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Quantum advances

Quantum Simulators Wield Control
Over More Than 50 Qubits, Setting
New Record |

Microsoft bets on quantum
computing to crack the world's
toughest problems

IBM Raises the Bar with a 50-Qubit
Quantum Computer
.

X o=

Rigetti has a 19 qubit quantum Intel Reveals Its New 49-Qubit Revealed: Google's plan for guantum
computing system and it runs Superconducting Quantum Chip at computer supremacy
unsupervised... CES 2018 .
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The road to quantum computing

e Using a quantum computer to solve practical problems beyond
the reach of classical computation may become possible in the
foreseeable future.

e A near-term quantum computer may support:
o tens of well-controlled qubits and

o limited total number of gates that can be reliably
performed.

e Therefore, reaching such a goal would require:

o significant experimental advances and
o careful quantum algorithm design and
implementation.
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Goals

Identify a problem that is
e practically relevant (not just quantum supremacy)
e classically intractable

® as easy as possible quantumly
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Outline

@ Quantum Simulation and Target System
@® Simulation Algorithms and New Techniques
© Circuit Implementation and Results

@O Summary and Future Studies
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Quantum simulation

Hamiltonian simulation problem

Given a description of the Hamiltonian H, an evolution time t,

and an initial state |1)g), produce the final state |;) = e~ Ht|4))
up to some error €.

e A quantum computer can prepare the final state efficiently if
H is a local Hamiltonian.

e Upon measurement, it can efficiently answer questions that a
classical one cannot.

“..nature isn't classical, dammit, and if you
want to make a simulation of nature, you'd
better make it quantum mechanical, and by

golly it's a wonderful problem, because it
doesn't look so easy.”

— Richard Feynman
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What to simulate and why?

Heisenberg spin model on a ring

H = 37,(d} - 41+ hjo}) with periodic boundary conditions
and h; € [—h, h] chosen uniformly at random.

¢ Practicality:
o a model of self-thermalization and many-body localization
o interesting among the condensed matter community

e Classical intractability:

o thermalized/localized phase transition is poorly understood;
o most extensive numerical study handled < 25 spins.

¢ Quantum tractability:

o could explore the transition by preparing a simple initial
state, evolving, and performing a simple final measurement;

o simulations of spin systems likely have low overhead.
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System-size dependence

e For concreteness, choose h; € [—1,1], t = n, e = 103 and
10 < n < 100.

e Other choices of parameters may be possible, as long as the
problem is still practically interesting and classically
intractable, while remaining easy to solve quantumly.

e Qur approach would apply to these alternative models
essentially unchanged.

e With all parameters except n fixed, we study the system-size
dependence of quantum simulation algorithms.
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Complexity of simulation algorithms

e Recent algorithms have significantly improved asymptotic
performance as a function of t and € over the Trotter formula.

¢ We investigate whether these recent algorithms are
advantageous for simulating relatively small systems.

Algorithm Gate complexity (t,e) | Gate complexity (n)

O(t/v/e)

O(r ettty

)

Quantum walk

Fractional-query simulation

log*5(t/€)
log log(t/e

o(t

Linear combination of quantum walk
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Product formula algorithm

e To simulate H = Zézl aypHy:
o0 < Qy < 1
o H, is a tensor product of
Paulis (up to a sign)
e Can use the first-order PF:

e a’H’—{He_’ to }
< e )

e Generalizations to (2k)th
order are known [Suzuki 92].

e The main challenge: choose
explicit r such that error < e.
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Product formula algorithm

e To simulate H = Zé:l QZHZ: o Analytic bound:

o H, is a tensor product of n= {max {Lt }—‘

Paulis (up to a sign) ¢
e Can use the first-order PF: e Minimized bound:

_oyH —it Ozj ] 2
¢ {H y } A = min {r : —(Lrt) exp(%) < e}

G (%)
- or r e These bounds use the triangle

e Generalizations to (2k)th inequality in a naive way.
order are known [Suzuki 92]. o |s it possible to tighten the
e The main challenge: choose error analysis of PF?

explicit r such that error < e.
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Commutator bound

e Improve error analysis by exploiting commutation relations.

