Polynomial-time classical simulation of quantum ferromagnets

Sergey Bravyi David Gosset

IBM

PRL 119, 100503 (2017) arXiv:1612.05602 Quantum Monte Carlo: a powerful suite of probabilistic classical simulation algorithms for quantum many-body systems.

Can simulate systems orders of magnitude larger than with exact diagonalization...

TABLE I. QMC results for the ground-state energy, the spin stiffness, and the squared magnetization per spin. The numbers within parenthesis indicate the statistical errors of the least significant digit of the results.

L	$-E_0$	ρ	M_x^2
4	0.562485(4)	0.2769(1)	0.13282(2)
6	0.552696(4)	0.2718(1)	0.11885(4)
8	0.550436(4)	0.2705(2)	0.1126(2)
10	0.549643(4)	0.2700(3)	0.1087(2)
12	0.549296(4)	0.2698(4)	0.1065(3)
14	0.549118(4)	0.2695(3)	
16	0.549020(4)	0.2699(4)	

[Sandvik, Hamer 1999]

Ground state properties of 2D ferromagnetic XY model on $L \times L$ grid.

$$H = -\sum_{\langle ij \rangle} X_i X_j + Y_i Y_j$$

They also perform finite-temperature numerics up to L = 64.

TABLE I. QMC results for the ground-state energy, the spin stiffness, and the squared magnetization per spin. The numbers within parenthesis indicate the statistical errors of the least significant digit of the results.

L	$-E_0$	ρ	M_x^2
4	0.562485(4)	0.2769(1)	0.13282(2)
6	0.552696(4)	0.2718(1)	0.11885(4)
8	0.550436(4)	0.2705(2)	0.1126(2)
10	0.549643(4)	0.2700(3)	0.1087(2)
12	0.549296(4)	0.2698(4)	0.1065(3)
14	0.549118(4)	0.2695(3)	
16	0.549020(4)	0.2699(4)	

[Sandvik, Hamer 1999]

Ground state properties of 2D ferromagnetic XY model on $L \times L$ grid.

$$H = -\sum_{\langle ij \rangle} X_i X_j + Y_i Y_j$$

They also perform finite-temperature numerics up to L = 64.

This is a classical simulation of up to 4096 spins! What's the catch? How does it work?

Quantum Monte Carlo can only be used to study stoquastic Hamiltonians

 $\langle x|H|x\rangle \in \mathbb{R}$ $\langle y|H|x\rangle \leq 0$ $x \neq y$

Stoquastic

i.e., "sign-problem free"

Quantum Monte Carlo can only be used to study stoquastic Hamiltonians

 $\langle x|H|x\rangle \in \mathbb{R}$ $\langle y|H|x\rangle \leq 0$ $x \neq y$

Stoquastic

i.e., "sign-problem free"

Examples:

Particle in a potential $H = \frac{p^2}{2m} + V(\vec{x})$

Quantum Monte Carlo can only be used to study stoquastic Hamiltonians

 $\langle x|H|x\rangle \in \mathbb{R}$ $\langle y|H|x\rangle \leq 0$ $x \neq y$

Stoquastic

i.e., "sign-problem free"

Examples:

Particle in a potential

Hopping and interacting bosons

$$H = -\sum_{\langle ij \rangle} (a_i^{\dagger}a_j + a_j^{\dagger}a_i) + V(\vec{n})$$

Quantum Monte Carlo can only be used to study stoquastic Hamiltonians

 $\langle x|H|x\rangle \in \mathbb{R}$ $\langle y|H|x\rangle \leq 0$ $x \neq y$

Stoquastic

i.e., "sign-problem free"

Examples:

Particle in a potential

$$H = \frac{p^2}{2m} + V(\vec{x})$$

Hopping and interacting bosons

$$H = -\sum_{\langle ij \rangle} (a_i^{\dagger}a_j + a_j^{\dagger}a_i) + V(\vec{n})$$

