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Quantum advances
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The road to quantum computing
• Using a quantum computer to solve practical problems beyond

the reach of classical computation may become possible in the
foreseeable future.

• A near-term quantum computer may support:
◦ tens of well-controlled qubits and
◦ limited total number of gates that can be reliably

performed.

• Therefore, reaching such a goal would require:
◦ significant experimental advances and
◦ careful quantum algorithm design and

implementation.
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Goals

Identify a problem that is

• practically relevant (not just quantum supremacy)

• classically intractable

• as easy as possible quantumly
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Quantum simulation
Hamiltonian simulation problem
Given a description of the Hamiltonian H , an evolution time t,
and an initial state |ψ0⟩, produce the final state |ψt⟩ = e−iHt |ψ0⟩
up to some error ϵ.
• A quantum computer can prepare the final state efficiently if

H is a local Hamiltonian.
• Upon measurement, it can efficiently answer questions that a

classical one cannot.
“…nature isn’t classical, dammit, and if you
want to make a simulation of nature, you’d
better make it quantum mechanical, and by
golly it’s a wonderful problem, because it
doesn’t look so easy.”

— Richard Feynman
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What to simulate and why?
Heisenberg spin model on a ring
H = ∑n

j=1(σ⃗j · σ⃗j+1 + hjσ
z
j ) with periodic boundary conditions

and hj ∈ [−h, h] chosen uniformly at random.

• Practicality:
◦ a model of self-thermalization and many-body localization
◦ interesting among the condensed matter community

• Classical intractability:
◦ thermalized/localized phase transition is poorly understood;
◦ most extensive numerical study handled ≤ 25 spins.

• Quantum tractability:
◦ could explore the transition by preparing a simple initial

state, evolving, and performing a simple final measurement;
◦ simulations of spin systems likely have low overhead.
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System-size dependence
• For concreteness, choose hj ∈ [−1, 1], t = n, ϵ = 10−3 and

10 ≤ n ≤ 100.

• Other choices of parameters may be possible, as long as the
problem is still practically interesting and classically
intractable, while remaining easy to solve quantumly.

• Our approach would apply to these alternative models
essentially unchanged.

• With all parameters except n fixed, we study the system-size
dependence of quantum simulation algorithms.
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Complexity of simulation algorithms
• Recent algorithms have significantly improved asymptotic

performance as a function of t and ϵ over the Trotter formula.
• We investigate whether these recent algorithms are

advantageous for simulating relatively small systems.

Algorithm Gate complexity (t, ϵ) Gate complexity (n)

Product formula (PF), 1st order O(t2/ϵ) O(n5)

Product formula (PF), (2k)th order O(52k t1+1/2k/ϵ1/2k) O(52kn3+1/k)

Quantum walk O(t/
√

ϵ) O(n4 log n)

Fractional-query simulation O
(

t log2(t/ϵ)
log log(t/ϵ)

)
O
(

n4 log n
log log n

)
Taylor series (TS) O

(
t log2(t/ϵ)

log log(t/ϵ)

)
O
(

n3 log2 n
log log n

)
Linear combination of quantum walk O

(
t log3.5(t/ϵ)

log log(t/ϵ)

)
O
(

n4 log n
log log n

)
Quantum signal processing (QSP) O(t + log(1/ϵ)) O(n3 log n)
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Product formula algorithm
• To simulate H = ∑L

ℓ=1 αℓHℓ:
◦ 0 ≤ αℓ ≤ 1
◦ Hℓ is a tensor product of

Paulis (up to a sign)
• Can use the first-order PF:∥∥∥∥∥∥e−it

∑L
j=1 αj Hj −

[ L∏
j=1

e−i t
r αj Hj

]r
∥∥∥∥∥∥

≤ (Lt)2

r exp
(L|t|

r
)

• Generalizations to (2k)th
order are known [Suzuki 92].

• The main challenge: choose
explicit r such that error ≤ ϵ.

• Analytic bound:

r1 =
⌈

max
{

Lt, e(Lt)2

ϵ

}⌉

• Minimized bound:

r1 = min
{

r : (Lt)2

r exp(Lt
r ) ≤ ϵ

}

• These bounds use the triangle
inequality in a naive way.