<l [
>

All terms commute f No term commutes
— 2
error =0 Commutator  error < @ exp(£)
bound

e For (2k)th order PF, the commutator bound improves the
n-dependence from O(n3+1/k) to 0(n3+2/(2k+1))_

e Naive evaluation of the bound takes time O(n**1).

e We further develop techniques that exploit the combinatorial
structure of the Hamiltonian to compute the commutator
bound in closed form.
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Taylor series algorithm

e To simulate H = Zézl aypHy:
o0 < Qy < 1
o H, is a tensor product of
Paulis (up to a sign)
e Truncate the Taylor series:

e (= /Ht (= /Ht
e Z
k=0
K L tk
"k
:Z Z Haﬁ"'afk(_’) Hf1"'Hék
k=0¢1,...00=1 """
r-1
=2 BV
Jj=0
to get a linear combination of
unitaries.
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Taylor series algorithm
e To simulate H = X5, ayHy: e LCU [Berry et al., 14 & 15]:

0 0<a;<1 let
o H, is a tensor product of Bl0) = Zfb
Paulis (up to a sign)
e Truncate the Taylor serieS' select(V) = ZO iile Vv
; Ht /Ht
et 5~ (ST then
K Lok ({0|B" @ Iselect(V)(B|0) ® /) = = Zﬁj /
= Z Z Hafl afk( ) Hfl H,
k=0¢1,....0=1
r-1 e OAA:
:J,:ZO/BJVJ' alternate reflections along two
to get a linear combination of subspaces to boost ;Ehe
unitaries. scaled-down factor .
12/
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select(V) synthesis

e The main challenge to synthesize er:_ol /) (j| ® V;: generating
all Boolean strings of length [log, I'].
e Naive implementation requires O(I log ') gates.
¢ New idea: walking on a binary tree
Example: generating
4-bit strings ®
X1X0X3X4

X1X2X374

al
XX
bl

X

X1X2X3X4

IXEXTXTX
YXEXIXTX
IXExTXTX
PxExTXTX
XEXTXTX
PxExTXTX
PXEXTXTX
PxEXTXTX
XEXTXTX
xExtxTx
IXEXIXTX
PxExXTXTX
IXEXTXTX
xExTxTx
XEX

x¢

e The new approach improves the gate complexity to O(I'),

meeting a previously-established lower bound [Maslov 16].
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Quantum signal processing algorithm

e To simulate H = 25:1 apHy:
o0 < Qly < 1
o H, is a tensor product of
Paulis (up to a sign)
e “Encode” H into

|G>=jaéil¢a7|e>

select(H) = ; 1€)(¢| ® He

and construct V; as

select(H)
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Yuan Su Toward the first quantum simulation with quantum speedup 24‘



Quantum signal processing algorithm
e Tosimulate H = Y5, oy Hy: * Qubitization [Low, Chuang 16]:

c0<a<1 if H/a =3\ A[A)(A], then
o H, is a tensor product of Vs = e2P+Ry(01,) ® [As) (M|
Paulis (up to a sign) A

p vy with rotation angles
e “Encode” H into

1L 0\, = arcsin(\) + 7
|G) = EE@I@ Oy = — arcsin())
L
select(H) = 3. |0)(] @ H, e Signal processing:
=1 implement sin function via
and construct V; as R (0) - - Ry, (0)

=A(cos §) I + iB(cos £) o,

+i cos gC(sin g) oy + icos gD(sin g) oy

select(H)

14 /
Yuan Su Toward the first quantum simulation with quantum speedup 24‘



Segmented QSP

Yuan Su

The computation of phases ¢1, ...

, ¢ is difficult in practice.
Example: the computation becomes costly when M > 32, but

error analysis suggests taking M = 1100 to simulate 10 qubits.

Workarounds:
o use placeholder values

o divide the evolution time into segments; each has length M

sufficiently small that phase angles can readlly be computed

Overhead is not too
large: the segmented
QSP has complexity
O(n*t4/M), compared
to O(n?) for the full
QSP.

number of phased iterates

10° |

10% £

[ ° & OFull ’
r o o Segmented | |

103 —

10 20 30 50 70 100
n
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Empirical bounds
¢ Rigorous bound can be loose.

e For PF, we extrapolate from numerical simulations of systems
of size 5 to 12.

e For TS, empirical bound is infeasible but probably not helpful.
e For QSP, we find an improved empirical estimate of the
truncation error of the Jacobi-Anger expansion, leading to a

small reduction in the gate count.

e Preliminary evidence suggests full empirical bound for QSP
will probably not be helpful.

