Faster ground state preparation and high-precision ground energy estimation with fewer qubits

Yimin Ge, J. Tura, J.I. Cirac
QIP 2018

arXiv:1712.03193*
“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.”
“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn’t look so easy.”
“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn’t look so easy.”
“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.”

Quantum simulation

Quantum chemistry

Small quantum computers
Motivation

Quantum simulation

Many important applications: $|\psi_0\rangle$ ground state of another non-trivial Hamiltonian!

Ground state problems generally hard! But may not apply to natural systems
Motivation

Quantum simulation

\[H, t \]

| \psi_0 \rangle

Many important applications:

| \psi_0 \rangle ground state of another non-trivial Hamiltonian!

Ground state problems generally hard!

But may not apply to natural systems
Motivation

Quantum simulation

\[H, t \]

Hamiltonian simulation algorithm

\[|\psi_0\rangle \]

Many important applications:

| \psi_0 \rangle ground state of another non-trivial Hamiltonian!

Ground state problems generally hard!

But may not apply to natural systems.
Motivation

Quantum simulation

$H, t \rightarrow |\psi_0\rangle \rightarrow |\psi_t\rangle = e^{-iHt} |\psi_0\rangle$

Many important applications:

| $\psi_0\rangle$ ground state of another non-trivial Hamiltonian!}

Ground state problems generally hard!

But may not apply to natural systems.
Motivation

Quantum simulation

Hamiltonian simulation algorithm

$|\psi_t\rangle = e^{-iHt} |\psi_0\rangle$
Motivation

Quantum simulation

\[H, t \rightarrow |\psi_t\rangle = e^{-iHt} |\psi_0\rangle \]

Many important applications: \(|\psi_0\rangle \) ground state of another non-trivial Hamiltonian!
Motivation

Quantum simulation

\[H, t \]

\[|\psi_0\rangle \]

Hamiltonian simulation algorithm

\[|\psi_t\rangle = e^{-iHt} |\psi_0\rangle \]

Many important applications: \(|\psi_0\rangle\) ground state of another non-trivial Hamiltonian!

Ground state problems generally hard!

But may not apply to natural systems
Motivation

Quantum linear systems algorithm with exponentially improved dependence on precision

Andrew Childs (U. Maryland)
Robin Kothari (MIT)
Rolando Somma (Los Alamos)

arXiv:1511.02786
QIP 2016
Are there any killer applications of this??
1. General approaches for ground state preparation

2. Algorithms – details

3. Suitability for early quantum computers
Ground state preparation – approaches

Phase estimation

\[|+\rangle \quad \cdots \quad |\phi\rangle \]

\[U^2_0 \quad U^2_1 \quad \cdots \quad U^2_{n-1} \quad QFT^\dagger \]

Paradigm: First heuristic method, then phase estimation

Problem: Project given trial state \[|\phi\rangle \] onto its ground state component
Ground state preparation – approaches

Phase estimation

\[|+\rangle \quad \cdots \quad |+\rangle \]

\[U^{2^0} \quad U^{2^1} \quad \cdots \quad U^{2^{n-1}}\]

\[QFT^\dagger\]

\[|\phi\rangle \quad |+\rangle \quad |+\rangle \quad |+\rangle \]

Problem: Project given trial state \(|\phi\rangle\) onto its ground state component.
Ground state preparation – approaches

Phase estimation

\[|+\rangle \quad \ldots \quad U^2_n |\phi\rangle \approx |\text{ground state}\rangle \]

Paradigm: First heuristic method, then phase estimation

Problem: Project given trial state \(|\phi\rangle \) onto its ground state component.
Ground state preparation – approaches

Phase estimation

\[|+\rangle \quad \cdots \quad |+\rangle \quad |+\rangle \quad |\phi\rangle \]

\[U^0 \quad U^1 \quad \cdots \quad U^{n-1} \]

\[QFT^\dagger \]

\[|\text{ground state}\rangle \]

Adiabatic algorithms

Paradigm: First heuristic method, then phase estimation

This work: Improves part of phase estimation

Problem: Project given trial state \(|\phi\rangle\) onto its ground state component
Ground state preparation – approaches

Phase estimation

| + ⟩ ---- ⋯ ---- + ⟩
| + ⟩ ---- ⋯ ---- + ⟩
| + ⟩ ---- ⋯ ---- + ⟩

QFT†

| φ ⟩ = U²⁰ ⋯ U²ⁿ⁻¹ | ground state ⟩?

Adiabatic algorithms

H(0) \stackrel{H(s)}{\longrightarrow} H(1)

Problem: Project given trial state | φ ⟩ onto its ground state component.
Ground state preparation – approaches

Phase estimation

\[|+_\rangle \quad \cdots \quad |+_\rangle \quad |+_\rangle \]

\[|\varphi\rangle = U^0 |+_\rangle \quad U^1 |+_\rangle \quad \cdots \quad U^{n-1} |+_\rangle \]

\[QFT^\dagger \]

Adiabatic algorithms

\[
\begin{aligned}
H(0) & \xrightarrow{H(s)} H(1) \\
|\text{GS}(0)\rangle & \\
\end{aligned}
\]

Problem: Project given trial state \(|\varphi\rangle \) onto its ground state component

Paradigm: First heuristic method, then phase estimation

This work: Improves part of phase estimation

trial state
Ground state preparation – approaches

Phase estimation

\[
|+\rangle \rightarrow \cdots \rightarrow |\phi\rangle = U^0 |\rangle U^1 |\rangle \cdots U^{n-1} |\rangle \approx |\text{ground state}\rangle?
\]

\[
\text{QFT}^\dagger
\]

Adiabatic algorithms

\[
H(0) \xrightarrow{H(s)} H(1) |\text{GS(0)}\rangle
\]

Problem: Project given trial state \(|\phi\rangle \) onto its ground state component
Ground state preparation – approaches

Phase estimation

Adiabatic algorithms

$$H(0) \xrightarrow{H(s)} H(1)$$

$$|\text{GS(0)}\rangle$$

$$|\phi\rangle = U^{2^0} U^{2^1} \cdots U^{2^{n-1}} |\text{ground state}\rangle?$$

Phase estimation

Problem:

Project given trial state $$|\phi\rangle$$ onto its ground state component.
Ground state preparation – approaches

Phase estimation

\[|\phi\rangle \quad U^0 \quad U^1 \quad \cdots \quad U^{n-1} \quad |\text{ground state}\rangle? \]

Adiabatic algorithms

\[
\begin{align*}
H(0) & \xrightarrow{H(s)} H(1) \\
|\text{GS}(0)\rangle & \approx |\text{GS}(1)\rangle
\end{align*}
\]
Ground state preparation – approaches

Phase estimation

\[|+\rangle \quad \ldots \quad |+\rangle \quad QFT^{\dagger} \quad |\text{ground state}\rangle \]

Adiabatic algorithms

\[H(0) \xrightarrow{H(s)} H(1) \quad |\text{GS}(0)\rangle \approx |\text{GS}(1)\rangle \]

\[\begin{array}{c}
\text{E}_0(s) \\
\Delta_{\text{min}} \\
\text{E}_1(s)
\end{array} \]

Problem: Project given trial state \(|\phi\rangle \) onto its ground state component.