• Is it possible to tighten the
error analysis of PF?
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Commutator bound
• Improve error analysis by exploiting commutation relations.

All terms commute
error = 0

No term commutes
error ≤ (Lt)2

r exp(Lt
r )Commutator

bound
• For (2k)th order PF, the commutator bound improves the

n-dependence from O(n3+1/k) to O(n3+2/(2k+1)).

• Naive evaluation of the bound takes time O(n2k+1).

• We further develop techniques that exploit the combinatorial
structure of the Hamiltonian to compute the commutator
bound in closed form.
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Taylor series algorithm
• To simulate H = ∑L

ℓ=1 αℓHℓ:
◦ 0 ≤ αℓ ≤ 1
◦ Hℓ is a tensor product of

Paulis (up to a sign)
• Truncate the Taylor series:

e−iHt =
∞∑

k=0

(−iHt)k

k! ≈
K∑

k=0

(−iHt)k

k!

=
K∑

k=0

L∑
ℓ1,...,ℓk=1

tk

k!αℓ1 · · ·αℓk (−i)kHℓ1 · · · Hℓk

=
Γ−1∑
j=0

βjVj

to get a linear combination of
unitaries.

• LCU [Berry et al., 14 & 15]:
let

B|0⟩ = 1√
s

Γ−1∑
j=0

√
βj |j⟩

select(V ) =
Γ−1∑
j=0

|j⟩⟨j | ⊗ Vj

then
(⟨0|B† ⊗ I)select(V )(B|0⟩ ⊗ I) = 1

s

Γ−1∑
j=0

βjVj

• OAA:
alternate reflections along two
subspaces to boost the
scaled-down factor 1

s .
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select(V) synthesis
• The main challenge to synthesize ∑Γ−1

j=0 |j⟩ ⟨j | ⊗ Vj : generating
all Boolean strings of length ⌈log2 Γ⌉.

• Naive implementation requires O(Γ log Γ) gates.
• New idea: walking on a binary tree
Example: generating
4-bit strings

x1x2x3x4

x1x2x3x4
...

x1x2x3x4

q0

q1

q2

q3

q4

*

x1 x2 x3 x4

x1 x2 x3 x
4

x1 x2 x
3 x4

x1 x2 x
3 x

4

x1 x
2 x3 x4

x1 x
2 x3 x

4

x1 x
2 x

3 x4

x1 x
2 x

3 x
4

x
1 x2 x3 x4

x
1 x2 x3 x

4

x
1 x2 x

3 x4

x
1 x2 x

3 x
4

x
1 x

2 x3 x4

x
1 x

2 x3 x
4

x
1 x

2 x
3 x4

x
1 x

2 x
3 x

4

• The new approach improves the gate complexity to O(Γ),
meeting a previously-established lower bound [Maslov 16].
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Quantum signal processing algorithm
• To simulate H = ∑L

ℓ=1 αℓHℓ:
◦ 0 ≤ αℓ ≤ 1
◦ Hℓ is a tensor product of

Paulis (up to a sign)
• “Encode” H into

|G⟩ = 1√
α

L∑
ℓ=1

√
αℓ|ℓ⟩

select(H) =
L∑

ℓ=1
|ℓ⟩⟨ℓ| ⊗ Hℓ

and construct Vϕ as
Rz(−ϕ) Had Rz(π) Had Rz(ϕ)

\
select(H)

2 |G⟩ ⟨G | − I

\

• Qubitization [Low, Chuang 16]:
if H/α = ∑

λ λ|λ⟩⟨λ|, then
Vϕ =

∑
λ±

e
i
2 θλ± Rϕ(θλ±) ⊗ |λ±⟩⟨λ±|

with rotation angles
θλ+ = arcsin(λ) + π

θλ− = − arcsin(λ)

• Signal processing:
implement sin function via

RϕM (θ) · · · Rϕ1(θ)
=A(cos θ

2) I + iB(cos θ
2)σz

+i cos θ
2C(sin θ

2)σx + i cos θ
2D(sin θ

2)σy
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Segmented QSP
• The computation of phases ϕ1, ... ,ϕM is difficult in practice.
• Example: the computation becomes costly when M ≥ 32, but

error analysis suggests taking M = 1100 to simulate 10 qubits.
• Workarounds:

◦ use placeholder values
◦ divide the evolution time into segments; each has length M

sufficiently small that phase angles can readily be computed
• Overhead is not too

large: the segmented
QSP has complexity
O(n3+4/M), compared
to O(n3) for the full
QSP.
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104
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n
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be
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ha
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Full
Segmented
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Empirical bounds
• Rigorous bound can be loose.

