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Quantum Monte Carlo: a powerful suite of  probabilistic classical simulation algorithms for 

quantum many-body systems. 

Can simulate systems orders of  magnitude larger than with exact diagonalization…



[Sandvik, Hamer 1999]

Ground state properties of  2D ferromagnetic XY 

model on 𝐿 × 𝐿 grid.

They also perform finite-temperature numerics up 

to 𝐿 = 64. 

𝐻 = − 

<𝑖𝑗>

𝑋𝑖𝑋𝑗 + 𝑌𝑖𝑌𝑗



This is a classical simulation of  up to 𝟒𝟎𝟗𝟔 spins!

What’s the catch?

How does it work?
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What’s the catch?

Quantum Monte Carlo can only be used to study stoquastic Hamiltonians

𝑦 𝐻 𝑥 ≤ 0 𝑥 ≠ 𝑦
Stoquastic

i.e., “sign-problem free”𝑥 𝐻 𝑥 ∈ ℝ
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Quantum Monte Carlo can only be used to study stoquastic Hamiltonians

Examples:

𝑦 𝐻 𝑥 ≤ 0 𝑥 ≠ 𝑦
Stoquastic

i.e., “sign-problem free”𝑥 𝐻 𝑥 ∈ ℝ

Hopping and interacting bosons

𝐻 = −(1 − 𝑠)

𝑖

𝑋𝑖 + 𝑠𝑉 Ԧ𝑍

Particle in a potential 𝐻 =
𝑝2

2𝑚
+ 𝑉( Ԧ𝑥)

Quantum annealing Hamiltonians

𝐻 = − 

<𝑖𝑗>

(𝑎𝑖
†𝑎𝑗 + 𝑎𝑗

†𝑎𝑖) + 𝑉( 𝑛)



QMC is based on a probabilistic representation of  the Gibbs state

𝜌 =
𝑒−𝛽𝐻

𝑍(𝛽)
𝑍 𝛽 = Tr(𝑒−𝛽𝐻)

A collection of  samples from a certain probability distribution associated with 𝜌 are 

sufficient to evaluate expectation values of  observables.

How does it work?
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(promised that one case holds).
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suggesting that stoquastic Hamiltonians may be easier to simulate.

Local Hamiltonian problem: Given a local Hamiltonian 𝐻 and two numbers 𝑎 < 𝑏, 

decide if  the ground energy of  𝐻 is ≤ 𝑎 or ≥ 𝑏. 

(promised that one case holds).

The local Hamiltonian problem is QMA-complete in general. [Kitaev 99]

For stoquastic local Hamiltonians it is StoqMA-complete (MA⊆StoqMA⊆AM) 

[Bravyi, Divincenzo, Oliveira, Terhal 2006]

For classical local Hamiltonians it is NP-complete.
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These examples illustrate three flavours of  intractable constraint satisfaction problems.

(they represent all nontrivial possibilities within the framework of  [Cubitt Montanaro 2013])
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Open question : Can QMC be used to efficiently simulate quantum adiabatic algorithms 

with stoquastic Hamiltonians?

[Bravyi Terhal 2008]

[Hastings Freedman 2013]

[Crosson Harrow 2016]

[Jarret Jordan Lackey 2016]

…

𝐻 = −(1 − 𝑠)

𝑖

𝑋𝑖 + 𝑠𝑉 Ԧ𝑍



I. Results



𝐻 =

𝑖<𝑗

−𝑏𝑖𝑗𝑋𝑖𝑋𝑗 + 𝑐𝑖𝑗𝑌𝑖𝑌𝑗 +

𝑖=1

𝑛

𝑑𝑖(𝐼 + 𝑍𝑖)

The Hamiltonian

|𝑏𝑖𝑗|, |𝑐𝑖𝑗|, |𝑑𝑖 | ≤ 1

|𝑐𝑖𝑗| ≤ 𝑏𝑖𝑗 (ensures stoquasticity)

We consider Hamiltonians of  the form

Coefficients must satisfy 

(sets energy scale)



𝐻 =

𝑖<𝑗

−𝑏𝑖𝑗𝑋𝑖𝑋𝑗 + 𝑐𝑖𝑗𝑌𝑖𝑌𝑗 +

𝑖=1

𝑛

𝑑𝑖(𝐼 + 𝑍𝑖)