Quantum annealing Hamiltonians

 $H = -(1-s)\sum_{i} X_{i} + sV\left(\vec{Z}\right)$

QMC is based on a probabilistic representation of the Gibbs state

$$\rho = \frac{e^{-\beta H}}{Z(\beta)} \qquad \qquad Z(\beta) = \operatorname{Tr}(e^{-\beta H})$$

A collection of samples from a certain probability distribution associated with ρ are sufficient to evaluate expectation values of observables.

$$Z(\beta) = \mathrm{Tr}(e^{-\beta H})$$

Partition function at temperature $T = \beta^{-1}$

 $Z(\beta) = \operatorname{Tr}(e^{-\beta H})$ Partition function at temperature $T = \beta^{-1}$

$$= \operatorname{Tr}((e^{-\Delta H})^{M}) \qquad \Delta \ll 1 \qquad M = \beta \Delta^{-1}$$

 $Z(\beta) = \operatorname{Tr}(e^{-\beta H})$ Partition function at temperature $T = \beta^{-1}$

$$= \operatorname{Tr}((e^{-\Delta H})^{M}) \qquad \Delta \ll 1 \qquad M = \beta \Delta^{-1}$$

$$\approx \sum_{z_1, z_2, \dots, z_M \in \{0,1\}^n} \langle z_1 | I - \Delta H | z_2 \rangle \langle z_2 | I - \Delta H | z_3 \rangle \dots \langle z_M | I - \Delta H | z_1 \rangle \qquad \text{Insert complete} \\ \text{sets of states} \end{cases}$$

 $Z(\beta) = \operatorname{Tr}(e^{-\beta H})$ Partition function at temperature $T = \beta^{-1}$

$$= \operatorname{Tr}((e^{-\Delta H})^{M}) \qquad \Delta \ll 1 \qquad M = \beta \Delta^{-1}$$

$$\approx \sum_{z_1, z_2, \dots, z_M \in \{0,1\}^n} \langle z_1 | I - \Delta H | z_2 \rangle \langle z_2 | I - \Delta H | z_3 \rangle \dots \langle z_M | I - \Delta H | z_1 \rangle$$
Insert complete sets of states
$$p(z_1, z_2, \dots, z_M) \ge \mathbf{0} \quad \text{(use stoquasticity)}$$
Insert complete sets of states

$$Z(\beta) = \operatorname{Tr}(e^{-\beta H})$$
 Partition function at temperature $T = \beta^{-1}$

$$= \operatorname{Tr}((e^{-\Delta H})^{M}) \qquad \Delta \ll 1 \qquad M = \beta \Delta^{-1}$$

$$\approx \sum_{z_{1}, z_{2}, \dots, z_{M} \in \{0, 1\}^{n}} \langle z_{1} | I - \Delta H | z_{2} \rangle \langle z_{2} | I - \Delta H | z_{3} \rangle \dots \langle z_{M} | I - \Delta H | z_{1} \rangle \qquad \text{Insert complete sets of states}$$

$$p(z_{1}, z_{2}, \dots, z_{M}) \ge \mathbf{0} \quad (\text{use stoquasticity})$$

QMC uses a classical Markov chain to equilibrate to the probability distribution proportional to $p(z_1, z_2, ..., z_M)$.

$$Z(\beta) = \operatorname{Tr}(e^{-\beta H})$$
 Partition function at temperature $T = \beta^{-1}$

$$= \operatorname{Tr}((e^{-\Delta H})^{M}) \qquad \Delta \ll 1 \qquad M = \beta \Delta^{-1}$$

$$\approx \sum_{z_{1}, z_{2}, \dots, z_{M} \in \{0, 1\}^{n}} \langle z_{1} | I - \Delta H | z_{2} \rangle \langle z_{2} | I - \Delta H | z_{3} \rangle \dots \langle z_{M} | I - \Delta H | z_{1} \rangle \qquad \text{Insert complete sets of states}$$

$$p(z_{1}, z_{2}, \dots, z_{M}) \ge \mathbf{0} \quad (\text{use stoquasticity})$$

QMC uses a classical Markov chain to equilibrate to the probability distribution proportional to $p(z_1, z_2, ..., z_M)$.

