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Relating Quantum Privacy and Quantum Coherence: An Operational Approach
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Given many realizations of a state or a channel as a resource, two parties can generate a secret key as
well as entanglement. We describe protocols to perform the secret key distillation (as it turns out, with
optimal rate). Then we show how to achieve optimal entanglement generation rates by ‘‘coherent’’
implementation of a class of secret key agreement protocols, proving the long-conjectured ‘‘hashing
inequality.’’
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Quantum information theory may be understood in
terms of interconversion between various resources [1].
One very desirable resource is a maximally entangled
state shared between two parties (Alice and Bob). It
allows them to perform various tasks such as teleporta-
tion, superdense coding, etc. [2]. Another is a random
classical bit shared by the two parties, reliably secret
from any third party (Eve). It has important crypto-
graphic applications since it can be used as a secret key
(or ‘‘one time pad’’) allowing Alice and Bob private
communication over a public channel. Although used
for different purposes, the two resources share a peculiar
‘‘exclusiveness’’—in the one case toward the total outside
world, in the other toward Eve. This connection has been
confirmed by a growing literature of useful analogies
[3,4] and operational equivalences [5,6].

In this Letter we establish a further far reaching con-
nection by relating several private and quantum protocols,
culminating in the first demonstration of the ‘‘hashing
inequality’’ [Eq. (H) below], for one-way entanglement
distillation: implicitly conjectured in [7], its importance
was recognized when it was shown that it implies an
information theoretical characterization of optimal trans-
mission and distillation rates for a whole range of prob-
lems [8]. A rigorous treatment of the following four
problems, via random coding, may be found in [9,10],
building on results from classical information theory [11].

(1) Static ! private ! secret key distillation.—The task
is to convert n copies of the state !AB shared between
Alice and Bob into nR bits of secret key using 1-LOPC
(local operations and forward public communication).
The quantity R is referred to as the rate of the protocol.
To understand what is meant by a secret key, consider a
purification  ABE ! j ih jABE of !AB and allow for the
worst case scenario in which Eve is given the purifying
system E. Defining ! ! 1

2 "j00ih00j# j11ih11j$, a pair of
maximally correlated bits written formally as a density
operator, the desired shared secret key is represented as
"!AB$%nR % "E; the classical key shared by Alice and Bob
is decoupled from Eve’s state ".

(2) Static ! quantum ! entanglement distillation.—
Here, by 1-LOCC (local operations and forward classical
communication) "!AB$%n is to be converted into nR bits of
entanglement !%nR

# , where j!#i ! "1=
!!!

2
p

$"j00i# j11i$.
Since the final state is pure, the decoupling from E is
implicit. Including E in the description, the final state
should be "!AB

# $%nR % "E, which is just a coherent version
of its private counterpart above; by this we mean that the
transformation preserves the purity of the relevant states.

A dynamic resource is a noisy quantum channel N , a
completely positive trace preserving map taking density
operators in the Hilbert space of Alice’s system A0 to that
of Bob’s B.We shall consistently use symbols# to refer to
input states to N and  for output states. Applying N is
equivalent to an isometry into a larger Hilbert space
corresponding to BE, which includes the environment E
assumed at Eve’s disposal. The channel may be charac-
terized by its effect on some bipartite pure state j#iAA0

,
living entirely on Alice’s side, which now becomes the
mixed state !AB ! "idA %N $# shared between her and
Bob. Note that the purifying system for !AB is precisely
E, so that we again have the tripartite state  ABE.

(3) Dynamic ! private ! secret key generation.—By
Alice choosing an appropriate input to N %n and Bob
performing a decoding operation, they are to generate nR
bits of secret key, decoupled from E as in scenario 1.

(4) Dynamic ! quantum! entanglement generation.—
The channel N is now used to generate nR bits of
entanglement. Again one may explicitly include E to
stress the resemblance to the private scenario.