The Hamiltonian

|𝑐𝑖𝑗| ≤ 𝑏𝑖𝑗 (ensures stoquasticity)

We consider Hamiltonians of  the form

0 0 0 −𝑏𝑖𝑗 − 𝑐𝑖𝑗
0 0 𝑐𝑖𝑗 − 𝑏𝑖𝑗 0

0
−𝑏𝑖𝑗 − 𝑐𝑖𝑗

𝑐𝑖𝑗 − 𝑏𝑖𝑗
0

0
0

0
0
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𝑛
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The Hamiltonian
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𝑝𝑖𝑗 𝑌𝑖𝑌𝑗 − 𝑋𝑖𝑋𝑗 + 𝑞𝑖𝑗(−𝑌𝑖𝑌𝑗 − 𝑋𝑖𝑋𝑗) 𝑝𝑖𝑗 , 𝑞𝑖𝑗 ≥ 0



𝐻 =

𝑖<𝑗
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The Hamiltonian

We consider Hamiltonians of  the form

Special cases:

Ferromagnetic transverse-field Ising model𝑐𝑖𝑗 = 0

𝑏𝑖𝑗 = 1 𝑐𝑖𝑗 = −1 Ferromagnetic XY model

𝑏𝑖𝑗 = 1 𝑐𝑖𝑗 = 1 (name?)

𝑐𝑖𝑗 = 0𝑑𝑖 = 0 Classical Ferromagnetic Ising model



𝑒−𝜖𝑏 ≤ 𝑎 ≤ 𝑒𝜖bWrite    𝑎 ≈𝜖 𝑏 iff  

Definition (𝝐-approximation) 

Approximating the partition function



𝑒−𝜖𝑏 ≤ 𝑎 ≤ 𝑒𝜖bWrite    𝑎 ≈𝜖 𝑏 iff  

An 𝜖-approximation of  𝑍(𝛽) can be used to compute an estimate of  the free energy

𝐹 = −
1

𝛽
log 𝑍(𝛽)

to within additive error 𝑂(𝜖𝛽−1) and an estimate of  the ground energy to within 

additive error 𝑂 (𝜖 + 𝑛)𝛽−1 .

Definition (𝝐-approximation) 

Approximating the partition function



Polynomial-time approximation algorithm

Theorem

There exists a classical randomized algorithm which, given 𝐻, 𝛽, and a precision parameter 

𝜖 ∈ (0,1) outputs an estimate satisfying  𝑍 ≈𝜖 𝑍 𝛽 with high probability.

The runtime of  the algorithm is 𝑝𝑜𝑙𝑦 𝑛, 𝛽, 𝜖−1

As a corollary we obtain an efficient algorithm to approximate the free energy and 

the ground energy to a given additive error.
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Polynomial-time approximation algorithm

Theorem

There exists a classical randomized algorithm which, given 𝐻, 𝛽, and a precision parameter 

𝜖 ∈ (0,1) outputs an estimate satisfying  𝑍 ≈𝜖 𝑍 𝛽 with high probability.

The runtime of  the algorithm is 𝑝𝑜𝑙𝑦 𝑛, 𝛽, 𝜖−1 = ෨𝑂 𝑛115(1 + 𝛽46 𝜖−25).

As a corollary we obtain an efficient algorithm to approximate the free energy and 

the ground energy to a given additive error.

The algorithm is not practical.

The proof  is based on a reduction to counting perfect matchings…



II. Perfect matchings
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Now suppose the graph has edge weights 𝑤𝑒 𝑒∈𝐸 . Each perfect matching 𝑀 is assigned

weight

ෑ

𝑒∈𝑀

𝑤𝑒
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Perfect matching sum:

PerfMatch 𝐺 = 

Perfect matchings M
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Now suppose the graph has edge weights 𝑤𝑒 𝑒∈𝐸 . Each perfect matching 𝑀 is assigned

weight

Perfect matching sum:

PerfMatch 𝐺 = 

Perfect matchings M

ෑ

𝑒∈𝑀

𝑤𝑒

ෑ

𝑒∈𝑀

𝑤𝑒

Example:

𝑐

𝑎

𝑏𝑑 PerfMatch 𝐺 = 𝑎𝑐 + 𝑏𝑑



A nearly perfect matching of  a graph 𝐺 = 𝑉, 𝐸 is a subset of  edges 𝑀 ⊆ 𝐸 such that 

every vertex is incident to exactly one edge in 𝑀, except for 2 vertices which are untouched. 
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Suppose 𝑮 is a graph with nonnegative edge weights.