Physical properties are computed as expectation values.

Local Hamiltonian problem: Given a local Hamiltonian *H* and two numbers a < b, decide if the ground energy of *H* is $\leq a$ or $\geq b$. (promised that one case holds).

Local Hamiltonian problem: Given a local Hamiltonian *H* and two numbers a < b, decide if the ground energy of *H* is $\leq a$ or $\geq b$. (promised that one case holds).

The local Hamiltonian problem is QMA-complete in general. [Kitaev 99]

Local Hamiltonian problem: Given a local Hamiltonian H and two numbers a < b, decide if the ground energy of H is $\leq a$ or $\geq b$. (promised that one case holds).

The local Hamiltonian problem is QMA-complete in general. [Kitaev 99]

For stoquastic local Hamiltonians it is StoqMA-complete (MA⊆StoqMA⊆AM) [Bravyi, Divincenzo, Oliveira, Terhal 2006]

Local Hamiltonian problem: Given a local Hamiltonian H and two numbers a < b, decide if the ground energy of H is $\leq a$ or $\geq b$. (promised that one case holds).

The local Hamiltonian problem is QMA-complete in general. [Kitaev 99]

For stoquastic local Hamiltonians it is StoqMA-complete (MA⊆StoqMA⊆AM) [Bravyi, Divincenzo, Oliveira, Terhal 2006]

For classical local Hamiltonians it is NP-complete.

Examples:

	$H = \sum_{i=1}^{n} h(i,j)$		
	1≤i <j≤n< th=""><th>LH problem</th><th></th></j≤n<>	LH problem	
Ising model	$h(i,j) = \alpha_{ij} Z_i Z_j$	NP-complete	(Classical)
Transverse-field Ising model	$h(i,j) = \alpha_{ij}X_iX_j - \gamma_iZ_i - \gamma_jZ_j$	StoqMA-complete [Bravyi, Hastings 2014]	(Stoquastic)
XY model	$h(i,j) = \alpha_{ij}(X_iX_j + Y_iY_j)$	QMA-complete [Cubitt Montanaro 2013]	(Quantum)

Examples:

	$H = \sum_{\substack{i \in i}} h(i,j)$		
	$1 \le l < J \le n$	LH problem	
Ising model	$h(i,j) = \alpha_{ij} Z_i Z_j$	NP-complete	(Classical)
Transverse-field Ising model	$h(i,j) = \alpha_{ij}X_iX_j - \gamma_iZ_i - \gamma_jZ_j$	StoqMA-complete [Bravyi, Hastings 2014]	(Stoquastic)
XY model	$h(i,j) = \alpha_{ij}(X_iX_j + Y_iY_j)$	QMA-complete [Cubitt Montanaro 2013]	(Quantum)

These examples illustrate three flavours of **intractable** constraint satisfaction problems. (they represent all nontrivial possibilities within the framework of [Cubitt Montanaro 2013])

	$H = \begin{bmatrix} 2 \\ 1 \le i \end{bmatrix}$	$\sum_{i < j \le n} h(i, j)$		
		ľ	Approximate Ground energy	Approximate Partition Function
Ferromagnetic Ising model	$h(i,j) = - \alpha_{ij} Z_iZ_j$		Trivial	
<u> </u>				

$H = \sum_{1 \le i < j \le n} h(i, j)$		
	Approximate Ground energy	Approximate Partition Function
Ferromagnetic Ising model $h(i,j) = - \alpha_{ij} Z_iZ_j$	Trivial	In BPP [Jerrum ,Sinclair 1989]

$$H = \sum_{1 \le i < j \le n} h(i, j)$$

		Approximate Ground energy	Approximate Partition Function
Ferromagnetic Ising model	$h(i,j) = - \alpha_{ij} Z_iZ_j$	Trivial	In BPP [Jerrum ,Sinclair 1989]
Ferromagnetic Transverse-field Ising model	$h(i,j) = - \alpha_{ij} X_iX_j - \gamma_iZ_i - \gamma_jZ_j$		