Our approach is information theoretical in nature:
Eve’s state or channel is the same in each of the n rounds,
corresponding to individual attacks in cryptography. We
shall show how a particular asymptotic rate R defined in
terms of the state  ABE may be achieved for the four
scenarios, by which we mean that for sufficiently large
n there exists a protocol whose output approximates the
desired state arbitrarily closely (in trace distance). First
we give a simple dimension counting argument for secret
key generation and show how to augment it to work for
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Simple Proof of Security of the BB84 Quantum Key Distribution Protocol
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We prove that the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution is

secure. We first give a key distribution protocol based on entanglement purification, which can be
proven secure using methods from Lo and Chau’s proof of security for a similar protocol. We then show
that the security of this protocol implies the security of BB84. The entanglement purification based
protocol uses Calderbank-Shor-Steane codes, and properties of these codes are used to remove the use
of quantum computation from the Lo-Chau protocol.

PACS numbers: 03.67.Dd

Quantum cryptography differs from conventional cryp-
tography in that the data are kept secret by the properties of
quantum mechanics, rather than the conjectured difficulty
of computing certain functions. The first quantum key dis-
tribution protocol, proposed in 1984 [1], is called BB84
after its inventors (Bennett and Brassard). In this protocol,
the participants (Alice and Bob) wish to agree on a secret
key about which no eavesdropper (Eve) can obtain signifi-
cant information. Alice sends each bit of the secret key in
one of a set of conjugate bases which Eve does not know,
and this key is protected by the impossibility of measur-
ing the state of a quantum system simultaneously in two
conjugate bases. The original papers proposing quantum
key distribution [1] proved it secure against certain attacks,
including those feasible using current experimental tech-
niques. However, for many years, it was not rigorously
proven secure against an adversary able to perform any
physical operation permitted by quantum mechanics.

Recently, three proofs of the security of quantum key
distribution protocols have been discovered; however, none
is entirely satisfactory. One proof [2], although easy to
understand, has the drawback that the protocol requires a
quantum computer. The other two [3,4] prove the security
of a protocol based on BB84, and so are applicable to near-
practical settings. However, both proofs are quite compli-
cated. We give a simpler proof by relating the security of
BB84 to entanglement purification protocols [5] and quan-
tum error correcting codes [6]. This new proof also may
illuminate some properties of previous proofs [3,4], and
thus gives insight into them. For example, it elucidates
why the rates obtainable from these proofs are related to
rates for Calderbank-Shor-Steane (CSS) codes. The proof
was in fact inspired by the observation that CSS codes are
hidden in the inner workings of the proof given in [3].

We first review CSS codes and associated entanglement
purification protocols. Quantum error correcting codes are
subspaces of the Hilbert space !2n which are protected
from errors in a small number of these qubits, so that any
such error can be measured and subsequently corrected
without disturbing the encoded state. A quantum CSS code

Q on n qubits comes from two binary codes on n bits, C1
and C2, one contained in the other:

!0" , C2 , C1 , Fn
2 ,

where Fn
2 is the binary vector space on n bits [6].

A set of basis states (which we call code words) for the
CSS code subspace can be obtained from vectors y [ C1
as follows:

y ! 1
jC2j1#2

X
w[C2

jy 1 w$ . (1)

If y1 2 y2 [ C2, then the code words corresponding to
y1 and y2 are the same. Hence these code words cor-
respond to cosets of C2 in C1, and this code protects a
Hilbert space of dimension 2dimC12dimC2 .

The above quantum code is equivalent to the dual code
Q" obtained from the two binary codes

!0" , C#
1 , C#

2 , Fn
2 .

This equivalence can be demonstrated by applying the
Hadamard transform

H !
1p
2

µ
1 1
1 21

∂

to each encoding qubit. This transformation interchanges
the bases j0$, j1$ and j1$, j2$, where j1$ ! 1p

2 %j0$ 1

j1$& and j2$ ! 1p
2 %j0$ 2 j1$&. It also interchanges the two

subspaces corresponding to the codes Q and Q", although
the code words [given by Eq. (1)] of Q and Q" are not
likewise interchanged.

We now make a brief technical detour to define some
terms. The three Pauli matrices are

sx !
µ

0 1
1 0

∂
, sy !

µ
0 2i
i 0

∂
,

sz !
µ

1 0
0 21

∂
.