Paradigm: First heuristic method, then phase estimation.

This work: Improves part of phase estimation.
 Ground state preparation – approaches

Phase estimation

\[|\psi\rangle = U^0 |+\rangle + U^1 |+\rangle + \cdots + U^{n-1} |+\rangle \]

|ground state⟩?

Adiabatic algorithms

\[H(0) \xrightarrow{H(s)} H(1) \]

\[|\text{GS}(0)\rangle \quad |\phi\rangle \]

\[E \]

\[0 \quad 1 \]

\[\Delta_{\text{min}} \]

\[E_0(s) \quad E_1(s) \]

Phase estimation

Paradigm: First heuristic method, then phase estimation

This work: Improves part of phase estimation

Problem: Project given trial state \(|\phi\rangle\) onto its ground state component
Ground state preparation – approaches

Phase estimation

\[|\phi\rangle = U^0 \cdot |\phi\rangle \]

|\phi\rangle = U^0 \cdot U^1 \cdot \ldots \cdot U^{n-1} |\text{ground state}\rangle?

Adiabatic algorithms

\[H(0) \xrightarrow{H(s)} H(1) \]

\[|\text{GS}(0)\rangle \quad |\phi\rangle \]

\[\Delta_{\min} \]

\[E_0(s) \]

\[E_1(s) \]

Paradigm: First heuristic method, then phase estimation
Phase estimation

\[|+\rangle \rightarrow \cdots \rightarrow |\phi\rangle \]

\[|+\rangle \rightarrow \cdots \rightarrow |\phi\rangle \]

\[|+\rangle \rightarrow \cdots \rightarrow |\phi\rangle \]

\[|\phi\rangle = U^2_0 U^1 \cdots U^{n-1} \text{ |ground state}\]?

Adiabatic algorithms

\[H(0) \rightarrow^{H(s)} H(1) \]

\[|\text{GS}(0)\rangle \rightarrow |\phi\rangle \]

\[E \rightarrow \Delta_{\text{min}} E_1(s) \]

\[E_0(s) \]

\[0 \rightarrow 1 \]

\[\text{Phase estimation} + \]

Paradigm: First heuristic method, then phase estimation

This work: Improves part of phase estimation
Ground state preparation – approaches

Phase estimation

\[
|+\rangle, \ldots, |+\rangle, |\phi\rangle = U^0 \cdots U^{n-1} |\text{ground state}\rangle
\]

Adiabatic algorithms

\[
H(0) \rightarrow^{H(s)} H(1) \\
|\text{GS}(0)\rangle \rightarrow |\phi\rangle
\]

\[
E \rightarrow^{\Delta_{\text{min}}} E_1(s) \rightarrow E_0(s)
\]

Paradigm: First heuristic method, then phase estimation

This work: Improves part of phase estimation

Problem: Project given trial state \(|\phi\rangle\) onto its ground state component
Setup

- Hamiltonian H, spectrum in $[0, 1]$
 - Eigenstates $|\lambda_i\rangle$
 - Ground energy λ_0, ground state $|\lambda_0\rangle$
 - All other eigenvalues: $\lambda_i \geq \lambda_0 + \Delta$
 - Can efficiently perform time evolution of H (e.g., sparse & oracle access, linear combination of easy unitaries, etc [BCK15, BCCKS15, LC16, LC17])

Circuit C_ϕ, prepares trial state $|\phi\rangle$

- $\phi_0 := \langle \lambda_0 | \phi \rangle$ (generally unknown)

- Known lower bound $\chi \leq |\phi_0|$

- Trivial assumption: $\chi = e^{-O(\log N)}$

Aim: Extract state $|\lambda'_0\rangle$ such that $\| |\lambda'_0\rangle - |\lambda_0\rangle \| < \epsilon$ for given ϵ
Setup

\(N \times N \) Hamiltonian \(H \), spectrum in \([0, 1]\)

- Eigenstates \(|\lambda_i\rangle\)
- Ground energy \(\lambda_0\), ground state \(|\lambda_0\rangle\)
- All other eigenvalues: \(\lambda_i \geq \lambda_0 + \Delta\)
- Can efficiently perform time evolution of \(H \)

(eg sparse & oracle access, linear combination of easy unitaries, etc [BCK15, BCCKS15, LC16, LC17])
Setup

$N \times N$ Hamiltonian H, spectrum in $[0, 1]$

- Eigenstates $|\lambda_i\rangle$
- Ground energy λ_0, ground state $|\lambda_0\rangle$
- All other eigenvalues: $\lambda_i \geq \lambda_0 + \Delta$
- Can efficiently perform time evolution of H

(eg sparse & oracle access, linear combination of easy unitaries, etc [BCK15, BCCKS15, LC16, LC17])

Circuit C_ϕ, prepares trial state $|\phi\rangle$

- $\phi_0 := \langle \lambda_0 | \phi \rangle$ (generally unknown)
- Known lower bound $\chi \leq |\phi_0|$
- Trivial assumption: $\chi = e^{-O(\log N)}$
Setup

\(N \times N\) Hamiltonian \(H\), spectrum in \([0, 1]\)

- Eigenstates \(|\lambda_i\rangle\)
- Ground energy \(\lambda_0\), ground state \(|\lambda_0\rangle\)
- All other eigenvalues: \(\lambda_i \geq \lambda_0 + \Delta\)
- Can efficiently perform time evolution of \(H\)

 (eg sparse & oracle access, linear combination of easy unitaries, etc [BCK15, BCCKS15, LC16, LC17])

Circuit \(C_\phi\), prepares trial state \(|\phi\rangle\)

- \(\phi_0 := \langle \lambda_0 | \phi\rangle\) (generally unknown)
- Known lower bound \(\chi \leq |\phi_0|\)
- Trivial assumption: \(\chi = e^{-O(\log N)}\)

Aim: Extract state \(|\lambda'_0\rangle\) st \(\| |\lambda'_0\rangle - |\lambda_0\rangle\| < \epsilon\) for given \(\epsilon\)
Ground state preparation

N = total dimension of \(H \)

\(\Delta \) = known lower bound on spectral gap

\(\epsilon \) = allowed error

\(\xi \) = required precision

\(\phi_0 \) = overlap of trial state with ground state

\(\chi \) = known lower bound on \(|\phi_0| \)

\(\Lambda \) = base cost of Hamiltonian simulation

\(\Phi \) = cost of preparing trial state
Ground state preparation
Ground state preparation

Ground energy known
Results & Comparisons

Ground state preparation

Ground energy known

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase est + AA</td>
<td>$\tilde{O}\left(\frac{\Lambda}{</td>
<td>\phi_0</td>
</tr>
</tbody>
</table>

-N = total dimension of H

-Δ = known lower bound on spectral gap

-ϵ = allowed error

-ϕ_0 = overlap of trial state with ground state

-χ = known lower bound on $|\phi_0|$

-Λ = base cost of Hamiltonian simulation

-Φ = cost of preparing trial state $|\phi\rangle$
Ground state preparation

Ground energy known

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase est + AA</td>
<td>$\tilde{O}\left(\frac{\Lambda}{</td>
<td>\phi_0</td>
</tr>
</tbody>
</table>

