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Strong classical simulation of quantum circuits
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STRONG QUANTUM CIRCUIT SIMULATION(S)
» Input: a closed quantum circuit over S
» Output: the corresponding amplitude a € C

where:

» Sis a set of operations: state preparations, unitary gates, and
measurement projections

» all coefficients are algebraic complex numbers
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HOLANT(S)
» Input: a graph, and an assignment of states from S to vertices
» Output: the value of the Holant

where
» S is a set of quantum states with algebraic complex coefficients
» each edge is projected onto (00| + (11|

This is a generalisation of STRONG QUANTUM CIRCUIT SIMULATION.



Holant problems
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HOLANT(S)
» Input: a tensor network using tensors from S
» Output: the scalar value of the tensor network contraction, Holant

where
» S is a set of tensors taking algebraic complex values
» all systems are qubits

Holantq is the contraction of the tensor network.
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Basic counting complexity theory

Definition
#P is the class of function problems of the form ‘compute f(x)’, where f is
the number of accepting paths of a nondeterministic Turing machine

running in polynomial time.

Examples of #P-hard problems:
» STRONG QUANTUM CIRCUIT SIMULATION(S) for a universal set of
operations §
» counting (perfect) matchings of graphs
» counting vertex covers of graphs

A dichotomy theorem states that all problems from a certain family of
counting problems are either #P-hard or can be solved in polynomial time.
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Reduction techniques for Holant problems

The complexity of HOLANT (S) is unaffected by the following operations:
» Adding gadgets to the given set of states S:
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» Certain holographic transformations of the set S: symmetric SLOCC
operations, performed identically on all qubits in all states in S, e.g.

Holant = ®(00|+(11|) (@ O%IEM) |¢v>>
= { R (00| + (1)) O®O) (®|¢ )
= (R 00| + 111) ((X)\zﬁv) if OTO =

» Adding states arising by polynomial interpolation to the set S.



Complexity results about Holant problems

» HOLANT (S)

» dichotomy for symmetric states [Cai, Guo, Williams 2012]
» dichotomy for states with non-negative algebraic real coefficients
[Lin & Wang 2017]



Complexity results about Holant problems

» HOLANT (S)

» dichotomy for symmetric states [Cai, Guo, Williams 2012]
» dichotomy for states with non-negative algebraic real coefficients
[Lin & Wang 2017]

» HOLANT®(S) = HOLANT(S U {|0), [1)})

» dichotomy for symmetric states [Cai, Huang, Lu 2012]
» dichotomy for states with algebraic real coefficients [Cai, Lu, Xia
2017]



Complexity results about Holant problems

» HOLANT (S)
» dichotomy for symmetric states [Cai, Guo, Williams 2012]
» dichotomy for states with non-negative algebraic real coefficients
[Lin & Wang 2017]

» HOLANT®(S) = HOLANT(S U {|0), [1)})
» dichotomy for symmetric states [Cai, Huang, Lu 2012]

» dichotomy for states with algebraic real coefficients [Cai, Lu, Xia
2017]

» HOLANT"(S) = HOLANT(S U ), where U is the set of all single-qubit
states
» full dichotomy [Cai, Lu, Xia 2011]
» polynomial-time computable cases are characterised by the
entanglement properties of the states in S



Complexity results about Holant problems

» HOLANT (S)
» dichotomy for symmetric states [Cai, Guo, Williams 2012]
» dichotomy for states with non-negative algebraic real coefficients
[Lin & Wang 2017]
» HOLANT®(S) = HOLANT(S U {|0), [1)})
» dichotomy for symmetric states [Cai, Huang, Lu 2012]
» dichotomy for states with algebraic real coefficients [Cai, Lu, Xia
2017]
» full dichotomy here
» HOLANT"(S) = HOLANT(S U {|0), [1), [+),|—)})
» full dichotomy here
» HOLANT"(S) = HOLANT(S U ), where U is the set of all single-qubit
states
» full dichotomy [Cai, Lu, Xia 2011]
» polynomial-time computable cases are characterised by the
entanglement properties of the states in S



Approach for deriving the HOLANT™ dichotomy
HOLANT™(S) = HOLANT(S U {|0), [1), |+), |[—)})

There exists a dichotomy for HOLANT ({ [¢) } | { |¢) }), where [¢) is a
symmetric three-qubit state and |¢) is a symmetric two-qubit state [Cai,

Huang, Lu 2012].