$$H = \sum_{1 \le i < j \le n} h(i, j)$$

		Approximate Ground energy	Approximate Partition Function
Ferromagnetic Ising model h(i	$i,j) = - \alpha_{ij} Z_iZ_j$	Trivial	In BPP [Jerrum ,Sinclair 1989]
Ferromagnetic Transverse-field h(i Ising model	$i,j) = - \alpha_{ij} X_iX_j - \gamma_iZ_i - \gamma_jZ_j$	In BPP [Bravyi 2015]	In BPP [Bravyi 2015]

$$H = \sum_{1 \le i < j \le n} h(i, j)$$

		Approximate Ground energy	Approximate Partition Function
Ferromagnetic Ising model	$h(i,j) = - \alpha_{ij} Z_iZ_j$	Trivial	In BPP [Jerrum ,Sinclair 1989]
Ferromagnetic Transverse-field Ising model	$h(i,j) = - \alpha_{ij} X_iX_j - \gamma_iZ_i - \gamma_jZ_j$	In BPP [Bravyi 2015]	In BPP [Bravyi 2015]
Ferromagnetic XY model	$h(i,j) = - \alpha_{ij} (X_iX_j + Y_iY_j)$		

$$H = \sum_{1 \le i < j \le n} h(i, j)$$

		Approximate Ground energy	Approximate Partition Function
Ferromagnetic Ising model	$h(i,j) = - \alpha_{ij} Z_iZ_j$	Trivial	In BPP [Jerrum ,Sinclair 1989]
Ferromagnetic Transverse-field Ising model	$h(i,j) = - \alpha_{ij} X_iX_j - \gamma_iZ_i - \gamma_jZ_j$	In BPP [Bravyi 2015]	In BPP [Bravyi 2015]
Ferromagnetic XY model	$h(i,j) = - \alpha_{ij} (X_iX_j + Y_iY_j)$	In BPP [This talk]	In BPP [This talk]

Open question : Can QMC be used to efficiently simulate quantum adiabatic algorithms with stoquastic Hamiltonians?

$$H = -(1-s)\sum_{i} X_{i} + sV\left(\vec{Z}\right)$$

[Bravyi Terhal 2008] [Hastings Freedman 2013] [Crosson Harrow 2016] [Jarret Jordan Lackey 2016]

. . .

I. Results

We consider Hamiltonians of the form

$$H = \sum_{i < j} -b_{ij} X_i X_j + c_{ij} Y_i Y_j + \sum_{i=1}^n d_i (I + Z_i)$$

Coefficients must satisfy

$$|b_{ij}|, |c_{ij}|, |d_i| \le 1$$
 (sets energy scale)

$$|c_{ij}| \le b_{ij}$$
 (ensures stoquasticity)

We consider Hamiltonians of the form

$$H = \sum_{i < j} -b_{ij} X_i X_j + c_{ij} Y_i Y_j + \sum_{i=1}^n d_i (I + Z_i)$$

$$\begin{pmatrix} 0 & 0 & 0 & -b_{ij} - c_{ij} \\ 0 & 0 & c_{ij} - b_{ij} & 0 \\ 0 & c_{ij} - b_{ij} & 0 & 0 \\ -b_{ij} - c_{ij} & 0 & 0 & 0 \end{pmatrix}$$

$$|c_{ij}| \le b_{ij}$$
 (ensures stoquasticity)

We consider Hamiltonians of the form

$$H = \sum_{i < j} -b_{ij} X_i X_j + c_{ij} Y_i Y_j + \sum_{i=1}^n d_i (I + Z_i)$$
$$p_{ij} (Y_i Y_j - X_i X_j) + q_{ij} (-Y_i Y_j - X_i X_j) \qquad p_{ij}, q_{ij} \ge 0$$

We consider Hamiltonians of the form

$$H = \sum_{i < j} -b_{ij} X_i X_j + c_{ij} Y_i Y_j + \sum_{i=1}^n d_i (I + Z_i)$$

Special cases:

 $d_i = 0$ $c_{ij} = 0$ Classical Ferromagnetic Ising model $c_{ij} = 0$ Ferromagnetic transverse-field Ising model $b_{ij} = 1$ $c_{ij} = -1$ Ferromagnetic XY model $b_{ij} = 1$ $c_{ij} = 1$ (name?)

