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Gate set 
 A collection of unitaries used to build circuits 

e.g. from                                       we can build                                                       etc  

G

G = {A,B,C} ABC,ABBC,CBC,

Universality - Informal statement

G is universal if it can implement any unitary (upto finite precision)

GATE SYNTHESIS / COMPILING

Example 
Clifford+T or Clifford+Toffoli 

is universal if for any target unitary        and                 there exists  
a finite circuit                       such that      
G ✏ > 0

d(U, V )  ✏

Universality - Formal statement

V
U 2 hGi
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Cost model 
Each elementary gate given a positive valued “cost” 
This induces a circuit cost 

if                                 then

C : G ! R+

Example 
Uniform cost model: 
                                   for all     

Magic state cost model / T-count: 
              and                             for all        in the Clifford group.

C(G) = 1 G 2 G

C(T ) = 1 CC(C) = 0

U =
Y

i

Gi C(U) =
X

i

C(Gi)
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✏ > 0

||U � V ||1  ✏

GATE SYNTHESIS / COMPILING

Unitary compiler
(G,C)

blackbox software

V U 2 hGi

with

usually with some promise
C(U)  f(✏)

For efficient compilers The promise function             is often polylog 

An optimal compiler will have the lowest possible                 and  

f(✏) f(✏)  A log(1/✏)�

f(✏)C(U)
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Solovay-Kitaev 

Consider any universal gate set       (generating a group) with uniform cost. 

We can efficiently solve the compiling problem using 
where      is a constant dependent on 

GATE SYNTHESIS / COMPILING

G

�  3.97

Comments:  

For Clifford+T, the Solovay-Kitaev method gives                        
See: Dawson & Nielsen QIC, 6 81 (2006) 

Solovay-Kitaev is efficient but not optimal.

� G
C(U)  O(log(1/✏)�)
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Modern methods 

Let       be Clifford+T and consider the T-count. 

We can efficiently solve the compiling problem using 

Refs: 
Kliuchnikov, Maslov, Mosca, QIC 13 607 (2013)   —   arXiv:1206.5236
Ross and Selinger QIC 16 901 (2016)  —  arXiv:1403.2975

GATE SYNTHESIS / COMPILING

G

Comments:  
 Solver is optimal (under mild assumptions) 

Asymptotically                                                     is much better than   

Practically means 100s of gates rather than 10,000s of gates 

Convenient command line tool 

C(U)  O(log(1/✏))

C(U)  O(log(1/✏)) C(U)  O(log(1/✏)3.97)
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Random compiling problem 
Given a       and                output a probability distribution of circuits, realising 

such that                                 and minimise 

✏ > 0

C(E)

Cost models for random circuits 
Our results for worst-case 

But average cost also interesting

U(·) := U · U†
Def:

V

E(⇢) =
X

i

piUi⇢U
†
i

d(E ,V)  ✏

C(E) := max(C(Ui))

C(E) :=
X

i

piC(Ui)
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Measuring noise 
 & Coherence

Measuring noise 
 & Coherence
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d(E ,V)

V Ed( , )= d( , )V E

Desiderata for                   :  must compose nicely

d( , )
E(1)

E(2)

E(3)

E(4)

V (1)

V (2)

V (4)

V (3)


X

j

( , )V (j) E(j) to leading order
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What distance we use matters!  

Average infidelity  

looks simple, 

often used to report experimental results. 

fails our desiderata! 

dF (E , U) := 1�
Z

 
F (E( ), U | i) = 1�

Z

 
h |U†E(| ih |)U | i

MEASURING NOISE & COHERENCE
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What distance we use matters!  

Diamond norm distance 

where                                                       is the Schatten 1-norm||X||1 := Tr[
p
X†X]

composed nicely (yes to desiderata); 

 due to nice properties, used in proofs, e.g. of threshold theorem. 

So <1% threshold statements refer to diamond distance!                                        

d⇧(E ,U) :=
1

2

||E � U||⇧ =

1

2

max⇢
||(E ⌦ I)(⇢)� (U ⌦ I)(⇢)||1

||⇢||1

MEASURING NOISE & COHERENCE
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G = {A,B,C}

Algorithm level “coherent noise”:

Consider gate set

each individual gate is perfect

When we compile a target gate 

we perform  

The approximation error (due to finite sequence length) is a coherent error       . 