- $N = \text{total dimension of } H$
- $\Delta = \text{known lower bound on spectral gap}$
- $\epsilon = \text{allowed error}$
- $\phi_0 = \text{overlap of trial state with ground state}$
- $\chi = \text{known lower bound on } |\phi_0|$
- $\Lambda = \text{base cost of Hamiltonian simulation}$
- $\Phi = \text{cost of preparing trial state } |\phi\rangle$
Results & Comparisons

Ground state preparation

Ground energy known

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase est + AA</td>
<td>$\tilde{O}\left(\frac{\Lambda}{</td>
<td>\phi_0</td>
</tr>
</tbody>
</table>

$N =$ total dimension of H

$\Delta =$ known lower bound on spectral gap

$\epsilon =$ allowed error

$\phi_0 =$ overlap of trial state with ground state

$\chi =$ known lower bound on $|\phi_0|$

$\Lambda =$ base cost of Hamiltonian simulation

$\Phi =$ cost of preparing trial state $|\phi\rangle$
Results & Comparisons

Ground state preparation

Ground energy known

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase est + AA</td>
<td>$\tilde{O}\left(\frac{\Lambda}{</td>
<td>\phi_0</td>
</tr>
<tr>
<td>Multicopy PEA (eg [PW'09])</td>
<td>$\tilde{O}\left(\frac{\Lambda}{</td>
<td>\phi_0</td>
</tr>
</tbody>
</table>

$N = \text{total dimension of } H$

$\Delta = \text{known lower bound on spectral gap}$

$\epsilon = \text{allowed error}$

$\phi_0 = \text{overlap of trial state with ground state}$

$\chi = \text{known lower bound on } |\phi_0|$

$\Lambda = \text{base cost of Hamiltonian simulation}$

$\Phi = \text{cost of preparing trial state } |\phi\rangle$
Ground state preparation

Ground energy known

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase est + AA</td>
<td>$\tilde{O}\left(\frac{\Lambda}{</td>
<td>\phi_0</td>
</tr>
<tr>
<td>Multicopy PEA (eg [PW’09])</td>
<td>$\tilde{O}\left(\frac{\Lambda}{</td>
<td>\phi_0</td>
</tr>
</tbody>
</table>

$N =$ total dimension of H

$\Delta =$ known lower bound on spectral gap

$\epsilon =$ allowed error

$\phi_0 =$ overlap of trial state with ground state

$\chi =$ known lower bound on $|\phi_0|$

$\Lambda =$ base cost of Hamiltonian simulation

$\Phi =$ cost of preparing trial state $|\phi\rangle$
Results & Comparisons

Ground state preparation

Ground energy known

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase est + AA</td>
<td>$\tilde{O} \left(\frac{\Lambda}{</td>
<td>\phi_0</td>
</tr>
<tr>
<td>Multicopy PEA (eg [PW'09])</td>
<td>$\tilde{O} \left(\frac{\Lambda}{</td>
<td>\phi_0</td>
</tr>
<tr>
<td>This work</td>
<td>$\tilde{O} \left(\frac{\Lambda}{</td>
<td>\phi_0</td>
</tr>
</tbody>
</table>

- N = total dimension of H
- Δ = known lower bound on spectral gap
- ϵ = allowed error
- ϕ_0 = overlap of trial state with ground state
- χ = known lower bound on $|\phi_0|$
- Λ = base cost of Hamiltonian simulation
- Φ = cost of preparing trial state $|\phi\rangle$
Results & Comparisons

Ground state preparation
Ground energy unknown

$N = \text{total dimension of } H$
$\Delta = \text{known lower bound on spectral gap}$
$\epsilon = \text{allowed error}$

$\phi_0 = \text{overlap of trial state with ground state}$
$\chi = \text{known lower bound on } |\phi_0|$
$\Lambda = \text{base cost of Hamiltonian simulation}$
$\Phi = \text{cost of preparing trial state } |\phi\rangle$
Results & Comparisons

Ground state preparation

Ground energy unknown

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase est</td>
<td>$\tilde{O}\left(\frac{\Lambda}{\chi^4 \Delta \epsilon} + \frac{\Phi}{\chi}\right)$</td>
<td>$O\left(\log N + \log \frac{1}{\epsilon} + \log \frac{1}{\Delta}\right)$</td>
</tr>
<tr>
<td>Multicopy PEA (eg [PW'09])</td>
<td>$\tilde{O}\left(\frac{\Lambda}{\chi \Delta^{3/2}} + \frac{\Phi}{\chi \sqrt{\Delta}}\right)$</td>
<td>$O\left(\log N + \log \frac{1}{\epsilon} + \frac{\log \frac{1}{\chi \epsilon}}{\log \log \frac{1}{\chi \epsilon}} \times \log \frac{1}{\Delta}\right)$</td>
</tr>
</tbody>
</table>

- $N = \text{total dimension of } H$
- $\Delta = \text{known lower bound on spectral gap}$
- $\epsilon = \text{allowed error}$
- $\phi_0 = \text{overlap of trial state with ground state}$
- $\chi = \text{known lower bound on } |\phi_0|$
- $\Lambda = \text{base cost of Hamiltonian simulation}$
- $\Phi = \text{cost of preparing trial state } |\phi\rangle$
Results & Comparisons

Ground state preparation

Ground energy unknown

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase est</td>
<td>$\tilde{O} \left(\frac{\Lambda}{\chi^4 \Delta \epsilon} + \frac{\Phi}{\chi} \right)$</td>
<td>$O \left(\log N + \log \frac{1}{\epsilon} + \log \frac{1}{\Delta} \right)$</td>
</tr>
<tr>
<td>Multicopy PEA (eg [PW'09])</td>
<td>$\tilde{O} \left(\frac{\Lambda}{\chi \Delta^{3/2}} + \frac{\Phi}{\chi \sqrt{\Delta}} \right)$</td>
<td>$O \left(\log N + \log \frac{1}{\epsilon} + \frac{\log \frac{1}{\chi \epsilon}}{\log \log \frac{1}{\chi \epsilon}} \times \log \frac{1}{\Delta} \right)$</td>
</tr>
<tr>
<td>This work</td>
<td>$\tilde{O} \left(\frac{\Lambda}{\chi \Delta^{3/2}} + \frac{\Phi}{\chi \sqrt{\Delta}} \right)$</td>
<td>$O \left(\log N + \log \log \frac{1}{\epsilon} + \log \frac{1}{\Delta} \right)$</td>
</tr>
</tbody>
</table>