Approximating the partition function

Definition (ϵ -approximation)

Write $a \approx^{\epsilon} b$ iff $e^{-\epsilon}b \leq a \leq e^{\epsilon}b$

Approximating the partition function

Definition (ϵ -approximation)

Write
$$a \approx^{\epsilon} b$$
 iff $e^{-\epsilon}b \leq a \leq e^{\epsilon}b$

An ϵ -approximation of $Z(\beta)$ can be used to compute an estimate of the free energy

$$F = -\frac{1}{\beta} \log Z(\beta)$$

to within additive error $O(\epsilon\beta^{-1})$ and an estimate of the ground energy to within additive error $O((\epsilon + n)\beta^{-1})$.

Polynomial-time approximation algorithm

Theorem

There exists a classical randomized algorithm which, given H, β , and a precision parameter $\epsilon \in (0,1)$ outputs an estimate satisfying $Z \approx^{\epsilon} Z(\beta)$ with high probability.

The runtime of the algorithm is $poly(n,\beta,\epsilon^{-1})$

As a corollary we obtain an efficient algorithm to approximate the free energy and the ground energy to a given additive error.
Polynomial-time approximation algorithm

Theorem

There exists a classical randomized algorithm which, given H, β , and a precision parameter $\epsilon \in (0,1)$ outputs an estimate satisfying $Z \approx^{\epsilon} Z(\beta)$ with high probability.

The runtime of the algorithm is $poly(n,\beta,\epsilon^{-1}) = \tilde{O}(n^{115}(1+\beta^{46})\epsilon^{-25})$.

As a corollary we obtain an efficient algorithm to approximate the free energy and the ground energy to a given additive error.

Polynomial-time approximation algorithm

Theorem

There exists a classical randomized algorithm which, given H, β , and a precision parameter $\epsilon \in (0,1)$ outputs an estimate satisfying $Z \approx^{\epsilon} Z(\beta)$ with high probability.

The runtime of the algorithm is $poly(n,\beta,\epsilon^{-1}) = \tilde{O}(n^{115}(1+\beta^{46})\epsilon^{-25})$.

As a corollary we obtain an efficient algorithm to approximate the free energy and the ground energy to a given additive error.

The algorithm is not practical.

Polynomial-time approximation algorithm

Theorem

There exists a classical randomized algorithm which, given H, β , and a precision parameter $\epsilon \in (0,1)$ outputs an estimate satisfying $Z \approx^{\epsilon} Z(\beta)$ with high probability.

The runtime of the algorithm is $poly(n,\beta,\epsilon^{-1}) = \tilde{O}(n^{115}(1+\beta^{46})\epsilon^{-25})$.

As a corollary we obtain an efficient algorithm to approximate the free energy and the ground energy to a given additive error.

The algorithm is not practical.

The proof is based on a reduction to counting perfect matchings...

II. Perfect matchings

A perfect matching of a graph G = (V, E) is a subset of edges $M \subseteq E$ such that every vertex is incident to exactly one edge in M

Example:

A perfect matching of a graph G = (V, E) is a subset of edges $M \subseteq E$ such that every vertex is incident to exactly one edge in M

Example:

The red edges are a perfect matching

A perfect matching of a graph G = (V, E) is a subset of edges $M \subseteq E$ such that every vertex is incident to exactly one edge in M

Example:

The red edges are a perfect matching

Now suppose the graph has edge weights $\{w_e\}_{e \in E}$. Each perfect matching M is assigned weight

Now suppose the graph has edge weights $\{w_e\}_{e \in E}$. Each perfect matching M is assigned weight

Perfect matching sum:

$$\operatorname{PerfMatch}(G) = \sum_{\operatorname{Perfect matchings M}} \prod_{e \in M} w_e$$

Now suppose the graph has edge weights $\{w_e\}_{e \in E}$. Each perfect matching M is assigned weight

Perfect matching sum:

$$PerfMatch(G) = \sum_{Perfect matchings M} \prod_{e \in M} w_e$$

A nearly perfect matching of a graph G = (V, E) is a subset of edges $M \subseteq E$ such that every vertex is incident to exactly one edge in M, except for 2 vertices which are untouched.