Approach for deriving the HOLANT™ dichotomy
HOLANT™(S) = HOLANT(S U {|0), [1), |+), |[—)})

There exists a dichotomy for HOLANT ({ [¢) } | { |¢) }), where [¢) is a
symmetric three-qubit state and |¢) is a symmetric two-qubit state [Cai,
Huang, Lu 2012].

Given a set S:
» If HOLANT(S U {|0),|1),]|+),|—)}) is known to be solvable in
polynomial time, need to do nothing. This includes the case where S
contains no multipartite entangled states.



Approach for deriving the HOLANT™ dichotomy
HOLANT™(S) = HOLANT(S U {|0), [1), |+), |[—)})

There exists a dichotomy for HOLANT ({ [¢) } | { |¢) }), where [¢) is a
symmetric three-qubit state and |¢) is a symmetric two-qubit state [Cai,

Huang, Lu 2012].

Given a set S:

» If HOLANT(S U {|0),|1),]|+),|—)}) is known to be solvable in
polynomial time, need to do nothing. This includes the case where S

contains no multipartite entangled states.
» Otherwise, there is multipartite entanglement.



Approach for deriving the HOLANT™ dichotomy
HOLANT™(S) = HOLANT(S U {|0), [1), |+), |[—)})

There exists a dichotomy for HOLANT ({ [¢) } | { |¢) }), where [¢) is a
symmetric three-qubit state and |¢) is a symmetric two-qubit state [Cai,

Huang, Lu 2012].

Given a set S:

» If HOLANT(S U {|0),|1),]|+),|—)}) is known to be solvable in
polynomial time, need to do nothing. This includes the case where S

contains no multipartite entangled states.
» Otherwise, there is multipartite entanglement.
» Use gadgets to realise a symmetric entangled three-qubit state
|1y and a symmetric entangled two-qubit state |¢).



Approach for deriving the HOLANT™ dichotomy
HOLANT™(S) = HOLANT(S U {|0), [1), |+), |[—)})

There exists a dichotomy for HOLANT ({ [¢) } | { |¢) }), where [¢) is a
symmetric three-qubit state and |¢) is a symmetric two-qubit state [Cai,

Huang, Lu 2012].

Given a set S:

» If HOLANT(S U {|0),|1),]|+),|—)}) is known to be solvable in
polynomial time, need to do nothing. This includes the case where S

contains no multipartite entangled states.
» Otherwise, there is multipartite entanglement.
» Use gadgets to realise a symmetric entangled three-qubit state

|1y and a symmetric entangled two-qubit state |¢).
» Then use the bipartite dichotomy to show hardness.



Approach for deriving the HOLANT™ dichotomy
HOLANT™(S) = HOLANT(S U {|0), [1), |+), |[—)})

There exists a dichotomy for HOLANT ({ [¢) } | { |¢) }), where [¢) is a
symmetric three-qubit state and |¢) is a symmetric two-qubit state [Cai,

Huang, Lu 2012].

Given a set S:

» If HOLANT(S U {|0),|1),]|+),|—)}) is known to be solvable in
polynomial time, need to do nothing. This includes the case where S

contains no multipartite entangled states.
» Otherwise, there is multipartite entanglement.
» Use gadgets to realise a symmetric entangled three-qubit state

|1y and a symmetric entangled two-qubit state |¢).
» Then use the bipartite dichotomy to show hardness.

Assumptions:
» All the polynomial-time computable cases are known.
» If the problem is hard, we can show this via the bipartite dichotomy.
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Realising small entangled states from large ones

Theorem (Popescu & Rohrlich 1992; Gachechiladze & Guhne
2017)

Let [¢/) be an n-system entangled state. For any two of the systems, there
exists a projection onto a tensor product of states of the other (n — 2)
systems that leaves the two systems in an entangled state.

Corollary

In the qubit case, it suffices to consider only projections onto tensor
products of |0),|1),|+), and |—).