16
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Circuit synthesis and optimization

COMMUNICATIONS
ACM

a circuit description language
facilitating concrete resource counts.

e Circuits are expressed over Clifford+R,(6)
and Clifford+T.

e \We verified correctness by simulating
subroutines and small instances.

e Implementation available at

e We also applied
that we developed. CNOT /T counts
improve by about 30% for PF, less significantly for TS/QSP.
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github.com/njross/simcount

Results
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Results (the full story)

T gate count

1012 |
10 |

1010

10° |
108

107 ¢

Toward the first quantum simulation with quantum speedup

T T
L |®PF (com 4) o 250 |- D4
£ |oPF (emp) °®
fleTs ° | oo
E|®QSP (seg) ° E 200 - °
£ |[0QSP (JA emp) . ¢ - o «®® *
g . . 1 4150 o?
o 4 .
° : . . ° -C% ] : °®
E ° . . o ° 100 - °® Ol ° °®
o U .
: . oo 2 . e% 0"
g ¢« 0 2 ° 50| Letteet *PF
° A O .® : °® TS
£ o8 E ollee?® *QSP
C L L L L P | ul | L L | L L
10 20 30 50 70 100 0 20 40 60 80 100
System size System size




PF algorithm: orders and bounds
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Yuan Su

5 4
4 3.667
2.964 | 2.883

3333 | 3.25
3.286 | 3.222
2311 | 2.141
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PF algorithm: orders and bounds
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Comparison with related work

e Factoring a 1024-bit number

[Kutin 06] 104 o
o 3132 qubits .
o 5.7 x10° T gates gﬂm |

e Simulating FeMoco " 0] ° [
[Reiher et al. 16] O
o 111 qubits 10 10 100 10000
o 1.0 x 10* T gates qubits

e Simulating 50 spins e Simulating 50 spins
(segmented QSP) (empirical PF)
o 67 qubits o 50 qubits
0 2.4 x10° T gates o 1.8 x 108 T gates
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Summary

e This work represents progress toward the first genuine application
of quantum computers, solving a practical problem that is beyond
the reach of classical computation.

e Spin models are much easier than factoring or quantum chemistry,
but may still be out of reach of pre-fault tolerant devices.

o Useful takeaways:
o Higher-order PFs are useful even for very small systems.

o More sophisticated algorithms (especially QSP) give the best
performance with rigorous guarantees at surprisingly small sizes.

o Existing PF error bounds are very loose.
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Future studies

e Better provable performance for simulation algorithms

o Closing the gap between rigorous and empirical PF
o Efficient synthesis of full QSP circuit

® Resource estimates for more practical models
o Architectural constraints, parallelism
o Different gate set
o Fault-tolerant implementations

e Useful super-classical quantum simulation without fault
tolerance?
o Alternative target systems
o New simulation algorithms
o Experiments!
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“Theory is the first term in the Taylor series of
practice.”

— Thomas M. Cover
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Second-order commutator bound

Second-order commutator bound, succinct form

Let H be the one-dimensional nearest-neighbor Heisenberg model
with a random magnetic field in the z direction. Then the error
in the second-order product formula approximation satisfies

|exp(—iHt) =[Sz (—it/r)]']]
S%Tz(n) N 4(4nt) exp <8nr|t|> |

3r3
where
194, n=3
T> ( n) = 2
40n- — 58n, n > 4.
Y/
Yuan Su Toward the first quantum simulation with quantum speedup 10 y



CNOT count
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T count

1012 ; o PF (com 4) . ;

| |oPF (emp) ° 1

T * e * ]

107 1 e QsP (seg) .

- I |[0QSP (JA emp) ° o ° o |

§ 1010 B o ° ° .

o = () Y o B

9 L ® ° ° o 1

S 1000 e ’ ° o ° -

~ F e ° e« — o© : o ]

[

G R S

[ [ J o o i

7L N

S
10 20 30 50 70 100

System size
°/
Yuan Su Toward the first quantum simulation with quantum speedup 10‘



Qubit count
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Total gate count for PF
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Total gate count for PF
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Total gate count for PF
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Empirical data for QSP

Yuan Su
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CNOT optimization

Yuan Su

CNOT gate count
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T optimization

Yuan Su

T gate count
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