The matrix sx applies a bit flip error to a qubit, while
sz applies a phase flip error. We denote the Pauli matrix
sa acting on the kth bit of the CSS code by sa%k& for
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This talk:

clear & tight formalization of the connection, w/ applications



Complementary, or dual channel
R, IEEE TIT 64, 577 (2018)

H(Z|W (Z)) +H(X|W?(X)) = 1

H(Z|W (Z)) +H?(X|W?(X)) = 1

Equality in uncertainty relation:

Equality for arbitrary entropies!

Dual CQ channelCQ channel 

W (z) = 'zz W (z) = 'z W

K : x fiÑ #

x

W

K : x fiÑ #

x

W

K : x fiÑ #

x

for ρ pureH?(A|C)⇢ = �H(A|B)⇢

e.g. ,  smooth versions, Rényi, etc.H = H
min

,H? = H
max
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H(Z|W (Z)) +H(X|W?(X)) = 1

H(Z|W (Z)) +H?(X|W?(X)) = 1

Equality in uncertainty relation:

Equality for arbitrary entropies!

Dual CQ channelCQ channel 

W (z) = 'zz W (z) = 'z W

K : x fiÑ #

x

W

K : x fiÑ #

x

W

K : x fiÑ #

x

Consequences: tight relation between channel & its dual

I(W ) + I(W?
) = log dcapacity

V (W ) = V (W?)dispersion

reliable iff W W? has constant output



Dual channel: Construction 

W W (z) = 'zz

N N (⇢) =
P

zhz|⇢|zi'z⇢

W

?(x) := N ](|x̃ihx̃|)

1. Take a classical input / quantum output channel

2. Regard it as a quantum channel

3. Consider complementary output for conjugate input

W U U



Dual channel: Alternate view

Obtain both outputs from single quantum state:

| yABC1C2
9

ÿ

z

|zyA |zyC1
|'zyBC2

Examples: duals of classical channels
BEC(p)? = BEC(1� p)

BSC(�)? = W : x ! Z

x|⌘i
|⌘i =

p
�|0i+

p
1� �|1i

HpZ|W pZqq “ HpZA|Bq 
HpX|WKpXqq “ HpXA|C1C2q 

Entropies:
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Polar codes & belief propagation

W f W pzq “ 'z b 'z

W f W pzq “ 1
2 r'0 b 'z ` '1 b '1‘zs

Polar codes & BP utilize two convolutions:

polarization rates to high & low entropy are equivalent 

Convolutions are interchanged by duality

pW1 f W2qK “ WK
1 f WK

2

x1 x2 x3 x4 x5 x6 x7 x8

+ + + +



Duality in quantum BP decoding

W1 f W2 “ pWK
1 f WK

2 qK

cannot run the algorithmbackwards to reproduce the channel output as we havemademeasurements at every
check node. To implement theHelstrommeasurement as non-destructively as possible, we can leave theCQ
output states unmeasured and instead use the classical subsystems to coherently control the variable node
unitaries . In this way the steps in the algorithm can be reversed, save the finalmeasurement. For example, in
figure 2 all output qubits are kept and the classicalmeasurement and subsequent conditioning of the second
gate is performed by a coherent conditional gate involving three qubits.

Denoting the unitary action of the algorithm for the jth bit byVj, theHelstrommeasurement can be
implemented by the projectivemeasurement with projectors *P = ñá∣ ˜ ˜∣V k k Vj k j j j, , where ñá∣ ˜ ˜∣k k j denotes the
kth sx basis projector on the jth qubit. EachVj is composed ofO(n) gates, yielding an overall circuit size of ( )O n2

to decode all bits. Supposing that the code is designed such that the jth input bit can be estimatedwith error no
larger than � j, Gao’s non-commutative union bound [25] implies that the error in sequentially estimating all bits
is noworse than �å4 j j.