• For PF, we extrapolate from numerical simulations of systems
of size 5 to 12.

• For TS, empirical bound is infeasible but probably not helpful.

• For QSP, we find an improved empirical estimate of the
truncation error of the Jacobi-Anger expansion, leading to a
small reduction in the gate count.

• Preliminary evidence suggests full empirical bound for QSP
will probably not be helpful.
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Circuit synthesis and optimization
• We implement all algorithms using

Quipper, a circuit description language
facilitating concrete resource counts.

• Circuits are expressed over Clifford+Rz(θ)
and Clifford+T .

• We verified correctness by simulating
subroutines and small instances.

• Implementation available at
github.com/njross/simcount

COMMUNICATIONS
OF THE ACMCACM.ACM.ORG 08/2015 VOL.58 NO.08

Association for  
Computing Machinery

Network Science,  
Web Science,  

and Internet Science

The Moral Challenges 
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Permissionless Innovation

Programming 
the  
Quantum 
Future

• We also applied an automated quantum circuit optimizer
[arXiv:1710.07345] that we developed. CNOT/T counts
improve by about 30% for PF, less significantly for TS/QSP.
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Results
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Results (the full story)
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PF algorithm: orders and bounds
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Empirical 2.964 2.883 2.555 2.311 2.141
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Comparison with related work
• Factoring a 1024-bit number

[Kutin 06]
◦ 3132 qubits
◦ 5.7 × 109 T gates

• Simulating FeMoco
[Reiher et al. 16]
◦ 111 qubits
◦ 1.0 × 1014 T gates

10 100 1,000 10,000

108

1010

1012

1014

qubits

T
ga

te
s

• Simulating 50 spins
(segmented QSP)
◦ 67 qubits
◦ 2.4 × 109 T gates

• Simulating 50 spins
(empirical PF)
◦ 50 qubits
◦ 1.8 × 108 T gates
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Summary
• This work represents progress toward the first genuine application

of quantum computers, solving a practical problem that is beyond
the reach of classical computation.

• Spin models are much easier than factoring or quantum chemistry,
but may still be out of reach of pre-fault tolerant devices.

• Useful takeaways:
◦ Higher-order PFs are useful even for very small systems.
◦ More sophisticated algorithms (especially QSP) give the best

performance with rigorous guarantees at surprisingly small sizes.
◦ Existing PF error bounds are very loose.
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Future studies
• Better provable performance for simulation algorithms

◦ Closing the gap between rigorous and empirical PF
◦ Efficient synthesis of full QSP circuit

• Resource estimates for more practical models
◦ Architectural constraints, parallelism
◦ Different gate set
◦ Fault-tolerant implementations

• Useful super-classical quantum simulation without fault
tolerance?
◦ Alternative target systems
◦ New simulation algorithms
◦ Experiments!
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“Theory is the first term in the Taylor series of
practice.”

— Thomas M. Cover
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Second-order commutator bound
Second-order commutator bound, succinct form
Let H be the one-dimensional nearest-neighbor Heisenberg model
with a random magnetic field in the z direction. Then the error
in the second-order product formula approximation satisfies

∥exp(−iHt) − [S2 (−it/r)]r∥

≤|t|3

r 2 T2(n) + 4(4nt)4

3r 3 exp
(

8n|t|
r

)
,

where

T2(n) :=

194, n = 3
40n2 − 58n, n ≥ 4.
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CNOT count
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T count
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Qubit count
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Total gate count for PF
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Empirical data for QSP
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CNOT optimization
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T optimization
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