A nearly perfect matching of a graph G = (V, E) is a subset of edges $M \subseteq E$ such that every vertex is incident to exactly one edge in M, except for 2 vertices which are untouched.

Nearly perfect matching sum:

NearPerfMatch(G) =
$$\sum_{\substack{\text{Nearly} \\ \text{Perfect matchings M}}} \prod_{e \in M} w_e$$

	Exactly compute PerfMatch(G)	ϵ -approximation to PerfMatch(G)
Planar graphs:	In P Fisher, Kasteleyn, Temperley algorithm	
Bipartite graphs: (permanent of nonnegative matrix)		
General graphs:		

	Exactly compute PerfMatch(G)	ϵ -approximation to PerfMatch(G)
Planar graphs:	In P Fisher, Kasteleyn, Temperley algorithm	In P
Bipartite graphs: (permanent of nonnegative matrix)		
General graphs:		

	Exactly compute PerfMatch(G)	ϵ -approximation to PerfMatch(G)
Planar graphs:	In P Fisher, Kasteleyn, Temperley algorithm	In P
Bipartite graphs: (permanent of nonnegative matrix)	#P-hard [Valiant 1979]	In BPP [Jerrum, Sinclair, Vigoda 2004]
General graphs:		

	Exactly compute PerfMatch(<i>G</i>)	ϵ -approximation to PerfMatch(G)
Planar graphs:	In P Fisher, Kasteleyn, Temperley algorithm	In P
Bipartite graphs: (permanent of nonnegative matrix)	#P-hard [Valiant 1979]	In BPP [Jerrum, Sinclair, Vigoda 2004]
General graphs:	# P- hard	

	Exactly compute PerfMatch(<i>G</i>)	ϵ -approximation to PerfMatch(G)
Planar graphs:	In P Fisher, Kasteleyn, Temperley algorithm	In P
Bipartite graphs: (permanent of nonnegative matrix)	#P-hard [Valiant 1979]	In BPP [Jerrum, Sinclair, Vigoda 2004]
General graphs:	# P- hard	[Jerrum Sinclair 1989] Algorithm with runtime $poly(V , \epsilon, -1 R)$
		$R = \frac{\text{NearPerfMatch}(G)}{\text{PerfMatch}(G)}$

III. Algorithm

Reduction to perfect matchings

We then use [Jerrum, Sinclair 1989] which gives an efficient algorithm for approximating the perfect matching sum.

Start with a Trotter-Suzuki style approximation

$$\operatorname{Tr}(e^{-\beta H}) \approx^{\epsilon} \operatorname{Tr}(G_J \dots G_2 G_1) \qquad J = \operatorname{poly}(n, \beta, \epsilon^{-1})$$

Start with a Trotter-Suzuki style approximation

$$\operatorname{Tr}(e^{-\beta H}) \approx^{\epsilon} \operatorname{Tr}(G_J \dots G_2 G_1) \qquad J = \operatorname{poly}(n, \beta, \epsilon^{-1})$$

Each G_j satisfies

$$G_j = e^{-sh + O(s^2)} \qquad s > 0$$

where h is one of the terms in the Hamiltonian

Start with a Trotter-Suzuki style approximation

$$\operatorname{Tr}(e^{-\beta H}) \approx^{\epsilon} \operatorname{Tr}(G_J \dots G_2 G_1) \qquad J = \operatorname{poly}(n, \beta, \epsilon^{-1})$$

Each G_j satisfies

$$G_j = e^{-sh + O(s^2)} \qquad s > 0$$

where h is one of the terms in the Hamiltonian

$$h = Y_i Y_j - X_i X_j$$
, or $h = -Y_i Y_j - X_i X_j$, or $h = \pm (I + Z_i)$

Start with a Trotter-Suzuki style approximation

$$\operatorname{Tr}(e^{-\beta H}) \approx^{\epsilon} \operatorname{Tr}(G_J \dots G_2 G_1) \qquad J = \operatorname{poly}(n, \beta, \epsilon^{-1})$$

Each G_j satisfies

$$G_j = e^{-sh + O(s^2)} \qquad s > 0$$

where h is one of the terms in the Hamiltonian

$$h = Y_i Y_j - X_i X_j$$
, or $h = -Y_i Y_j - X_i X_j$, or $h = \pm (I + Z_i)$

The resulting G_i are very special gates...