$N =$ total dimension of H

$\Delta =$ known lower bound on spectral gap

$\epsilon =$ allowed error

$\phi_0 =$ overlap of trial state with ground state

$\chi =$ known lower bound on $|\phi_0|$
Ground state preparation

Ground energy unknown

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase est</td>
<td>$\tilde{O} \left(\frac{\Lambda}{\chi^4 \Delta \epsilon} + \frac{\Phi}{\chi} \right)$</td>
<td>$O \left(\log N + \log \frac{1}{\epsilon} + \log \frac{1}{\Delta} \right)$</td>
</tr>
<tr>
<td>Multicopy PEA (eg [PW'09])</td>
<td>$\tilde{O} \left(\frac{\Lambda}{\chi \Delta^{3/2}} + \frac{\Phi}{\chi \sqrt{\Delta}} \right)$</td>
<td>$O \left(\log N + \log \frac{1}{\epsilon} + \frac{\log \frac{1}{\chi \epsilon}}{\log \log \frac{1}{\chi \epsilon}} \times \log \frac{1}{\Delta} \right)$</td>
</tr>
<tr>
<td>This work</td>
<td>$\tilde{O} \left(\frac{\Lambda}{\chi \Delta^{3/2}} + \frac{\Phi}{\chi \sqrt{\Delta}} \right)$</td>
<td>$O \left(\log N + \log \log \frac{1}{\epsilon} + \log \frac{1}{\Delta} \right)$</td>
</tr>
<tr>
<td>This work + PEA</td>
<td>$\tilde{O} \left(\frac{\Lambda}{\chi^3 \Delta} + \frac{\Phi}{\chi} \right)$</td>
<td>\tilde{O}</td>
</tr>
</tbody>
</table>

\(N \) = total dimension of \(H \)
\(\Delta \) = known lower bound on spectral gap
\(\epsilon \) = allowed error
\(\phi_0 \) = overlap of trial state with ground state
\(\chi \) = known lower bound on \(|\phi_0| \)
\(\Lambda \) = base cost of Hamiltonian simulation
\(\Phi \) = cost of preparing trial state \(|\phi\rangle \)
Results & Comparisons

Ground energy estimation

\(N = \) total dimension of \(H \)
\(\Delta = \) known lower bound on spectral gap
\(\epsilon = \) allowed error
\(\phi_0 = \) overlap of trial state with ground state
\(\chi = \) known lower bound on \(|\phi_0| \)
\(\Lambda = \) base cost of Hamiltonian simulation
\(\Phi = \) cost of preparing trial state \(|\phi\rangle \)
Ground energy estimation

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase est</td>
<td>$\tilde{O}\left(\frac{\Lambda}{\chi^3 \xi} + \frac{\Phi}{\chi}\right)$</td>
<td>$O\left(\log N + \log \frac{1}{\xi}\right)$</td>
</tr>
<tr>
<td>Multicopy PEA (eg [PW’09])</td>
<td>$\tilde{O}\left(\frac{\Lambda}{\chi \xi^{3/2}} + \frac{\Phi}{\chi \sqrt{\xi}}\right)$</td>
<td>$O\left(\log N + \frac{\log \frac{1}{\chi}}{\log \log \frac{1}{\chi}} \times \log \frac{1}{\xi}\right)$</td>
</tr>
<tr>
<td>This work</td>
<td>$\tilde{O}\left(\frac{\Lambda}{\chi \xi^{3/2}} + \frac{\Phi}{\chi \sqrt{\xi}}\right)$</td>
<td>$O\left(\log N + \log \frac{1}{\xi}\right)$</td>
</tr>
</tbody>
</table>

$N =$ total dimension of H

$\Delta =$ known lower bound on spectral gap

$\epsilon =$ allowed error

$\xi =$ required precision

$\phi_0 =$ overlap of trial state with ground state

$\chi =$ known lower bound on $|\phi_0|$

$\Lambda =$ base cost of Hamiltonian simulation

$\Phi =$ cost of preparing trial state $|\phi\rangle$
Ground energy estimation

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase est</td>
<td>$\tilde{O}\left(\frac{\Lambda}{\chi^3 \xi} + \frac{\Phi}{\chi}\right)$</td>
<td>$O\left(\log N + \log \frac{1}{\xi}\right)$</td>
</tr>
<tr>
<td>Multicopy PEA (eg [PW'09])*</td>
<td>$\tilde{O}\left(\frac{\Lambda}{\chi \xi^{3/2}} + \frac{\Phi}{\chi \sqrt{\xi}}\right)$</td>
<td>$O\left(\log N + \frac{\log \frac{1}{\chi}}{\log \log \frac{1}{\chi}} \times \log \frac{1}{\xi}\right)$</td>
</tr>
<tr>
<td>This work*</td>
<td>$\tilde{O}\left(\frac{\Lambda}{\chi \xi^{3/2}} + \frac{\Phi}{\chi \sqrt{\xi}}\right)$</td>
<td>$O\left(\log N + \log \frac{1}{\xi}\right)$</td>
</tr>
</tbody>
</table>

* for $\xi \ll \Delta$

N = total dimension of H

Δ = known lower bound on spectral gap

ϵ = allowed error

ξ = required precision

ϕ_0 = overlap of trial state with ground state

χ = known lower bound on $|\phi_0|$
Algorithm

Idea:

1. Approximate ground state projector

\[\cos^2 m H' |\phi\rangle \propto \sim |\lambda_0\rangle \]

for \(m \approx 1/\Delta^2 \)

2. Approximate as linear combination of easy unitaries

\[\cos^2 m H' = \sum_{k=-m}^m \alpha_k e^{-2iH'k} \]

\(\alpha_k = \frac{1}{2} m \left(\frac{2m^2 + k}{2m} \right) \)

\(m_0 \approx \sqrt{m} \)

3. Use LCU Lemma

Alternative:

1. \((1 - H'^2)^2 m \) as approximate ground state projector

2. Expand in Chebyshev polynomials

3. Quantum walks

Implementing linear combination of unitaries eg [CKS'15]

LCU Lemma:

Able to perform unitaries \(U_k \Rightarrow \) can perform \(V := \sum_k \alpha_k U_k \)

1. Implement \(V \) with some amplitude \(B |0\rangle = \sum_k \sqrt{\alpha_k} |k\rangle \), \(\alpha = \sum_k |\alpha_k|^2 \)

\[B^\dagger U_k |0\rangle = |\phi\rangle \langle 0| V |\phi\rangle \langle \phi| \]

Postselection on ancilla: implement deterministically

2. Amplitude amplification:

\[\| \alpha |0\rangle V |\psi\rangle \| \rightarrow 1 \]
Idea:

1. Approximate ground state projector
Algorithm

Idea:

1. Approximate ground state projector

2. Approximate as linear combination of easy unitaries

Alternative:

1. \((1 - H' / 2)^2 m\) as approximate ground state projector

2. Expand in Chebyshev polynomials

3. Quantum walks

Implementing linear combination of unitaries eg [CKS'15]

LCU Lemma: Able to perform unitaries \(U_k \Rightarrow \) can perform \(V := \sum_k \alpha_k U_k\)

1. Implement \(V\) with some amplitude

\[|0\rangle = \frac{1}{\sqrt{\alpha}} \sum \sqrt{\alpha_k} |k\rangle \], \(\alpha = \sum |\alpha_k|^2\)"
Algorithm

Idea:

1. Approximate ground state projector

2. Approximate as linear combination of easy unitaries

3. Use LCU Lemma
Algorithm

Implementing linear combination of unitaries

LCU Lemma: Able to perform unitaries U_k \Rightarrow can perform $V := \sum_k \alpha_k U_k$

eg [CKS’15]
Algorithm

Implementing linear combination of unitaries

LCU Lemma: Able to perform unitaries $U_k \Rightarrow$ can perform $V := \sum_k \alpha_k U_k$

1. Implement V with some amplitude
Algorithm

Implementing linear combination of unitaries

LCU Lemma: Able to perform unitaries U_k \Rightarrow can perform $V := \sum_k \alpha_k U_k$

1. Implement V with some amplitude

$$B \ket{0} = \frac{1}{\sqrt{\alpha}} \sum \sqrt{\alpha_k} \ket{k}, \quad \alpha = \sum |\alpha_k|$$

$$B \ket{0} = \frac{1}{\sqrt{\alpha}} \sum \sqrt{\alpha_k} \ket{k}, \quad \alpha = \sum |\alpha_k|$$

|0⟩ ——— B ——— Š ——— ⟨0|

|φ⟩ ——— U_k ——— V |φ⟩
Algorithm

Implementing linear combination of unitaries

LCU Lemma: Able to perform unitaries $U_k \Rightarrow$ can perform $V := \sum_k \alpha_k U_k$

1. **Implement V with some amplitude**

 $$B |0\rangle = \frac{1}{\sqrt{\alpha}} \sum \sqrt{\alpha_k} |k\rangle, \quad \alpha = \sum |\alpha_k|$$

 $\begin{array}{c}
 \text{Postselection on ancilla: implement V deterministically}
 \end{array}$
Implementing linear combination of unitaries

Algorithm

1. Approximate ground state projector

\[\cos^2 m H' \approx |\lambda_0 \rangle \]

for \(m \approx 1/\Delta^2 \)

2. Approximate as linear combination of easy unitaries

\[
\cos^2 m H' = \sum_{k=-m}^{m} \alpha_k e^{-2iH'k}, \quad \alpha_k = \frac{1}{2m} \left(\frac{2m}{m} + k \right)
\]

3. Use LCU Lemma

LCU Lemma: Able to perform unitaries \(U_k \) \(\Rightarrow \) can perform \(V := \sum_k \alpha_k U_k \)

1. Implement \(V \) with some amplitude

\[
B \langle 0 | = \frac{1}{\sqrt{\alpha}} \sum \sqrt{\alpha_k} | k \rangle, \quad \alpha = \sum |\alpha_k|
\]

\[|0\rangle \rightarrow B \]

\[|\phi\rangle \rightarrow U_k \]

\[|\ast\rangle = \frac{1}{\alpha} |0\rangle V |\phi\rangle + \sqrt{1 - \frac{1}{\alpha^2}} |R\rangle, \quad \langle 0| R \rangle = 0
\]

eg [CKS'15]
Algorithm

Implementing linear combination of unitaries

LCU Lemma: Able to perform unitaries U_k \Rightarrow can perform $V := \sum_k \alpha_k U_k$

1. Implement V with some amplitude

$$B |0\rangle = \frac{1}{\sqrt{\alpha}} \sum \sqrt{\alpha_k} |k\rangle,$$

$$\alpha = \sum |\alpha_k|$$

2. Amplitude amplification:

$$\left\| \frac{1}{\alpha} |0\rangle V |\psi\rangle \right\| \rightarrow 1$$
Algorithm

Idea:

1. Approximate ground state projector

2. Approximate as linear combination of easy unitaries

3. Use LCU Lemma
Assume: ground energy known. \(H' := H - \lambda_0 \)

1. Approximate ground state projector

2. Approximate as linear combination of easy unitaries

3. Use LCU Lemma
Algorithm

Assume: ground energy known. \(H' := H - \lambda_0 \)

1. Approximate ground state projector
 \[\cos^{2m} H' \]

2. Approximate as linear combination of easy unitaries

3. Use LCU Lemma
Algorithm

Assume: ground energy known. $H' := H - \lambda_0$

1. Approximate ground state projector
 \[\cos^{2m} H' |\phi\rangle \otimes |\lambda_0\rangle \quad \text{for} \quad m \approx 1/\Delta^2 \]

2. Approximate as linear combination of easy unitaries

3. Use LCU Lemma
Algorithm

Assume: ground energy known. $H' := H - \lambda_0$

1. Approximate ground state projector

$$\cos^2 m H' \ket{\phi} \propto \ket{\lambda_0} \quad \text{for } m \approx 1/\Delta^2$$

2. Approximate as linear combination of easy unitaries

$$\cos^2 m H' = \sum_{k=-m}^{m} \alpha_k e^{-2iH'k} \quad \alpha_k := \frac{1}{2^{2m}} \binom{2m}{m + k}$$

3. Use LCU Lemma
Algorithm

Assume: ground energy known. $H' := H - \lambda_0$

1. Approximate ground state projector

$$\cos^{2m} H' \ket{\phi} \cong \ket{\lambda_0} \quad \text{for } m \approx 1/\Delta^2$$

2. Approximate as linear combination of easy unitaries

$$\cos^{2m} H' \approx \sum_{k=-m_0}^{m_0} \alpha_k e^{-2iH'k}, \quad \alpha_k := \frac{1}{2^{2m}} \binom{2m}{m+k}, \quad m_0 \approx \sqrt{m}$$

3. Use LCU Lemma
Algorithm

Assume: ground energy known. $H' := H - \lambda_0$

1. Approximate ground state projector
 \[
 \cos^{2m} H' |\phi\rangle \approx |\lambda_0\rangle \quad \text{for} \quad m \approx 1/\Delta^2
 \]

2. Approximate as linear combination of easy unitaries
 \[
 \cos^{2m} H' \approx \sum_{k=-m_0}^{m_0} \alpha_k e^{-2iH'k}, \quad \alpha_k := \frac{1}{2^{2m}} \binom{2m}{m + k}, \quad m_0 \approx \sqrt{m}
 \]

3. Use LCU Lemma

Alternative:
1. $(1 - H'^2)^{2m}$ as approximate ground state projector
2. Expand in Chebyshev polynomials
3. Quantum walks
Algorithm – ground energy unknown

Previous algorithm:
• Requires knowing ground energy up to precision $\tilde{O}(\Delta)$
• Smaller values OK, but exponentially small prob of success

Naive approach: run with increasing values for λ_0, step size $\tilde{O}(\Delta)$, stop when successful → overall runtime factor $\tilde{O}(1/\Delta)$.

Quantum search: $\tilde{O}(1/\sqrt{\Delta})$.

Lemma (Minimum label finding)
• L unitaries $U_j |0\rangle |0\rangle = |0\rangle |\Phi_j\rangle + |R_j\rangle$, $\langle 0 | R_j \rangle = 0$
• $|\Phi\rangle := \frac{1}{\sqrt{L}} \sum_j |0\rangle |j\rangle |\Phi_j\rangle + |R\rangle$, $\langle 0 | R \rangle = 0$

⇒ Given χ, can approximately find smallest j s.t. $\| |\Phi_j\rangle\| \geq \chi$ using $\tilde{O}(\sqrt{L}/\chi)$ calls to $U = \sum_j |j\rangle \langle j| \otimes U_j I$.