4. Applications to polar codes

4.1. Polar codes for the pure state channel
Polar codes for the pure state channelmay also be decodedwith this algorithm. Indeed, the successive
cancellation decoding algorithmproposed byArıkan in [23] proceeds precisely by combining channels using the
and rules, andwas adapted to the case of CQ channels in [24]. The difference is that successive cancellation

does not use the factor graph of the code, but a graph related to afixed reversible encoding circuit. Importantly,
the graph associated to each input of the encoding circuit is a tree. In fact, each such graph has logarithmic depth
fromall channel factors to each variable, and every node has degree three. Unlike the BP decoder, however, the
successive cancellation decoder used by polar codes takes previously decoded bits into account. But these bits
can be handled by the BPdecoder since the pure state channel is symmetric in themanner described at the end of
section 2. There, the value of the previous bits is incorporated into the better channel by appropriately
permuting the output symbols, which is equivalent toflipping the input value. Similarly, for the pure state
channel, applying sz to the output is equivalent toflipping the input. Therefore, the quantumBPdecoding
algorithm gives a successive cancellation decoder for polar codes over the pure loss Bosonic channel using the
BPSK constellation [21].

4.2.Quantumpolar codes for amplitude damping
The idea behind the quantumpolar coding scheme of [16, 18] is to decompose the problemof transmitting
quantum information over a channel & lA B into transmitting classical information about two conjugate
observables, ‘amplitude’ and ‘phase’, consider polar codes for each subproblem, and then combine the coding
schemes usingCSS codes at the encoder and coherent sequential decoding of amplitude and phase at the
decoder. This decoding strategy is depicted in [16],figure 3 for Pauli channels and [26,figure 1] for the general
case. As detailed in [18], the two classical transmission tasks are to transmit ‘amplitude’ information over theCQ
channel given by &rl = ñá(∣ ∣)z z zz and ‘phase’ information over theCQ channel given by

� �! &jl = Ä Ä F Ä( )( )[ ]( )x Z Zx
x x . Here ñ∣z is an arbitrary basis, andwe choose that of sz for

convenience, while Fñ = å ñ ñ¢∣ ∣ ∣p z zA A z z is a bipartite pure state in this same basis with coefficients of our
choosing. (See [18] for the precise relation to the conjugate observables sx and sz .)

Figure 2.Circuit decoding thefirst bit of the code depicted infigure 1. Thefirst convolution is the second

for and , depending on the value j of themeasurement outcome

in the bottomwire. The symbol denotes that the qubit is discarded. The finalHadamard gate andmeasurement implement the
Helstrommeasurement.

5

New J. Phys. 19 (2017) 072001

How to construct 

       and        ?   UfUf

pure state BSC

Inherit structure for pure state channel BP from BSC

R, NJP 19, 072001 (2017)

x1 x2 x3 x4

+ +

W f W pzq “ 'z b 'z

W f W pzq “ 1
2 r'0 b 'z ` '1 b '1‘zs
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Dual codes

U1 W Y1

U2 W Y2

U3 W Y3

U4 W Y4

U5 W Y5

U6 W Y6

U7 W Y7

U8 W Y8
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Error correction & privacy amplification

: optimal code size, error 𝜖m✏(W )

`✏(W ) : optimal key length, dist. 𝜖
`✏(W?) = m✏2(W )
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Figure 1: Comparison of finite blocklength bounds on randomness extraction from the CQ state in
(69). The "̀ upper and lower bounds, from [36, Theorem 17], are based on information-spectrum
quantities. By duality, specifically Corollary 6, tighter bounds are available by appealing to bounds
on coding rates for the binary symmetric channel. The BSC metaconverse and lower bound, from
[24, Theorem 35] and [36, Theorem 9], respectively, are both based on the hypothesis testing quan-
tity �". The Poltyrev achievability bound [24, Theorem 34], based on weight spectra of linear codes,
already matches the metaconverse extremely closely for blocklengths in the hundreds: At 500 the
bounds differ by just four bits! However, it becomes time-consuming to compute for blocklengths in
the thousands.

4.5 EXIT functions

Duality also implies that the EXIT function of a channel and code combination and that of the dual
channel and dual code combination sum to a fixed constant, the logarithm of the alphabet size. The
EXIT function for a code and channel is defined as follows. Let Zn be a random codeword in C and
denote by Zi the ith bit of Zn. For Bn

“ W n
pZn

q, denote by Bn
„i everything but the ith B system.