Start with a Trotter-Suzuki style approximation

$$\operatorname{Tr}(e^{-\beta H}) \approx^{\epsilon} \operatorname{Tr}(G_J \dots G_2 G_1) \qquad J = \operatorname{poly}(n, \beta, \epsilon^{-1})$$

Each G_I is from the gate set containing 1-qubit gates

and two qubit gates
$$\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
t & 0 \\
0 & 1
\end{pmatrix}
t > 0$$
"Matchgates"
$$\begin{pmatrix}
1+t^2 & 0 & 0 & t \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
t & 0 & 0 & 1
\end{pmatrix}
t > 0$$

Let Γ be a a weighted graph with special input and output edges (k of each, say)

Let Γ be a a weighted graph with special input and output edges (*k* of each, say) We say Γ implements a *k*-qubit operator *G* if

$$\langle y|G|x\rangle = \text{PerfMatch}(\Gamma_{xy})$$

 Γ_{xy} = remove input edges with $x_i = 0$ and output edges with $y_i = 0$. Require that a perfect matching includes the remaining external edges.

Example:

Let Γ be a a weighted graph with special input and output edges (*k* of each, say) We say Γ implements a *k*-qubit operator *G* if

$$\langle y|G|x\rangle = \text{PerfMatch}(\Gamma_{xy})$$

 Γ_{xy} = remove input edges with $x_i = 0$ and output edges with $y_i = 0$. Require that a perfect matching includes the remaining external edges.

Example:

$$x = 00, y = 11$$

 $\langle 11|G|00\rangle = t$

Let Γ be a a weighted graph with special input and output edges (*k* of each, say) We say Γ implements a *k*-qubit operator *G* if

$$\langle y|G|x\rangle = \text{PerfMatch}(\Gamma_{xy})$$

 Γ_{xy} = remove input edges with $x_i = 0$ and output edges with $y_i = 0$. Require that a perfect matching includes the remaining external edges.

Example:

Matchgates compose nicely

Implements a 2 qubit gate G

Matchgates compose nicely

Implements a 2 qubit gate G

Implements $G_{12}G_{23}$

Matchgates compose nicely

Implements a 2 qubit gate G

Implements Tr(G)

Start with a Trotter-Suzuki style approximation

$$\operatorname{Tr}(e^{-\beta H}) \approx^{\epsilon} \operatorname{Tr}(G_J \dots G_2 G_1) \qquad J = \operatorname{poly}(n, \beta, \epsilon^{-1})$$

Each G_I is a matchgate.

Start with a Trotter-Suzuki style approximation

 $\operatorname{Tr}(e^{-\beta H}) \approx^{\epsilon} \operatorname{Tr}(G_J \dots G_2 G_1) \qquad J = \operatorname{poly}(n, \beta, \epsilon^{-1})$

Matchgate implementable with n input edges and n output edges

Each G_J is a matchgate.

Start with a Trotter-Suzuki style approximation

 $\operatorname{Tr}(e^{-\beta H}) \approx^{\epsilon} \operatorname{Tr}(G_J \dots G_2 G_1)$

$$J = \operatorname{poly}(n, \beta, \epsilon^{-1})$$

Each G_J is a matchgate.

Matchgate implementable with n input edges and n output edges

Trace is a matchgate with no external edges, i.e., a perfect matching sum.

