamond}(\mathcal{V}^{\dagger} \circ \mathcal{E}, \text{identity})$$

and
$$\mathcal{V}^{\dagger} \circ \mathcal{E}(\rho) = \sum_{j} p_{j} e^{-iH_{j}} \rho e^{iH_{j}}$$

Expand exponential and find all first order terms cancel due to $\sum_{j}p_{j}H_{j}=0$

$$\mathcal{V}^{\dagger} \circ \mathcal{E}(\rho) = \rho + O(H_j^2, \rho)$$

Subtracting identity gives

$$\mathcal{V}^{\dagger} \circ \mathcal{E}(\rho) - \rho = O(H_j^2, \rho)$$

Leaving H_j^2 and higher order terms

Take 1-norm, use triangle inequality, Hölder's inequality, carefully bound higher order terms...

$$||\mathcal{V}^{\dagger} \circ \mathcal{E}(\rho) - \rho||_1 = O(||H_j||_{\infty}^2) = O(\delta^2)$$

Earl Campbell

 H_3

STEP 2. Give concrete algorithm finding suitable Hamiltonians.

assume some blackbox unitary compiler

 H_1

$$e$$
 U equipped with promise $\mathfrak{C}(U) \leq f(\epsilon)$

It follows
$$U_1 = V e^{i H_1}$$
 where $||H_j||_\infty \leq \delta = 3\epsilon + 7\epsilon^2$

This gives 1 nearby Hamiltonian,

but in a D variable problem we typically need D+1 points to enclose the origin! e.g. For 2 variable problems we need H_1 3 points/Hamiltonians

• Earl Campbell

STEP 2. Give concrete algorithm finding suitable Hamiltonians.

STEP 2. Give concrete algorithm finding suitable Hamiltonians.

We prove that:

- Each iteration give a new H_j within $3\epsilon + 7\epsilon^2$ of origin.
- Each oracle call gives a new mixture

$$\mu_n = \sum_{j=1}^n p_j H_j$$

• When $||\mu_n||_{\infty} = 0$ the program EXITs, but can also EXIT when $||\mu_n||_{\infty} \ll \epsilon^2$ • and convergence is exponentially fast $||\mu_n||_{\infty} \le 6\epsilon e^{-0.62n}$

Furthermore (unproven),

Geometric intuition hints that algorithm terminates in constant number of steps

STEP 1. Show from "suitable" Hamiltonians we can find random circuit

showed
$$\mathcal{E}(\rho) = \sum_j p_j U_j \rho U_j^\dagger$$
 satisfies $d_\diamond(\mathcal{E}, \mathcal{V}) \leq 1.1 * \delta^2$

STEP 2. Give concrete algorithm finding suitable Hamiltonians.

found unitaries with $||H_j||_{\infty} \leq \delta = 3\epsilon + 7\epsilon^2$

The END bit

We reviewed how

- Unitary compilers have coherent noise on the algorithm level.
- Coherent noise at the physical level can be quadratically reduced using random circuits.

This work showed

- Our random circuits give free quadratic error suppression;
- Free quadratic error suppression can be swapped for shorter gate sequences;
- For single qubit gates we save a factor 2x;
- Savings could be larger for multiqubit unitaries.

Future work

- Implement and numerically test.
- Classical runtime convergence in constant time?
- Better algorithms?

THE END BIT

HIRING 4 POSTDOCS

QCDA - Quantum Code Design & Architecture **www.qcda.eu**

Sheffield - Earl Campbell **London -** Dan Browne **Paris -** Anthony Leverrier & Jean Pierre Tillich **Delft -** Barbara Terhal, Koen Bertels & Carmina Garcia Almudever **Munich -** Robert Koenig

Funded though

THANK YOU!

Engineering and Physical Sciences Research Council