U ⇠ ABACABABABA

MEASURING NOISE & COHERENCE

= V ei�

V

ei�

For coherent noise                               

so choice of distance measures is important! 

d⇧(U ,V) ⇠
p
dF (U ,V)
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Contrast physical level coherent noise 

Consider a scenario where we 
want to implement sequence from gate set 
but our experiment systematically performs 

we have                             ,                            …  

where         are small noise terms. 

G = {A,B,C}
G̃ = {Ã, B̃, C̃}

B̃ = Bei�BÃ = Aei�A

�

MEASURING NOISE & COHERENCE

d⇧(Ũ ,U) = ✏

Randomised compiling can help 
say        is target unitary 
               is unitary with coherent noise 

so that                                     and  

then there exist twirling schemes 

with 

U
E. Knill arXiv:quant-ph/0404104 

Wallman & Emerson,  
Phys Rev A 94, 052325 (2016)Ũ

d⇧(E ,U) ⇠ ✏2

dF (Ũ ,U) ⇠ ✏2

whereE(⇢) =
X

i

piUi⇢U
†
i Ui = PiŨP 0

i
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Preamble 
Let       be a universal gate set with cost measureG C

2nd Theorem (paraphrased) 
For single qubit axial rotations: the assumptions can be relaxed and 
inequalities tightened slightly.

assume some blackbox  
unitary compiler

equipped with promise

C(U)  f(✏)

C(E)  f(✏)

Theorem  
…then there exists a random sequence 

with                                             and cost 

E(⇢) =
X

j

pjUj⇢U
†
j

d⇧(V, E)  10✏2

V

0 < ✏  0.01
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“same cost gets you better error suppression”

“same error suppression for lower cost?”

Corollary  
if the unitary cost is polylog  

…then there exists a random circuit 

with                                             and cost 

C(E)  f(✏)

Theorem  
…then there exists a random sequence 

with                                             and cost 

E(⇢) =
X

j

pjUj⇢U
†
j

d⇧(V, E)  10✏2

d⇧(V, E)  ✏

E(⇢) =
X

j

pjUj⇢U
†
j

C(U)  f(✏) = A log2(1/✏)
�

C =

✓
1

2

◆✓
1 +

log(A)

log(1/✏)

◆
!✏!0

✓
1

2

◆
C(E)  C�f(✏) ⇠ (1/2)�
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Known “gamma” values: 

For single qubit Clifford+T gate set
and T-count cost metric 

so                    
and roughly 2x saving 

Using Solovay-Kitaev for single qubits                          , so save  

For optimal multiqubit synthesis                unknown, conjecture  

� = 1

optimal 
unitary 

random 
compiling

600 314
or less

300 165
or less

150 90
or less

✏ = 10�20

✏ = 10�10

✏ = 10�5

� ⇠ 3.97

� =?

WE SAVE ~2�

23.97 ⇠ 15� 16

1 ⌧ �

C(U)  f(✏) = 9 log(1/✏)



Earl CampbellTHE RESULT

. . .
U (1)

1

U (2)
1

U (3)
1

U (4)
1

. . .
U (1)

2

U (2)
1

U (3)
1

U (4)
1

. . .
U (1)

2

U (2)
2

U (3)
1

U (4)
1

...

Is derandomisation possible?

p(1)
1 p(2)

1 p(3)
1 p(4)

1 · · ·

p(1)
2 p(2)

1 p(3)
1 p(4)

1 · · ·

p(1)
2 p(2)

2 p(3)
1 p(4)

1 · · ·

| i

| i

| i

TRUE THAT: 
For fixed input there is one  
“best” choice of unitaries 
that maximise fidelity 

BUT: 
best unitary depends on 
choice of input state; 

  can’t be calculated without 
simulating the whole 
computation!



Earl Campbell

The PROOFThe PROOF



Earl CampbellTHE PROOF

STEP 1. Show from “suitable” unitaries/Hamiltonians we can find random circuit 
with quadratically reduced error suppression. 

