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We prove that the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution is
secure. We first give a key distribution protocol based on entanglement purification, which can be
proven secure using methods from Lo and Chau’s proof of security for a similar protocol. We then show
that the security of this protocol implies the security of BB84. The entanglement purification based
protocol uses Calderbank-Shor-Steane codes, and properties of these codes are used to remove the use
of quantum computation from the Lo-Chau protocol.
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Given many realizations of a state or a channel as a resource, two parties can generate a secret key as |
well as entanglement. We describe protocols to perform the secret key distillation (asit turns out, with =
optimal rate). Then we show how to achieve optimal entanglement generation rates by *‘coherent’
implementation of a class of secret key agreement protocols, proving the long-conjectured ‘“ hashing
inequality.”

DOI: 10.1103/ PhysRevL ett.93.080501 PACS numbers: 03.67.Dd, 03.67.Hk, 03.67.Pp



This talk:
clear & tight formalization of the connection, w/ applications

* Dual channels & entropies
« Use in polar codes & belief propagation decoding
 Privacy amplification & source coding

* Duality in classical BP



Complementary, or dual channel
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CQ channel Dual CQ channel
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Equality in uncertainty relation: H(Z|W(Z)) + H(X|W+(X)) =1

Equality for arbitrary entropies! H(Z|W(2)) + H-(X|W+(X)) =1

HL(A’C)/) = —H(A[B), for p pure

e.g. H= H,, H" = H,.x, smooth versions, Rényi, etc.



Complementary, or dual channel
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CQ channel Dual CQ channel
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Equality in uncertainty relation: H(Z|W(Z)) + H(X|W+(X)) =1
Equality for arbitrary entropies! H(Z|W(2)) + HH(X|W+(X)) =1

Consequences: tight relation between channel & its dual

capacity I(W)+ I(W+) =logd
dispersion V(W)= V(W)

W reliable iff 11 has constant output



Dual channel: Construction

1. Take a classical input / quantum output channel

o ARTIIIIT S W(Z) = ,

2. Regard it as a quantum channel

> N(p) = 2..(zlol2) -

3. Consider complementary output for conjugate input

W (z) == N*(|2)(Z))




Dual channel: Alternate view

Obtain both outputs from single quantum state:

|¢>AB(1102 OCZ 2) 4 |Z>c1 |90z>B(12

Entropies: H(Z|\W(Z)) = H(Z4|B)y
H(X|W(X)) = H(Xa|C1C2)y

Examples: duals of classical channels
BEC(p)*t = BEC(1 — p)
BSC(6)t =W 1z — Z%|n)

) = V6]0) +v/1—4[1)
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Polar codes & belief propagation

W %

Polar codes & BP utilize two convolutions:
W®W(Z) = 0, P,

W(z) = %[900 R . + 1 Q Yiez]

Convolutions are interchanged by duality

(W1 ® VVz)L =

Wi =

W

polarization rates to high & low entropy are equivalent



W@W(Z) — sz®gpz

W

*

Duality in quantum BP decoding

R, NJP 19, 072001 (2017)

How to construct H—{ A=
Ug and Ug ? -

WiE W, = (Wi @ Wy )+

W(z) = 5lp0 ® ¢ + ¢1 ® Y1:] \/ \/

pure state BSC

Inherit structure for pure state channel BP from BSC



* Dual channels & entropies
- Use in polar codes & belief propagation decoding
 Privacy amplification & source coding

 Duality in classical BP



Dual codes

Ct c' ct+ cC
O L L O T—P O— W
(@)) (@))
© N N © T ) )
n — — )] N N W
(7p] o) o) (7p]
() S Iy ()
- 17 17 & ? . P %%
(7)) (7)) JAA
o N 0 o ¢ N %4
o o o o
N @) @) N % % ¢ %4
- — m m - —
— % % — D . W
O (7)) (7)) o)
© (D) () 4y} () ® ® W
-+ -+
(7)) E E (7))

® ® * W

X basis Zbasis (reversible) encoding circuit
(W" o Ec)* = (W")* o Rgr

Ec: encoder for C R,z : random encoding into C+



m¢(W): optimal code size, error ¢

(. (W) : optimal key length, dist. ¢

Example: randomness extraction

extraction rate

Error correction & privacy amplification
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Duality of source and channel coding

“The statement and proof of the two
preceding results contain a curious duality
between erased/known symbols in source
coding and known/erased symbols in

channel coding.”
— Martinian & Yedidia, Allerton 2004

“curious duality” had to be!

Dual channel lets us convert channel
coding into source coding
R, arXiv:1708.05685 [quant-ph]
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EXIT functions

entropic function used in analysis of linear codes,

. . . . related to reliability of decoding
particularly in message-passing algorithms

ensemble of randomly chosen codeword + channel output

— 1 n | RN —_ —_
entropy of the i-th bit given all but the i-th output
1 ‘
e, use to show given code achieves capacity
08 | h(p) o
h't(p) i

ol threshold must occur at capacity
0.4 :
02| : S0, only need to show threshold exists

O s 1 135 2

crossover probability p



Duality in classical BP

When does classical BP work? local fields )
» spin model: Correlations decay = BP is good ORORONORORONGED
- error-probability ~ temperature

Dualize (Fourier) to find correlation decay: [

 low temperature <= high temperature spins .//""/\‘,/'\

- works for BEC; generally local fields are complex

interaction terms J

The dual channel is involved somehow...
 local field is related to likelihood function of channel

- complex local field is precisely the “quantum likelihood” of the dual channel!

- goal: understand appearance of dual channel; study classical BP



Summary

Sure you can!
At least, to crypto and coding

Many more open questions.
"But you can't go through life applying Is there a duality relation for BP?

Heisenberg's Uncertainty Principle to
everything."

Sidney Harris

IEEE Trans Inf Theory 64, 577 (2018)
arXiv:1708.05685 [quant-ph]



Proof of equality in uncertainty relation

1. Definitions 2. Entropy of purification
D(p,0) := Tr[p(log p — log o)] H(X4|B), — H(X4|C), = H(A|B),
H(A|B), =log|A| — D(pap,Ta ® pB) chain rules, plus
H(Z4|B), =log|A| — D(pap, ™4 ® pB) H(B|Xa), = H(C|Xa),
H(X4|B), =log|A| — D(pap,ma ® p5) for pure pasc

3. General chain rule
D(paB,ma ® pp) = D(pap,pas) + D(pap,ma @ pp) 4. Monotonicity

N “ D(paB,0aB) > D(paB,0aB)
Trlpaplogpap — paplogpap + paplogpap — paplog(ma ® pp)]

H(X4|B), — H(A|B), = D(paB,paB)
> D(pap, 74 ® pB)
= log |A| — H(Z4|B),

= H<XA|B>p + H(ZA|B)/0 > log |A] + H(A|B)p
H(XA|C)p + H(ZA|B)p > log |A|