Idea: Binary search on label ancilla using amplitude amplification
Algorithm – ground energy unknown

Previous algorithm:
- Requires knowing ground energy up to precision $\tilde{O}(\Delta)$
Algorithm – ground energy unknown

Previous algorithm:

- Requires knowing ground energy up to precision $\tilde{O}(\Delta)$
- Smaller values OK, but exponentially small prob of success

Naive approach: run with increasing values for λ_0, step size $\tilde{O}(\Delta)$, stop when successful

Overall runtime factor $\tilde{O}(1/\Delta)$.

Quantum search: $\tilde{O}(1/\sqrt{\Delta})$.

Lemma (Minimum label finding)

- L unitaries $U_j|0\rangle|0\rangle = |0\rangle|\Phi_j\rangle + |R_j\rangle$,
 $\langle 0 | R_j \rangle = 0$

- $|\Phi\rangle := \frac{1}{\sqrt{L}} \sum_j |0\rangle|j\rangle|\Phi_j\rangle + |R\rangle$,
 $\langle 0 | R \rangle = 0$

\Rightarrow Given χ, can approximately find smallest j s.t. $\|\Phi_j\| \geq \chi$ using $\tilde{O}(\sqrt{L/\chi})$ calls to $U = \sum_j |j\rangle\langle j| \otimes U_jI$.
Algorithm – ground energy unknown

Previous algorithm:

- Requires knowing ground energy up to precision $\tilde{O}(\Delta)$
- Smaller values OK, but exponentially small prob of success

Naive approach: run with increasing values for λ_0, step size $\tilde{O}(\Delta)$, stop when successful \rightarrow overall runtime factor $\tilde{O}(1/\Delta)$.
Algorithm – ground energy unknown

Previous algorithm:

- Requires knowing ground energy up to precision $\tilde{O}(\Delta)$
- Smaller values OK, but exponentially small prob of success

Naive approach: run with increasing values for λ_0, step size $\tilde{O}(\Delta)$, stop when successful \rightarrow overall runtime factor $\tilde{O}(1/\Delta)$. Quantum search: $\tilde{O}(1/\sqrt{\Delta})$
Algorithm – ground energy unknown

Previous algorithm:
- Requires knowing ground energy up to precision $\tilde{O}(\Delta)$
- Smaller values OK, but exponentially small prob of success

Naive approach: run with increasing values for λ_0, step size $\tilde{O}(\Delta)$, stop when successful \implies overall runtime factor $\tilde{O}(1/\Delta)$. Quantum search: $\tilde{O}(1/\sqrt{\Delta})$

<table>
<thead>
<tr>
<th>Lemma (Minimum label finding)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L unitaries $U_j</td>
</tr>
<tr>
<td>$</td>
</tr>
</tbody>
</table>

\Rightarrow Given χ, can approximately find smallest j s.t. $\|\Phi_j\| \geq \chi$

using $\tilde{O}(\sqrt{L}/\chi)$ calls to $U = \sum_j |j\rangle\langle j| \otimes U_j$
Algorithm – ground energy unknown

Previous algorithm:
- Requires knowing ground energy up to precision $\tilde{O}(\Delta)$
- Smaller values OK, but exponentially small prob of success

Naive approach: run with increasing values for λ_0, step size $\tilde{O}(\Delta)$, stop when successful → overall runtime factor $\tilde{O}(1/\Delta)$. Quantum search: $\tilde{O}(1/\sqrt{\Delta})$

Lemma (Minimum label finding)

- L unitaries $U_j |0\rangle|0\rangle = |0\rangle|\Phi_j\rangle + |R_j\rangle$, $\langle 0|R_j \rangle = 0$
- $|\Phi\rangle := \frac{1}{\sqrt{L}} \sum_j |0\rangle|j\rangle|\Phi_j\rangle + |R\rangle$, $\langle 0|R \rangle = 0$

\Rightarrow Given χ, can approximately find smallest j s.t. $||\Phi_j|| \geq \chi$

using $\tilde{O}(\sqrt{L}/\chi)$ calls to $U = \sum_j |j\rangle\langle j| \otimes U_j$

Idea: Binary search on label ancilla using amplitude amplification
Lemma (Minimum label finding)

- \(L \) unitaries \(U_j |0\rangle|0\rangle = |0\rangle|\Phi_j\rangle + |R_j\rangle, \quad \langle 0|R_j \rangle = 0 \)
- \(|\Phi\rangle := \frac{1}{\sqrt{L}} \sum_j |0\rangle|j\rangle|\Phi_j\rangle + |R\rangle, \quad \langle 0|R \rangle = 0 \)

\[\Rightarrow \text{Given } \chi, \text{ can approximately find smallest } j \text{ s.t. } \|\Phi_j\| \geq \chi \]

using \(\tilde{O}(\sqrt{L}/\chi) \) calls to \(U = \sum_j |j\rangle\langle j| \otimes U_j \)
Lemma (Minimum label finding)

• \(L \) unitaries \(U_j |0\rangle|0\rangle = |0\rangle|\Phi_j\rangle + |R_j\rangle, \quad \langle 0|R_j \rangle = 0 \)

• \(|\Phi\rangle := \frac{1}{\sqrt{L}} \sum_j |0\rangle|j\rangle|\Phi_j\rangle + |R\rangle, \quad \langle 0|R \rangle = 0 \)

\implies \text{Given } \chi, \text{ can approximately find smallest } j \text{ s.t. } |||\Phi_j||| \geq \chi

\text{using } \tilde{O}(\sqrt{L/\chi}) \text{ calls to } U = \sum_j |j\rangle\langle j| \otimes U_j

• \(U_j \) = previous algorithm, assuming ground energy is \(E_j \propto j\Delta \)

• \(U \) essentially same cost as \(U_j \) \implies \text{overall runtime factor } \sqrt{L} \approx \frac{1}{\sqrt{\Delta}}

• Runtime dependence on \(\chi \), not \(|\phi_0|\)
Lemma (Minimum label finding)

- L unitaries $U_j |0\rangle |0\rangle = |0\rangle |\Phi_j\rangle + |R_j\rangle$, $\langle 0|R_j\rangle = 0$
- $|\Phi\rangle := \frac{1}{\sqrt{L}} \sum_j |0\rangle |j\rangle |\Phi_j\rangle + |R\rangle$, $\langle 0|R\rangle = 0$

\Rightarrow Given χ, can approximately find smallest j s.t. $||\Phi_j|| \geq \chi$ using $\tilde{O}(\sqrt{L}/\chi)$ calls to $U = \sum_j |j\rangle \langle j| \otimes U_j$

- $U_j =$ previous algorithm, assuming ground energy is $E_j \propto j\Delta$
- U essentially same cost as $U_j \Rightarrow$ overall runtime factor $\sqrt{L} \approx \frac{1}{\sqrt{\Delta}}$
- Runtime dependence on χ, not $|\phi_0|$