Then the EXIT function using entropy H is

⌅HpW, Cq :“
1
n

nÿ

i“1

HpZi|B
n
„iq . (70)

Nominally the EXIT function is defined in terms of the von Neumann or Shannon conditional entropy,
but here will consider more general H or HK entropies. For simplicity, we omit the smooth min- and
max-entropies and show

Theorem 4. For any symmetric CQ channel W with input alphabet of size q and linear code C,

⌅HpW, Cq `⌅HKpW K, CK
q “ logq , (71)

where H is any entropy in (1) or (2).

Proof. By symmetry and the discussion in §4.2, it is sufficient to show

HpZi|B
n
„i Ẑq bn `HK

pXi|C
n
„i D

n
„i X̄ q bn “ logq , (72)

for  from (20) and where Zi refers to the result of measuring the Z observable of the ith bit of An,
Ẑ to the value of the syndrome measurement, and similarly for Xi and X̄ . Again the goal is to make
use of Lemma 1, though doing so requires a little work.

16

Example: randomness extraction 

� = 0.05 ✏ = 10�6

“The statement and proof of the two 
preceding results contain a curious duality 
between erased/known symbols in source 
coding and known/erased symbols in 
channel coding.”  


— Martinian & Yedidia, Allerton 2004

“curious duality” had to be! 

Dual channel lets us convert channel 
coding into source coding

R, arXiv:1708.05685 [quant-ph]

Duality of source and channel coding 
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EXIT functions

ensemble of randomly chosen codeword + channel output

⌅H(W,C) := 1
n

Pn
i=1 H(Zi|Bn

⇠i)

entropy of the i-th bit given all but the i-th output
⌅H(W,C) + ⌅H?(W?, C?) = 1

entropic function used in analysis of linear codes, 
particularly in message-passing algorithms related to reliability of decoding

0 .05 .1 .15 .2
0

0.2

0.4

0.6

0.8

1

crossover probability p

IpWppqq
IpWppqKq
hppq
hKppq

Figure 2: EXIT function transition and capacity. The figure depicts the capacity of W ppq the BSC
with crossover probability p, the capacity of its dual W ppq

K, as well as a putative EXIT function
for a rate R “

1
{2 code over W ppq and EXIT function of the dual code over W ppq

K. Here the EXIT
function hppq displays a sharp transition at p‹

“ 0.8 such that the capacity IpW pp‹
qq « 0.6 exceeds

the rate R. By duality, this implies that the dual code, which also has rate 1
{2, is reliably decodable

for values of p (say 0.1) such that the rate exceeds the capacity of W ppq

K («0.47). As this cannot be
the case by the converse to the noisy channel coding theorem, it must be that the transition satisfies
IpW pp‹

qq “ R, i.e. p‹
« 0.11 in this example.

First note that Ẑ can be regarded as a sequence of Z-type operators, usually called stabilizers, one
for each of the rows of M̂ . That is, Ẑ “ pẐ1, . . . , Ẑn´kq, where Ẑ j “ Z M̂j and Z v

“ Z v1
bZ v2

b¨ ¨ ¨bZ vn .
By employing row reduction, we can assume without loss of generality that M̂ has only one 1 in the
ith column. This implies that only one of the stabilizers involves the ith qubit, and we can also
assume without loss of generality that it is the first. Then Ẑ1 “ Zi ¨ Z 1

1, for Z 1
1 a Z-type operator on

the remaining n´1 qubits. Let us denote the set of remaining n´ k ´1 stabilizers Ẑ„1. By a similar
procedure we can define X̄1 “ Xi ¨ X 1

1 and X̄„1. The two row reduction procedures are independent,
since row reduction does not affect orthogonality.

