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STRONG QUANTUM CIRCUIT SIMULATION(S)
I Input: a closed quantum circuit over S
I Output: the corresponding amplitude a 2 C

where:
I S is a set of operations: state preparations, unitary gates, and

measurement projections
I all coefficients are algebraic complex numbers
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HOLANT(S)
I Input: a graph, and an assignment of states from S to vertices
I Output: the value of the Holant

where
I S is a set of quantum states with algebraic complex coefficients
I each edge is projected onto h00j+ h11j

This is a generalisation of STRONG QUANTUM CIRCUIT SIMULATION.



Holant problems
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HOLANT(S)
I Input: a tensor network using tensors from S

I Output: the scalar value of the tensor network contraction, Holant

where
I S is a set of tensors taking algebraic complex values
I all systems are qubits

Holant
 is the contraction of the tensor network.



Basic counting complexity theory

Definition
#P is the class of function problems of the form ‘compute f (x)’, where f is
the number of accepting paths of a nondeterministic Turing machine
running in polynomial time.

Examples of #P-hard problems:
I STRONG QUANTUM CIRCUIT SIMULATION(S) for a universal set of

operations S
I counting (perfect) matchings of graphs
I counting vertex covers of graphs

A dichotomy theorem states that all problems from a certain family of
counting problems are either #P-hard or can be solved in polynomial time.
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Reduction techniques for Holant problems
The complexity of HOLANT (S) is unaffected by the following operations:
I Adding gadgets to the given set of states S:

j�i

j i =
j�i

I Certain holographic transformations of the set S: symmetric SLOCC
operations, performed identically on all qubits in all states in S, e.g.
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I Adding states arising by polynomial interpolation to the set S.
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Complexity results about Holant problems

I HOLANT (S)
I dichotomy for symmetric states [Cai, Guo, Williams 2012]
I dichotomy for states with non-negative algebraic real coefficients

[Lin & Wang 2017]

I HOLANTc(S) = HOLANT(S [ fj0i ; j1ig)
I dichotomy for symmetric states [Cai, Huang, Lu 2012]
I dichotomy for states with algebraic real coefficients [Cai, Lu, Xia

2017]

I full dichotomy here
I HOLANT+(S) = HOLANT(S [ fj0i ; j1i ; j+i ; j�ig)

I full dichotomy here
I HOLANT�(S) = HOLANT(S [ U), where U is the set of all single-qubit

states
I full dichotomy [Cai, Lu, Xia 2011]
I polynomial-time computable cases are characterised by the

entanglement properties of the states in S
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Approach for deriving the HOLANT+ dichotomy

HOLANT+(S) = HOLANT(S [ fj0i ; j1i ; j+i ; j�ig)

There exists a dichotomy for HOLANT
��
j i
	 �� � j�i	�, where j i is a

symmetric three-qubit state and j�i is a symmetric two-qubit state [Cai,
Huang, Lu 2012].

Given a set S:

I If HOLANT(S [ fj0i ; j1i ; j+i ; j�ig) is known to be solvable in
polynomial time, need to do nothing. This includes the case where S
contains no multipartite entangled states.

I Otherwise, there is multipartite entanglement.

I Use gadgets to realise a symmetric entangled three-qubit state
j i and a symmetric entangled two-qubit state j�i.

I Then use the bipartite dichotomy to show hardness.

Assumptions:
I All the polynomial-time computable cases are known.
I If the problem is hard, we can show this via the bipartite dichotomy.
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Realising small entangled states from large ones

Theorem (Popescu & Rohrlich 1992; Gachechiladze & Gühne
2017)
Let j i be an n-system entangled state. For any two of the systems, there
exists a projection onto a tensor product of states of the other (n � 2)
systems that leaves the two systems in an entangled state.
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Corollary
In the qubit case, it suffices to consider only projections onto tensor
products of j0i ; j1i ; j+i, and j�i.
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2017)
Let j i be an n-system entangled state. For any two of the systems, there
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Corollary
In the qubit case, it suffices to consider only projections onto tensor
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Theorem
Let j i be an n-qubit entangled state with n � 3. Then there exists
I some choice of three qubits, and
I a projection of the other (n � 3) qubits onto a tensor product of
j0i ; j1i ; j+i and j�i

that leaves the chosen three qubits in an entangled state.



Proof sketch for three-qubit entanglement

Theorem
Let j i be an n-qubit entangled state with n � 3. Then there exists
I some subset containing three qubits, and
I a projection of the other (n � 3) qubits onto a tensor product of
j0i ; j1i ; j+i and j�i

that leaves the three qubits in an entangled state.

Proof.
I Proof by induction on n; base case n = 3 is trivial.