STEP 2. Give concrete algorithm finding suitable Hamiltonians.
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* Similar “step 1” result found simultaneously by Hastings 
arXiv:1612.01011   QIC 17 0488 (2017)

STEP 1. Show from “suitable” unitaries/Hamiltonians we can find random circuit 
with quadratically reduced error suppression.* 

STEP 2. Give concrete algorithm finding suitable Hamiltonians.
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STEP 1. Show from “suitable” Hamiltonians we can find random circuit

Lemma.  Given target unitary        and a set of unitaries                                such thatUj = V eiHj

then E(⇢) =
X

j

pjUj⇢U
†
j

satisfies d⇧(E ,V)  1.1 ⇤ �2

V

 (1) All Hamiltonians within      of origin  �

H1

H2

HHH1HHH1

H3

δ

δ

δ

||Hj ||1  �
(2) Hamiltonians enclose the origin

X

j

pjHj = 0

H1

H2

H3

0  pj9pj
X

pj = 1
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 Sketch

and  

d⇧(E ,V) = d⇧(V† � E , identity)

V† � E(⇢) =
X

j

pje
�iHj⇢eiHj

start with 

X

j

pjHj = 0Expand exponential and find all first order terms cancel due to  

Subtracting identity gives 

Leaving            and higher order terms H2
j

V† � E(⇢) = ⇢+O(H2
j , ⇢)

V† � E(⇢)� ⇢ = O(H2
j , ⇢)

Take 1-norm, use triangle inequality, Hölder's inequality, carefully bound higher order terms… 

||V† � E(⇢)� ⇢||1 = O(||Hj ||21) = O(�2)
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It follows                                         where                 U1 = V eiH1

H1δ

This gives 1 nearby Hamiltonian, 

H1

H2

H3but in a D variable problem we typically need D+1 points 
to enclose the origin! e.g. For 2 variable problems we need 

3 points/Hamiltonians

STEP 2. Give concrete algorithm finding suitable Hamiltonians.

||Hj ||1  � = 3✏+ 7✏2

assume some blackbox  
unitary compiler

equipped with promise

C(U)  f(✏)

V

✏

U
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STEP 2. Give concrete algorithm finding suitable Hamiltonians.

H1

(a)

H1

Find         near originH1

(c)

H1

τ2

H2

Find          near ⌧2H2

H1

τ2

(b)
τ2

H1 = µ2

Select new target
⌧2 / �H1

(d)

H1

H2

τ3

µ3

Find 
near origin and 

µ3 = p1H1 + p2H2

⌧3 / �µ3

(e)

H1

H2

τ3H3

Find          nearH3 ⌧3

(f)

H1

H2

H3

Find        near origin 
EXIT when origin enclosed 
or continue looping 

µ4
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We prove that: 

Each iteration give a new          within                       of origin.  

Each oracle call gives a new mixture 

When                                 the program EXITs, but can also EXIT when  

and convergence is exponentially fast                      

Furthermore (unproven), 

Geometric intuition hints that algorithm terminates in constant number of steps 

STEP 2. Give concrete algorithm finding suitable Hamiltonians.

Hj 3✏+ 7✏2

µn =
nX

j=1

pjHj

||µn||1  6✏e�0.62n

||µn||1 = 0 ||µn||1 ⌧ ✏2
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STEP 1. Show from “suitable” Hamiltonians we can find random circuit 

STEP 2. Give concrete algorithm finding suitable Hamiltonians.

showed E(⇢) =
X

j

pjUj⇢U
†
j satisfies d⇧(E ,V)  1.1 ⇤ �2

found unitaries with  

COMBINED RESULT d⇧(E ,V)  10✏2

STEP 1. Show from “suitable” Hamiltonians we can find random circuit 

showed E(⇢) =
X

j

pjUjUjU ⇢U †
jUjU satisfiesfiesf d⇧(E ,V)  1.1 ⇤ �2

STEP 2. Give concrete algorithm finding suitable Hamiltonians.

found unitaries with  ||Hj ||1  � = 3✏+ 7✏2
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Unitary compilers have coherent noise on the algorithm level. 

Coherent noise at the physical level can be quadratically reduced using random circuits.

We reviewed how

This work showed 

Our random circuits give free quadratic error suppression; 

Free quadratic error suppression can be swapped for shorter gate sequences; 

For single qubit gates we save a factor 2x; 

Savings could be larger for multiqubit unitaries.

Future work 

Implement and numerically test. 

Classical runtime convergence in constant time? 

Better algorithms?
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