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Interactions in quantum mechanics are modeled by
“Hermitian” matrices and operators:

H=H'
Therefore the eigenvalues are real and can be ordered:

Eb<E<E<--
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Therefore the eigenvalues are real and can be ordered:
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What are the generic properties of H?
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Definition

Generic means typical behavior. Mathematically, Generic means
almost surely, or with probability one.

Generic instances are modeled by random matrices.
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@ Generic properties of H?
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@ Generic properties of H? Random Matrix Theory
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@ What subset is physical?
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@ What are generic properties of physical Hamiltonians?
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Since you might be interested ...

Quantity _______JResult ___________|Reference _____

Density of States, generic spin  Well captured by ideas in RM-, A. Edelman, (PRL 2011)
chains Random matrix Theory

Density of States, Anderson Well captured by RM-, A. Edelman +MIT
model Free Probability Theory Chemists, (PRL 2012)
Frustration free-ness and G.S.  Analytically solved using RM-, Farhi, Goldstone, Nagaj,
degeneracy, generic spin matrix product representation Osborne, Shor, (PRA 2010)
chains

Today: The gap of generic local Hamiltonians
(any dimension)
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Definition of Gapless
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Importance of the Gap

@ Gap and correlation functions are intimately connected

@ Gap and entanglement scalings are believed to be
interdependent

o Gapped systems are easier to classically simulate in
one-dimension (believed to hold in higher dimensions)

@ Gapless-ness is a necessary condition for quantum phase
transitions : lim, A =0
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Previous work

Solving the gap in general is a very hard problem:
e Gap problem is undecidable. Cubitt, Perez-Garcia, Wolf, Nature (2015)
e Frustration free translationally invariant qubit chains (s =1/2)

N-1

Hw) =Y [w)jj(vl,

Jj=1

where |y) is generic.

H(w) is strictly translationally invariant and generically gapped.
Bravyi and Gosset, Jour. of Math, Phys., (2015)
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Previous work

Solving the gap in general is a very hard problem:
e Gap problem is undecidable. Cubitt, Perez-Garcia, Wolf, Nature (2015)
e Frustration free translationally invariant qubit chains (s =1/2)

N-1
H(y) = Zl v)jjr1(vl,
=

where |y) is generic.

H(y) is strictly translationally invariant and generically gapped.
Bravyi and Gosset, Jour. of Math, Phys., (2015)

Today: Lack of an energy gap is completely a generic
property in the physical submanifold.
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Problem Statement

@ Take the Hamiltonian

H= Z Hj i,j are neighbours
(i)

o Let each Hj; be independent of others and a generic matrix.
H can be translationally invariant in a disordered sense.
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Problem Statement and Assumptions

@ Take the Hamiltonian

H= Z Hi i,j are neighbours

o Let each Hj; be independent of others and a generic matrix.
H can be translationally invariant in a disordered sense.
e E.g., GOE, GUE, GSE, Wishart [ These come up in Many-Body
Localization. Random exchange model. Griffiths’ singularities |
o E.g., Random projectors [ Important in quantum complexity
theory and quantum Satisfiability (qSAT) ]
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Assumption : Eigenvalues of Hj; *can* all get arbitrary close.
Matrix close to a multiple of an identity. E.g. Gaussian ensembles:

At AT
c=2272

: Ar |
2

In Matlab and for qubit interactions:

A=randn(4)+1i*randn(4); G=0.5%(A+A’);
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Generic local Hamiltonians are Gapless

H almost surely has a continuous density of states above the
ground state, if H;;'s are independent and each H;; has a
continuous joint distribution of eigenvalues that obeys Assumption.
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Proof Idea: Rare local regions
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Proof Idea: Rare local regions

H H°

Jj=2,j-1 I/ JojH i H J42,j+3
-——9 ® * * ® o ---

H=Y Hii+1=He®Lj1+Ie®@H
P
~Ae®Tj 1+ I @AY 4

* Apply Weyl inequalities. Perturbation theory just won't cut it!
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Proof Idea: Rare local regions
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If local eigenvalue distribution is discrete with Haar eigenvectors,
then the ground state is almost surely exactly degenerate and can
be represented as a product state.
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Example: Gaussian unitary ensemble

Let M, be a G(O/U/S)E matrix; the measure for general f is
Ha(B) = CalB) &4 M du,,
Let us fix a real number a, and compute the probability

P[[|M,—al,| ¢ < €]

’ B ‘ Entries ‘ Matrix ‘
1 Real Symmetric
2 | Complex Unitary
4 | Quaternion | Symplectic
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Example: Gaussian unitary ensemble

Let M, be a G(O/U/S)E matrix; the measure for general f is

.un(ﬁ) = Cn(ﬁ) efgtr(Mn)ZdMn.
Let us fix a real number a, and compute the probability
PlIIMy—als|p<€] = (Cn(ﬁ)—i-O(l))e*ﬁ"az/“s:”2

PHaeR:|M,—al|r<e] = (C(B)+o(1)) Es

’ B ‘ Entries ‘ Matrix ‘
1 Real Symmetric
2 | Complex Unitary
4 | Quaternion | Symplectic

Phys. Rev. Lett. 119, 220504 (2017
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Example: Gaussian unitary ensemble

The probability of a rare local region is (d 'spin states’ and n = d?
local eigenvalues)

p=(Ka(B)+o(1)) =" .

For the gap to be € small, the expected number of terms in the
Hamiltonian is (z overlapping terms)

N ~ 872d474
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Example: Gaussian unitary ensemble

The probability of a rare local region is (d 'spin states’ and n = d?
local eigenvalues)

p=(Ka(B)+o(1)) =" .

For the gap to be € small, the expected number of terms in the
Hamiltonian is (z overlapping terms)

N ~ 872d474
8(/\/) ~ Nfl/(zd4+4)
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Relaxing the assumption
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Generic Projectors Are Gapless

H is almost surely gapless if H;j are random rank-r projectors with
Haar eigenvectors and r is

1. Fixed and at most d(d —1).

2. Vary randomly among the terms in the Hamiltonian.

* * Note that we don’t have the assumption anymore.
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Corollaries

If local eigenvalue distribution is discrete with Haar eigenvectors,
then the Hamiltonian is almost surely gapless.
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@ The probability of rare regions is a function of local
distributions (not universal)

@ The gap scaling is a function of local statistics (not universal)

@ Really need Weyl inequality and perturbation theory won't do!
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Open problems

@ Translationally invariant Hamiltonians
@ Do there exist global configurations with smaller gaps?

@ Comparing our formulas against a serious numerical study of
the gap scaling for G(O/U/S)E local terms
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Thank you
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Proof Idea

At € =0, define

Ho=1I® H27q+ Z BijIxl;;+ Z I®Hj
(i )1=1 (i)1=2

Let A be the smallest eigenvalue of ¥ jy>21® H; ;.
1. Hpg = H)y+ 8Hpg, where [|8Hpql| < &
2. The summands of distant 1 terms are H;; = B; ;I; ; + § Hjj,
where |[6H; || < e.
Weyl's inequalities : the two smallest eigenvalues of H, denoted by
AEK with k € {1,2}, obey

min

Ae+B+A—B <Ay <Ae+B+A0+B, (1)

where B = [|6Hpg + X i jyj=1 0 Hil| < €(z+1), and
B Z| (i J) \71[3111 :
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