Planar graphs:

Bipartite graphs:

(permanent of

nonnegative matrix)

General graphs:

Exactly compute
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𝝐-approximation
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#𝑷-hard
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In BPP
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#𝑷-hard
[Jerrum Sinclair 1989]

Algorithm with runtime 

poly(|𝑉|, 𝜖,−1 𝑅)

𝑅 =
NearPerfMatch(𝐺)

PerfMatch(𝐺)



III. Algorithm



Theorem 

There is an (efficiently computable) graph 𝐺 with positive edge weights, such that

and
𝑍 𝛽 ≈𝜖 PerfMatch(𝐺)

NearPerfMatch(𝐺)

PerfMatch(𝐺)
= 𝑂(poly 𝛽, 𝑛, 𝜖−1 )

We then use [Jerrum, Sinclair 1989] which gives an efficient algorithm for approximating 

the perfect matching sum.

Reduction to perfect matchings
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The resulting 𝑮𝒋 are very special gates…

Proof  sketch:



𝐽 = poly(𝑛, 𝛽, 𝜖−1)

Start with a Trotter-Suzuki style approximation

Proof  sketch:

Each 𝐺𝐽 is from the gate set containing 1-qubit gates

1 + 𝑡2 0 0 𝑡
0 1 0 0
0
𝑡

0
0

1
0

0
1

0 1
1 0

𝑡 0
0 1

and two qubit gates

𝑡 > 0

𝑡 > 0

“Matchgates”

Tr 𝑒−𝛽𝐻 ≈𝜖 Tr(𝐺𝐽…𝐺2𝐺1)
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Let  Γ be a a weighted graph with special input and output edges (𝑘 of  each, say)
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Matchgates compose nicely

Γ Implements a 2 qubit gate 𝑮

Implements 𝐓𝐫(𝑮)
Γ
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Start with a Trotter-Suzuki style approximation

Proof  sketch:

Each 𝐺𝐽 is a matchgate.

Tr 𝑒−𝛽𝐻 ≈𝜖 Tr(𝐺𝐽…𝐺2𝐺1)

𝑍 𝛽 ≈𝜖 PerfMatch(𝐺)

This gives first part of  theorem:
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Trace is a matchgate with no 
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matching sum. (nonplanar
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NearPerfMatch(𝐺)

PerfMatch(𝐺)
= 𝑂(poly 𝛽, 𝑛, 𝜖−1 )We need to show:

Recall that a nearly perfect matching is like a perfect matching but with 2 vertices unmatched.

Ω𝑢,𝑣 =
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𝑢, 𝑣 unmatched. 

NearPerfMatch 𝐺 = 

𝑢,𝑣∈𝐺

Ω𝑢,𝑣

To complete the proof  we show that

Ω𝑢,𝑣
PerfMatch(𝐺)

≈
Tr 𝐺𝐽𝐺𝐽−1…𝐺𝑗𝑂𝐺𝑗−1𝐺𝑗−2…𝐺𝑖𝑃𝐺𝑖−1𝐺𝑖−2…𝐺2𝐺1

Tr 𝐺𝐽…𝐺2𝐺1
= 𝑂(1)

Imaginary time spin-spin correlation function



Open questions

Can QMC be used to efficiently simulate quantum adiabatic algorithms with 

stoquastic Hamiltonians?

Other models? See e.g., [Piddock Montanaro 2015]: 



IBM is hiring for postdoctoral and research staff  member 

positions in the theory of  quantum computing.

Job ads:

https://quantumexperience.ng.bluemix.net/qx/community/question?q

uestionId=4ee83621979d8391db8c95523e36ebd6&channel=news

Email: dngosset@us.ibm.com

mailto:dngosset@us.ibm.com