Bonus: Also find ground energy to precision $\tilde{O}(\Delta)$
- Δ only required to be lower bound on gap
 \Rightarrow general ground energy estimation algorithm for high precisions
Algorithm – ground energy unknown

Lemma (Minimum label finding)

- \(L \) unitaries \(U_j |0\rangle|0\rangle = |0\rangle|\Phi_j\rangle + |R_j\rangle, \quad \langle 0|R_j\rangle = 0 \)
- \(|\Phi\rangle := \frac{1}{\sqrt{L}} \sum_j |0\rangle|j\rangle|\Phi_j\rangle + |R\rangle, \quad \langle 0|R\rangle = 0 \)

=> Given \(\chi \), can approximately find smallest \(j \) s.t. \(\|\Phi_j\| \geq \chi \) using \(\tilde{O}(\sqrt{L}/\chi) \) calls to \(U = \sum_j |j\rangle\langle j| \otimes U_j \)

- \(U_j \) = previous algorithm, assuming ground energy is \(E_j \propto j\Delta \)
- \(U \) essentially same cost as \(U_j \) \(\Rightarrow \) overall runtime factor \(\sqrt{L} \approx \frac{1}{\sqrt{\Delta}} \)
- Runtime dependence on \(\chi \), not \(|\phi_0| \)

Bonus: Also find ground energy to precision \(\tilde{O}(\Delta) \)
- \(\Delta \) only required to be lower bound on gap
 \(\Rightarrow \) general ground energy estimation algorithm for high precisions

Alternative: first use PEA to find ground energy
 \(\rightarrow \) better scaling in \(\Delta \) but worse scaling in overlap
Early quantum computers

Adaption for early quantum computers:

- Amplitude amplification
- Repeated measurements

NISQ: devices with ≈ 100 qubits, $\approx 10^4 - 10^5$ gates reliably

Limiting factor: number of gates coherently in single-run, not total runtime!

Ground state preparation algorithms, ground energy known

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Gates</th>
<th>Gates</th>
<th>Repetitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicopy PEA</td>
<td>$\tilde{O}(\Lambda</td>
<td>\phi_0</td>
<td>2 \Delta \epsilon + \Phi</td>
<td>\phi_0</td>
</tr>
<tr>
<td>Phase est.</td>
<td>$\tilde{O}(\Lambda</td>
<td>\phi_0</td>
<td>3 \Delta \epsilon + \Phi</td>
<td>\phi_0</td>
</tr>
<tr>
<td>Amplification</td>
<td>$\tilde{O}(\Lambda</td>
<td>\phi_0</td>
<td>\Delta \epsilon + \Phi</td>
<td>\phi_0</td>
</tr>
</tbody>
</table>

This work $\tilde{O}(\Lambda | \phi_0 | \Delta \epsilon + \Phi | \phi_0 | 2)$

N = total dimension of H

$\Delta = \text{known lower bound on spectral gap}$

$\epsilon = \text{allowed error}$

$|\phi_0\rangle = \text{overlap of trial state with ground state}$

$\Lambda = \text{base cost of Hamiltonian simulation}$

$\Phi = \text{cost of preparing trial state}$

$|\phi_0\rangle$
Early quantum computers

Adaption for early quantum computers:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Repetitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampl amplif</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeated mmt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>single run</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This work

\[\tilde{O}(\Lambda |\phi_0| \Delta \epsilon + \Phi |\phi_0|)\]

\[\tilde{O}(\Lambda |\phi_0| \Delta + \Phi |\phi_0|)\]

\[\tilde{O}(1 |\phi_0|)\]

\[N = \text{total dimension of } H\]

\[\Delta = \text{known lower bound on spectral gap}\]

\[\epsilon = \text{allowed error}\]

\[\phi_0 = \text{overlap of trial state with ground state}\]

\[\Lambda = \text{base cost of Hamiltonian simulation}\]

\[\Phi = \text{cost of preparing trial state}\]

\[|\phi_0\rangle\]
Early quantum computers

Adaption for early quantum computers:
Amplitude amplification
Early quantum computers

Adaption for early quantum computers:

- Amplitude amplification
- Repeated measurements

NISQ: devices with \(\approx 100 \) qubits, \(\approx 10^4 \)–\(10^5 \)(?) gates reliably

Limiting factor: number of gates coherently in single-run, not total runtime!

Ground state preparation algorithms, ground energy known

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Gates</th>
<th>Repetitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicopy PEA</td>
<td>(\tilde{O}(\Lambda</td>
<td>\phi_0</td>
<td>\Delta\epsilon + \Phi</td>
</tr>
<tr>
<td>Phase est.</td>
<td>(\tilde{O}(\Lambda</td>
<td>\phi_0</td>
<td>\Delta\epsilon + \Phi</td>
</tr>
</tbody>
</table>

\(N = \) total dimension of \(H \)
\(\Delta = \) known lower bound on spectral gap
\(\epsilon = \) allowed error
\(\phi_0 = \) overlap of trial state with ground state
\(\Lambda = \) base cost of Hamiltonian simulation
\(\Phi = \) cost of preparing trial state
\(|\phi_0\rangle \)
Early quantum computers

Adaption for early quantum computers:

Amplitude amplification Repeated measurements

NISQ: devices with ≈ 100 qubits
Early quantum computers

Adaption for early quantum computers:

- **Amplitude amplification**
- **Repeated measurements**

NISQ: devices with \(\approx 100 \) qubits, \(\approx 10^4 - 10^5 \) (?) gates reliably

Limiting factor: number of gates coherently in *single-run*, **not** *total* runtime!
Early quantum computers

Adaption for early quantum computers:
- Amplitude amplification
- Repeated measurements

NISQ: devices with ≈ 100 qubits, $\approx 10^4 - 10^5$ (?) gates reliably

Limiting factor: number of gates coherently in single-run, not total runtime!

Ground state preparation algorithms, ground energy known

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
<th>Gates</th>
<th>Gates</th>
<th>Repetitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicopy PEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase est</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This work

$N = \text{total dimension of } H$

$\phi_0 = \text{overlap of trial state with ground state}$

$\Delta = \text{known lower bound on spectral gap}$

$\Lambda = \text{base cost of Hamiltonian simulation}$

$\epsilon = \text{allowed error}$

$\Phi = \text{cost of preparing trial state } |\phi\rangle$
Early quantum computers

Adaption for early quantum computers:
- Amplitude amplification
- Repeated measurements

NISQ: devices with \(\approx 100 \) qubits, \(\approx 10^4 - 10^5 \) (?) gates reliably

Limiting factor: number of gates coherently in *single-run*, **not total** runtime!