I Assume theorem holds for all 3 � n � k but not for n = k + 1.
I Consider (k + 1)-qubit genuinely entangled state.
I Projecting any qubit onto j0i ; j1i ; j+i or j�i must yield state that is

product of 1- and 2-qubit entangled states.
I By Popescu & Rohrlich theorem, for any pair of qubits there exists a

projection that will leave them entangled.
I This can be shown to lead to a contradiction.

[This simplified proof is due to Gachechiladze & Gühne.]
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Gadget for a symmetric entangled three-qubit state

1
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With a bit of work based on the entanglement classification of three-qubit
states, can show:

Lemma
Given a set S containing an entangled three-qubit state
I either HOLANT+(S) can be solved in polynomial time, or
I it is possible to realise a symmetric entangled three-qubit state.

Can also produce symmetric entangled two-qubit states.



The complexity classification for HOLANT+

Theorem
Let S be a set of quantum states with algebraic complex coefficients. Then

HOLANT+(S) := HOLANT
�
S [

�
j0i ; j1i ; j+i ; j�i

	�
is polynomial time computable if
I the closure of S [

�
j0i ; j1i ; j+i ; j�i

	
under taking gadgets contains:

I only tensor products of one- and two-qubit states, or
I GHZ-type entanglement but no W -type entanglement, or
I W -type entanglement but no GHZ-type entanglement; or

I S contains only stabiliser states (up to scalar factors).
In all other cases, HOLANT+(S) is #P-hard.



The real-valued HOLANTc dichotomy
Theorem (Cai, Lu, Xia 2017)
Let S be a set of quantum states with algebraic real-valued coefficients.
Then HOLANTc (S) is #P-hard unless S is a tractable family for HOLANT� or
for #CSPc

2, where

#CSPc
2(S) = HOLANT

�
S [

�
j0i ; j1i

	
[
�
jGHZ2ni j n 2 N

	�
:

Proof (sketch).

I Assume S is not one of the known tractable sets. Pick a multipartite
entangled state j i 2 S.

I Realise entangled states of reduced arity via gadgets with j0i ; j1i, and
self-loops (j00i+ j11i). Then:

I Either, can realise some ternary entangled state of a specific form.
Hardness follows by various lemmas, some of which work only for real
values.

I Or can realise or interpolate jGHZ4i, in which case the problem is
equivalent to #CSPc

2(S), for which a full dichotomy (for complex
coefficients) is derived in the same paper.
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Approach for complex-valued HOLANTc

Combine methods from HOLANT+ dichotomy proof with methods from
real-valued HOLANTc dichotomy.

I Pick a multipartite entangled state and reduce arity using j0i ; j1i and
j00i+ j11i, as in the real-valued HOLANTc dichotomy.

I If this results in an arbitrary fully entangled ternary state, proceed as in
the HOLANT+ dichotomy:

I either show problem is easy,
I or can reduce from a hard case of HOLANT (fj ig j fj'ig).

In some cases, additional single-qubit states may be required in the
process; these can always be realised by gadgets.

I Otherwise, prove we can realise or interpolate jGHZ4i. Then use the
equivalence to #CSPc

2(S) to show hardness, as in the real-valued
HOLANTc dichotomy.
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I or can reduce from a hard case of HOLANT (fj ig j fj'ig).

In some cases, additional single-qubit states may be required in the
process; these can always be realised by gadgets.

I Otherwise, prove we can realise or interpolate jGHZ4i. Then use the
equivalence to #CSPc

2(S) to show hardness, as in the real-valued
HOLANTc dichotomy.



Approach for complex-valued HOLANTc

Combine methods from HOLANT+ dichotomy proof with methods from
real-valued HOLANTc dichotomy.

I Pick a multipartite entangled state and reduce arity using j0i ; j1i and
j00i+ j11i, as in the real-valued HOLANTc dichotomy.

I If this results in an arbitrary fully entangled ternary state, proceed as in
the HOLANT+ dichotomy:

I either show problem is easy,

I or can reduce from a hard case of HOLANT (fj ig j fj'ig).

In some cases, additional single-qubit states may be required in the
process; these can always be realised by gadgets.

I Otherwise, prove we can realise or interpolate jGHZ4i. Then use the
equivalence to #CSPc

2(S) to show hardness, as in the real-valued
HOLANTc dichotomy.



Approach for complex-valued HOLANTc

Combine methods from HOLANT+ dichotomy proof with methods from
real-valued HOLANTc dichotomy.

I Pick a multipartite entangled state and reduce arity using j0i ; j1i and
j00i+ j11i, as in the real-valued HOLANTc dichotomy.