Since the stabilizers all commute, but Xi and Zi anticommute, so too do X 1
1 and Z 1

1. Now
use HpZi|Bn

„i Ẑq bn “ HpZ 1
1|Bn´1 Ẑ„1q bn´1 and HK

pXi|Cn
„i D

n
„i X̄ q bn “ HK

pX 1
1|Cn´1Dn´1X̄„1q bn´1

from the following Lemma 2. Projecting onto fixed values for Ẑ„1 and X̄„1 yields a pure state, and
certainly Z 1

1 can be obtained by measuring the Cn´1 appropriately. Thus, we may apply Lemma 1 to
complete the proof.

Lemma 2. For a CQ state of the form  X Y B “

1
|X |

∞
xz PY pzq|xyxx |X b |x ` zyxx ` z|Y b p�zqB, let

%Y B “

∞
y PY pyq|yyxy|Y b p�yqB. Then, for any conditional entropy measure from (1) or (2),

HpX |Y Bq “ HpY |Bq% and (73)

HK
pX |Y Bq “ HK

pY |Bq% . (74)

The proof is given in Appendix B. EXIT functions figure prominently in the study of belief propa-
gation decoding [23], as well as in the recent proof by Kudekar et al. that Reed-Muller codes achieve
capacity on erasure channels [5]. Let us briefly recall their proof; we will then be able to see how
Theorem 4 offers a potential route to generalizing the argument for other channels. The proof is
based on the fact that the ith EXIT function (using the Shannon entropy) is the error probability
of the optimal bitwise decoder for the BEC, so that if the EXIT function is essentially zero, then de-
coding is reliable. For doubly transitive codes like Reed-Muller codes, the EXIT function is the same

17

use to show given code achieves capacity

threshold must occur at capacity

so, only need to show threshold exists



Duality in classical BP

Dualize (Fourier) to find correlation decay:

• low temperature ↔ high temperature

• works for BEC; generally local fields are complex

When does classical BP work?

• spin model: Correlations decay ⇒ BP is good

• error-probability ~ temperature

x1

W

y1

x2

W

y2

x3

W

y3

x4

W

y4

x5

W

y5

x6

W

y6

x7

W

y7

x8

W

y8

+ + + +

local fields

interaction terms

spins

The dual channel is involved somehow…

• local field is related to likelihood function of channel

• complex local field is precisely the “quantum likelihood” of the dual channel!

• goal: understand appearance of dual channel; study classical BP



Summary

Sidney Harris

Sure you can!

At least, to crypto and coding

Many more open questions.

Is there a duality relation for BP?

IEEE Trans Inf Theory 64, 577 (2018)

arXiv:1708.05685 [quant-ph]



Proof of equality in uncertainty relation
1. Definitions

chain rules, plus 
H(B|XA)⇢ = H(C|XA)⇢

for pure ⇢ABC

H(XA|B)⇢ �H(XA|C)⇢ = H(A|B)⇢

2. Entropy of purification

D(⇢AB ,⇡A ⌦ ⇢B) = D(⇢AB , ⇢̃AB) +D(⇢̃AB ,⇡A ⌦ ⇢B)

Tr[⇢AB log ⇢AB � ⇢AB log ⇢̃log ⇢̃log ˜AB + ⇢̃+ ⇢̃+ ˜AB log ⇢̃log ⇢̃log ˜AB � ⇢̃AB log(⇡A ⌦ ⇢B)]

}3. General chain rule

) H(XA|B)⇢ +H(ZA|B)⇢ � log |A|+H(A|B)⇢

) H(XA|C)⇢ +H(ZA|B)⇢ � log |A|

H(XA|B)⇢ �H(A|B)⇢ = D(⇢AB , ⇢̃AB)

� D(⇢̄AB ,⇡A ⌦ ⇢B)

= log |A|�H(ZA|B)⇢

D(⇢AB ,�AB) � D(⇢̄AB , �̄AB)

4. Monotonicity

D(⇢,�) := Tr[⇢(log ⇢� log �)]

H(A|B)⇢ = log |A|�D(⇢AB ,⇡A ⌦ ⇢B)

H(ZA|B)⇢ = log |A|�D(⇢̄AB ,⇡A ⌦ ⇢B)

H(XA|B)⇢ = log |A|�D(⇢̃AB ,⇡A ⌦ ⇢B)