Ground state preparation algorithms, ground energy known

| Algorithm | Gates \(N \) = total dimension of \(H \) | Gates \(\Delta \) = known lower bound on spectral gap | Gates \(\epsilon \) = allowed error | Gates \(\phi_0 \) = overlap of trial state with ground state | Gates \(\Lambda \) = base cost of Hamiltonian simulation | Gates \(\Phi \) = cost of preparing trial state \(|\phi\rangle \) |
|----------------------------|---|---|----------------------------------|--------------------------------------|---|-------------------------------------|
| Multicopy PEA | | | | | | |
| Phase est | | | | | | |
| This work | | | | | | |

Early quantum computers

Adaption for early quantum computers:

Amplitude amplification
Repeated measurements

NISQ: devices with ≈ 100 qubits, $\approx 10^4 - 10^5$ (?) gates reliably

Limiting factor: number of gates coherently in single-run, not total runtime!

Ground state preparation algorithms, ground energy known

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicopy PEA</td>
<td>Too many qubits</td>
</tr>
<tr>
<td>Phase est</td>
<td>$\tilde{O}\left(\frac{\Lambda}{</td>
</tr>
<tr>
<td>This work</td>
<td>$\tilde{O}\left(\frac{\Lambda}{</td>
</tr>
</tbody>
</table>

$N = \text{total dimension of } H$
$\Delta = \text{known lower bound on spectral gap}$
$\epsilon = \text{allowed error}$

$\phi_0 = \text{overlap of trial state with ground state}$
$\Lambda = \text{base cost of Hamiltonian simulation}$
$\Phi = \text{cost of preparing trial state } |\phi\rangle$
Early quantum computers

Adaption for early quantum computers:
- **Amplitude amplification**
- **Repeated measurements**

NISQ: devices with \(\approx 100 \) qubits, \(\approx 10^4 - 10^5 \) gates reliably

Limiting factor: number of gates coherently in *single-run*, **not** total runtime!

Ground state preparation algorithms, ground energy known

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates Ampl amplif</th>
<th>Gates Repeated mmt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicopy PEA</td>
<td></td>
<td>Too many qubits</td>
</tr>
<tr>
<td>Phase est</td>
<td>(\tilde{O}\left(\frac{\Lambda}{</td>
<td>\phi_0</td>
</tr>
<tr>
<td>This work</td>
<td>(\tilde{O}\left(\frac{\Lambda}{</td>
<td>\phi_0</td>
</tr>
</tbody>
</table>

\(N = \) total dimension of \(H \)
\(\Delta = \) known lower bound on spectral gap
\(\epsilon = \) allowed error

\(\phi_0 = \) overlap of trial state with ground state
\(\Lambda = \) base cost of Hamiltonian simulation
\(\Phi = \) cost of preparing trial state \(|\phi\rangle \)
Early quantum computers

Adaption for early quantum computers:
- Amplitude amplification
- Repeated measurements

NISQ: devices with \(\approx 100 \) qubits, \(\approx 10^4 - 10^5 \) (?) gates reliably

Limiting factor: number of gates coherently in single-run, not total runtime!

Ground state preparation algorithms, ground energy known

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates Ampl amplif</th>
<th>Gates Repeated mmt</th>
<th>Gates single run</th>
<th>Repetitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicopy PEA</td>
<td>(\tilde{O} \left(\Lambda \frac{1}{</td>
<td>\phi_0</td>
<td>^2 \Delta \epsilon} + \frac{\Phi}{</td>
<td>\phi_0</td>
</tr>
<tr>
<td>Phase est</td>
<td>(\tilde{O} \left(\Lambda \frac{1}{</td>
<td>\phi_0</td>
<td>^2 \Delta \epsilon} + \frac{\Phi}{</td>
<td>\phi_0</td>
</tr>
<tr>
<td>This work</td>
<td>(\tilde{O} \left(\frac{1}{</td>
<td>\phi_0</td>
<td>^2 \Delta} + \frac{\Phi}{</td>
<td>\phi_0</td>
</tr>
</tbody>
</table>

\(N = \) total dimension of \(H \)
\(\Delta = \) known lower bound on spectral gap
\(\epsilon = \) allowed error
\(\phi_0 = \) overlap of trial state with ground state
\(\Lambda = \) base cost of Hamiltonian simulation
\(\Phi = \) cost of preparing trial state \(|\phi\rangle \)
Early quantum computers

Adaption for early quantum computers:
- **Amplitude amplification**
- **Repeated measurements**

NISQ: devices with ≈ 100 qubits, $\approx 10^4 - 10^5$ (?) gates reliably

Limiting factor: number of gates coherently in *single-run*, not *total* runtime!

Ground state preparation algorithms, ground energy known

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Gates Ampl amplif</th>
<th>Gates Repeated mmt</th>
<th>Gates single run</th>
<th>Repetitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicopy PEA</td>
<td>$\tilde{O}\left(\frac{\Lambda}{</td>
<td>\phi_0</td>
<td>^2 \Delta \epsilon} + \frac{\Phi}{</td>
<td>\phi_0</td>
</tr>
<tr>
<td>Phase est</td>
<td>$\tilde{O}\left(\frac{\Lambda}{</td>
<td>\phi_0</td>
<td>\Delta} + \frac{\Phi}{</td>
<td>\phi_0</td>
</tr>
<tr>
<td>This work</td>
<td>$\tilde{O}\left(\frac{\Lambda}{</td>
<td>\phi_0</td>
<td>\Delta} + \frac{\Phi}{</td>
<td>\phi_0</td>
</tr>
</tbody>
</table>

$N = \text{total dimension of } H$

$\Delta = \text{known lower bound on spectral gap}$

$\epsilon = \text{allowed error}$

$\phi_0 = \text{overlap of trial state with ground state}$

$\Lambda = \text{base cost of Hamiltonian simulation}$

$\Phi = \text{cost of preparing trial state } |\phi\rangle$
Summary

Ground state preparation algorithm
• Faster than naive phase estimation
• Fewer qubits than improved phase estimation
• Known and unknown ground energy
• Estimates ground energy to high precision

Applications
• Quantum simulation of many-body systems (quenches!)
• Quantum chemistry
• Single-copy tomography, QMA witnesses, optimisation problems, quantum machine learning, . . .

Potential applications for early quantum computers!
Summary

Ground state preparation algorithm

- Faster than naive phase estimation
- Fewer qubits than improved phase estimation
- Known and unknown ground energy
- Estimates ground energy to high precision
Summary

<table>
<thead>
<tr>
<th>Ground state preparation algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Faster than naive phase estimation</td>
</tr>
<tr>
<td>• Fewer qubits than improved phase estimation</td>
</tr>
<tr>
<td>• Known and unknown ground energy</td>
</tr>
<tr>
<td>• Estimates ground energy to high precision</td>
</tr>
</tbody>
</table>

Applications

| Quantum simulation of many-body systems (quenches!) |
| Quantum chemistry |
| Single-copy tomography, QMA witnesses, optimisation problems, quantum machine learning, ... |
Ground state preparation algorithm

- Faster than naive phase estimation
- Fewer qubits than improved phase estimation
- Known and unknown ground energy
- Estimates ground energy to high precision

Applications

- Quantum simulation of many-body systems (quenches!)
- Quantum chemistry
- Single-copy tomography, QMA witnesses, optimisation problems, quantum machine learning, . . .

Potential applications for early quantum computers!