I If this results in an arbitrary fully entangled ternary state, proceed as in
the HOLANT+ dichotomy:

I either show problem is easy,
I or can reduce from a hard case of HOLANT (fj ig j fj'ig).

In some cases, additional single-qubit states may be required in the
process; these can always be realised by gadgets.

I Otherwise, prove we can realise or interpolate jGHZ4i. Then use the
equivalence to #CSPc

2(S) to show hardness, as in the real-valued
HOLANTc dichotomy.



Approach for complex-valued HOLANTc

Combine methods from HOLANT+ dichotomy proof with methods from
real-valued HOLANTc dichotomy.

I Pick a multipartite entangled state and reduce arity using j0i ; j1i and
j00i+ j11i, as in the real-valued HOLANTc dichotomy.

I If this results in an arbitrary fully entangled ternary state, proceed as in
the HOLANT+ dichotomy:

I either show problem is easy,
I or can reduce from a hard case of HOLANT (fj ig j fj'ig).

In some cases, additional single-qubit states may be required in the
process; these can always be realised by gadgets.

I Otherwise, prove we can realise or interpolate jGHZ4i. Then use the
equivalence to #CSPc

2(S) to show hardness, as in the real-valued
HOLANTc dichotomy.



The complexity classification for HOLANTc

Theorem
Let S be a set of quantum states with algebraic complex coefficients. Then

HOLANTc (S) := HOLANT (S [ fj0i ; j1ig)

is polynomial time computable if
I the closure of S [ fj0i ; j1ig under taking gadgets contains:

I only tensor products of one- and two-qubit states, or
I GHZ-type entanglement but no W -type entanglement, or
I W -type entanglement but no GHZ-type entanglement; or

I S contains only stabiliser states (up to scalar factors and certain
SLOCC operations).

I S contains only states j i with the following property: let n be the
number of qubits in j i, then for all bit strings x1 : : : xn such that
hx1 : : : xnj i 6= 0,

(T x1 
 : : :
 T xn) j i

is (up to scalar factor) a stabiliser state, where T =

�
1 0
0 ei�=4

�
.

In all other cases, HOLANTc (S) is #P-hard.



Summary and outlook

I Holant problems are counting complexity problems which are closely
related to classical simulation of quantum computations

I entanglement, stabiliser states play important role in complexity
classification of Holant problems

I new classical results derived using knowledge from quantum theory:

I full dichotomy for HOLANT+ [ICALP ‘17; arXiv:1702.00767]
I full dichotomy for HOLANTc [arXiv:1704.05798]

Open questions:
I full dichotomy for HOLANT

I complexity of approximating Holant values
I Holant problems on special families of graphs
I results about complexity of classical simulation of quantum

computations in terms of classical complexity classes

Thank you!
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The polynomial-time computable families, part 1

I U denotes the set of all single-qubit states
I jGHZni = j0i
n + j1i
n

I jWni = j1i j0i
n�1 + j0i j1i j0i
n�2 + : : :+ j0i
n�1 j1i
I hSi denotes the closure of the set S under taking gadgets

HOLANT (S) is polynomial-time computable if S...
1. contains only tensor products of one- and two-qubit states

2. contains only stabiliser states

3. contains GHZ-type entanglement but no W -type entanglement, i.e.

S �

�

jGHZni : n 2 N
	
[ fj01i+ j10ig [ U

�
4. contains W -type entanglement but no GHZ-type entanglement: after

applying
�

1 �i
1 �i

�
to each qubit in each state in S, get a subset of
�
jWni : n 2 N

	
[
�
j00i+ c j11i : c 2 C

	
[ U

�
5. satisfies property 2 or 3 after certain symmetric SLOCC operations



The polynomial-time computable families, part 2
HOLANT+ (S) can be solved in polynomial time if all j i 2 S have the
following property: let n be the number of qubits in j i, then for all bit
strings x1 : : : xn such that hx1 : : : xnj i 6= 0,

(T x1 
 : : :
 T xn) j i

is (up to scalar factor) a stabiliser state, where T =

�
1 0
0 ei�=4

�
.

Examples:

j i j00i+ j11i j01i+ j10i j01i+ ei�=4 j10i

xy s.t. hxy j i 6= 0 00, 11 01, 10 01, 10

(T 0 
 T 0) j i j00i+ j11i – –

(T 0 
 T 1) j i – ei�=4 j01i+ j10i ei�=4(j01i+ j10i)

(T 1 
 T 0) j i – j01i+ ei�=4 j10i j01i+ i j10i

(T 1 
 T 1) j i j00i+ i j11i – –

property satisfied? yes no yes


	Background
	A dichotomy for Holant^+
	The full dichotomy for Holant^c
	Conclusions
	Appendix