Theorem
Let [¢) be an n-qubit entangled state with n > 3. Then there exists

» some choice of three qubits, and

» a projection of the other (n — 3) qubits onto a tensor product of
0),]1),|+) and |-)
that leaves the chosen three qubits in an entangled state.
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Proof sketch for three-qubit entanglement

Theorem
Let |¢/) be an n-qubit entangled state with n > 3. Then there exists

» some subset containing three qubits, and
» a projection of the other (n — 3) qubits onto a tensor product of
0).11).[+) and |-)
that leaves the three qubits in an entangled state.

Proof.

» Proof by induction on n; base case n = 3 is trivial.
» Assume theorem holds for all 3 < n < k but not for n = k + 1.
» Consider (k + 1)-qubit genuinely entangled state.

» Projecting any qubit onto |0}, |1),|+) or |—) must yield state that is
product of 1- and 2-qubit entangled states.

» By Popescu & Rohrlich theorem, for any pair of qubits there exists a
projection that will leave them entangled.

» This can be shown to lead to a contradiction.

[This simplified proof is due to Gachechiladze & Gihne.]
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Gadget for a symmetric entangled three-qubit state

With a bit of work based on the entanglement classification of three-qubit
states, can show:

Lemma
Given a set S containing an entangled three-qubit state

» either HOLANTT(S) can be solved in polynomial time, or
» it is possible to realise a symmetric entangled three-qubit state.

Can also produce symmetric entangled two-qubit states.



The complexity classification for HOLANT™

Theorem
Let S be a set of quantum states with algebraic complex coefficients. Then

HOLANT*(S) := HOLANT(S U { |0}, 1), |+),[-) })

is polynomial time computable if

» the closure of SU {]0),[1),|+),|—) } under taking gadgets contains:
» only tensor products of one- and two-qubit states, or
» GHZ-type entanglement but no W-type entanglement, or
» W-type entanglement but no GHZ-type entanglement; or

» S contains only stabiliser states (up to scalar factors).
In all other cases, HOLANT*(S) is #P-hard.



The real-valued HOLANT® dichotomy

Theorem (Cai, Lu, Xia 2017)

Let S be a set of quantum states with algebraic real-valued coefficients.
Then HOLANT® (S) is #P-hard unless S is a tractable family for HOLANT* or
for #+CSP5, where

#CSP3(S) = HOLANT (SU {]0),[1) } U {|GHZz,) | n € N}) .



The real-valued HOLANT® dichotomy

Theorem (Cai, Lu, Xia 2017)

Let S be a set of quantum states with algebraic real-valued coefficients.
Then HOLANT® (S) is #P-hard unless S is a tractable family for HOLANT* or
for #+CSP5, where

#CSP3(S) = HOLANT (SU {]0),[1) } U {|GHZz,) | n € N}) .

Proof (sketch).

» Assume S is not one of the known tractable sets. Pick a multipartite
entangled state |¢) € S.



The real-valued HOLANT® dichotomy

Theorem (Cai, Lu, Xia 2017)

Let S be a set of quantum states with algebraic real-valued coefficients.

Then HOLANT® (S) is #P-hard unless S is a tractable family for HOLANT* or
for #+CSP5, where

#CSP3(S) = HOLANT (SU {]0),[1) } U {|GHZz,) | n € N}) .

Proof (sketch).
» Assume S is not one of the known tractable sets. Pick a multipartite
entangled state |¢) € S.

» Realise entangled states of reduced arity via gadgets with |0) , 1), and
self-loops (]00) + |[11)). Then:



The real-valued HOLANT® dichotomy

Theorem (Cai, Lu, Xia 2017)

Let S be a set of quantum states with algebraic real-valued coefficients.

Then HOLANT® (S) is #P-hard unless S is a tractable family for HOLANT* or
for #+CSP5, where

#CSP3(S) = HOLANT (SU {]0),[1) } U {|GHZz,) | n € N}) .

Proof (sketch).

» Assume S is not one of the known tractable sets. Pick a multipartite
entangled state |¢) € S.

» Realise entangled states of reduced arity via gadgets with |0) , 1), and
self-loops (]00) + |[11)). Then:

» Either, can realise some ternary entangled state of a specific form.
Hardness follows by various lemmas, some of which work only for real
values.