Start with a Trotter-Suzuki style approximation

 $\operatorname{Tr}(e^{-\beta H}) \approx^{\epsilon} \operatorname{Tr}(G_J \dots G_2 G_1)$

$$J = \operatorname{poly}(n, \beta, \epsilon^{-1})$$

Each G_J is a matchgate.

Matchgate implementable with n input edges and n output edges

Trace is a matchgate with no external edges, i.e., a perfect matching sum. (nonplanar and nonbipartite)

Start with a Trotter-Suzuki style approximation

 $\operatorname{Tr}(e^{-\beta H}) \approx^{\epsilon} \operatorname{Tr}(G_J \dots G_2 G_1)$

$$J = \operatorname{poly}(n, \beta, \epsilon^{-1})$$

Each G_I is a matchgate.

Matchgate implementable with n input edges and n output edges

Trace is a matchgate with no external edges, i.e., a perfect matching sum. (nonplanar and nonbipartite)

This gives first part of theorem:

 $Z(\beta) \approx^{\epsilon} \operatorname{PerfMatch}(G)$
Bounding NearPerfMatch(G)

We need to show:

$$\frac{\text{NearPerfMatch}(G)}{\text{PerfMatch}(G)} = O(\text{poly}(\beta, n, \epsilon^{-1}))$$

Recall that a nearly perfect matching is like a perfect matching but with 2 vertices unmatched.

Bounding NearPerfMatch(G)

We need to show:

$$\frac{\text{NearPerfMatch}(G)}{\text{PerfMatch}(G)} = O(\text{poly}(\beta, n, \epsilon^{-1}))$$

Recall that a nearly perfect matching is like a perfect matching but with 2 vertices unmatched.

NearPerfMatch(*G*) =
$$\sum_{u,v\in G} \Omega_{u,v}$$
 $\Omega_{u,v}$ = sum of nearly perfect matchings with u, v unmatched.

Bounding NearPerfMatch(G)

We need to show:

$$\frac{\text{NearPerfMatch}(G)}{\text{PerfMatch}(G)} = O(\text{poly}(\beta, n, \epsilon^{-1}))$$

Recall that a nearly perfect matching is like a perfect matching but with 2 vertices unmatched.

NearPerfMatch(*G*) =
$$\sum_{u,v\in G} \Omega_{u,v}$$
 $\Omega_{u,v}$ = sum of nearly perfect matchings with u, v unmatched.

To complete the proof we show that

$$\frac{\Omega_{u,v}}{\operatorname{PerfMatch}(G)} \approx \frac{\operatorname{Tr}(G_{J}G_{J-1}\dots G_{j}OG_{j-1}G_{j-2}\dots G_{i}PG_{i-1}G_{i-2}\dots G_{2}G_{1})}{\operatorname{Tr}(G_{J}\dots G_{2}G_{1})} = O(1)$$

Imaginary time spin-spin correlation function

Open questions

Can QMC be used to efficiently simulate quantum adiabatic algorithms with stoquastic Hamiltonians?

Other models? See e.g., [Piddock Montanaro 2015]:

IBM is hiring for postdoctoral and research staff member positions in the theory of quantum computing.

Job ads: https://quantumexperience.ng.bluemix.net/qx/community/question?q uestionId=4ee83621979d8391db8c95523e36ebd6&channel=news

Email: dngosset@us.ibm.com

IBM Q Awards: Att: Students, Profs & Developers

- IBM Teach Me Quantum Award \$10,000: Best university-level course-materials for a lecture series incorporating the IBM Q Experience and QISKit. (Submissions close 15 November 2018)
- IBM Q Best Paper Award \$2,500 and IBM lab invite: Highestimpact scientific paper by a master's degree or PhD student or postdoctoral researcher that uses the IBM Q Experience and QISKit as a tool to achieve the presented results. (Submissions close 15 July 2018)
- Teach Me QISKit Award \$1,000: Best interactive self-paced tutorial using QISKit and the IBM Q Experience. (Submissions close 31 March 2018)
- **QISKit Developer Challenge** \$5,000: Best solution to a specific challenge called: "Optimize to the Max." (*Submissions close 15 May 2018*)

bit.ly/ibmqawards