The real-valued HOLANT® dichotomy

Theorem (Cai, Lu, Xia 2017)

Let S be a set of quantum states with algebraic real-valued coefficients.
Then HOLANT® (S) is #P-hard unless S is a tractable family for HOLANT* or
for #+CSP5, where

#CSP3(S) = HOLANT (SU {]0),[1) } U {|GHZz,) | n € N}) .

Proof (sketch).

» Assume S is not one of the known tractable sets. Pick a multipartite
entangled state |¢) € S.

» Realise entangled states of reduced arity via gadgets with |0) , 1), and
self-loops (]00) + |[11)). Then:

» Either, can realise some ternary entangled state of a specific form.
Hardness follows by various lemmas, some of which work only for real
values.

» Or can realise or interpolate |GHZ,), in which case the problem is
equivalent to #CSP3(S), for which a full dichotomy (for complex
coefficients) is derived in the same paper. ]
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Combine methods from HOLANT* dichotomy proof with methods from
real-valued HOLANT® dichotomy.
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Approach for complex-valued HOLANT®

Combine methods from HOLANT" dichotomy proof with methods from
real-valued HOLANT® dichotomy.

» Pick a multipartite entangled state and reduce arity using |0),|1) and
|00) + [11), as in the real-valued HOLANT® dichotomy.
» If this results in an arbitrary fully entangled ternary state, proceed as in
the HOLANT™ dichotomy:
» either show problem is easy,
» or can reduce from a hard case of HOLANT ({|¢)} | {|¢)})-
In some cases, additional single-qubit states may be required in the
process; these can always be realised by gadgets.
» Otherwise, prove we can realise or interpolate |GHZ,). Then use the
equivalence to #CSP5(S) to show hardness, as in the real-valued
HOLANT® dichotomy.



The complexity classification for HOLANT®

Theorem
Let S be a set of quantum states with algebraic complex coefficients. Then

HOLANT® (S) := HOLANT (S U {|0),[1)})

is polynomial time computable if
» the closure of S U {|0),|1)} under taking gadgets contains:

» only tensor products of one- and two-qubit states, or
» GHZ-type entanglement but no W-type entanglement, or
» W-type entanglement but no GHZ-type entanglement; or

» S contains only stabiliser states (up to scalar factors and certain
SLOCC operations).

» S contains only states |¢) with the following property: let n be the
number of qubits in |¢), then for all bit strings X; ... x, such that
(X1 ...Xn|®0) # 0,

(T ®...® T)|)

is (up to scalar factor) a stabiliser state, where T = (8 9,8/4>.

In all other cases, HOLANT® (S) is #P-hard.
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Thank you!



The polynomial-time computable families, part 1

» U denotes the set of all single-qubit states

> [GHZ,) = 0)°" + 1)°"

> [Wo) = [1)[0)°" " [0) [1)[0)7" % + ...+ [0)*" " 1)

» (S) denotes the closure of the set S under taking gadgets

HOLANT (S) is polynomial-time computable if S...
1. contains only tensor products of one- and two-qubit states

2. contains only stabiliser states
3. contains GHZ-type entanglement but no W-type entanglement, i.e.

S C ({|IGHZ,) : ne N} U {|01) + [10)} UU)

4. contains W-type entanglement but no GHZ-type entanglement: after

applying (] %) to each qubit in each state in S, get a subset of

({|Wh) :neN}uU{|00)+c[11):ceC}UU)

5. satisfies property 2 or 3 after certain symmetric SLOCC operations



The polynomial-time computable families, part 2

HOLANT™ (S) can be solved in polynomial time if all |)) € S have the
following property: let n be the number of qubits in [¢), then for all bit
strings X ... x, such that (xy ... x,|v)) # O,

(TH"®...0 T)|y)

is (up to scalar factor) a stabiliser state, where T = (1 0 )

0 ei/4

Examples:

|4) |00) + |11) |01) + |10) 101) + e™/4|10)
xy s.t. (xy|y) #0 00, 11 01,10 01,10
(T°® T°) [v) 00) +[11) - -

(T°® T |¢) - e™/4|01) + [10) | €™/4(|01) +|10))
(T"® T9) |¢) - 101) + €™4[10) |01) +i[10)
(T"® T |¥) |00) +i|11) - -
property satisfied? yes no yes
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