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Boson sampling
Input:

Collision Free Subspace (CFS)

Output: Sample     with prob.Sample     with prob.

matrix made from taking 
rows of     according torows of     according to

How many copies of each row

Aaronson & Arkhipov, arXiv:1011.3245 (2010)

AA: Efficient classical algorithm for (even approximate) boson 
sampling would have surprising complexity theoretic consequences



5

Boson sampling – example (n=3)
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Boson sampling – Matrix permanents

Time complexity:                    
(Ryser or Glynn)

Time complexity:                    

-hard

Time complexity:                    
(Fast matrix multiplication)

Time complexity:                    
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Boson sampling – Linear optical experiment

multiphoton transformation 

Aaronson & Arkhipov, arXiv:1011.3245 (2010)

The experiment “naturally” performs boson sampling

No feed-forward required
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Previous expectations – quantum computational supremacy

Aaronson & Arkhipov, 
arXiv:1309.7460 (2013)

Aaronson & Arkhipov, 
arXiv:1011.3245 (2010)

Preskill, 
arXiv:1203.5813 (2012)

Barkhofen et al., 
Phys. Rev. Lett 118 (2017)

Goldstein et al., 
Phys. Rev. B 95 (2017)

Latmiral et al., 
New J. Phys 18 (2016)
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Brute force sampling

matrix permanents in the CFS

>300 years
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Our results – classical sampling algorithms

• Metropolised independence sampling (MIS) 
Neville et al. Nature Physics (2017)

• Markov chain Monte Carlo
• Collision free subspace
• Experimentally verified approximate sampling
• 100            matrix permanents per sample for               (and probably beyond)100            matrix permanents per sample for               (and probably beyond)100            matrix permanents per sample for               (and probably beyond)

• Exact boson sampling
Clifford & Clifford, Proc. SODA (2018)

• Full space with collisions
• Rigorously proven exact sampling
• Equivalent of     2            matrix permanents per sampleEquivalent of     2            matrix permanents per sampleEquivalent of     2            matrix permanents per sample
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Our results – sampler timing (on a laptop)
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Experimental time “complexity” – photon loss
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Source rep. rate:

Revised expectations

1 day of supercomputer time:
58 photon boson sampling 

A,B: Wang et al. Nature Photonics (2017)
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MCMC - Metropolised independence sampling (MIS)

• Markov chain:

• Proposal distribution: Distinguishable particle distribution 

Neville et al. Nature Physics (2017)

Elementwise 
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Metropolised independence sampling – Thinning

n=25

Neville et al. Nature Physics (2017)
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MIS – “Verification” overview

Neville et al. Nature Physics (2017)

• Likelihood ratio test
• Alternative hypothesis: distinguishable particle sampling
• Used by experimentalists – photon distinguishability is a source of error
• Relevant to MIS – proposals from distinguishable particle distribution
•

• 2-sample Bootstrap Kolmogorov-Smirnov (KS) test
• Null hypothesis: 2 samples are drawn from same distribution
• Comparison samplers: Brute force, rejection, alternative MIS (longer 

thinning interval), distinguishable particles
•
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MIS – “Verification” part 1

Neville et al. Nature Physics (2017)

n=20
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MIS – “Verification” part 2

n=7

Neville et al. Nature Physics (2017)
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Exact classical algorithms for boson sampling

Rough idea:

1. Expand the sample space

2. Compute marginal probabilities for row and column choices

3. Incrementally sample rows and columns using probabilistic chain rule

4. Exploit Laplace expansion of the permanent for further speedup

Clifford & Clifford, Proc SODA (2018)
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Clifford & Clifford Algorithm A

Recall:                                   How many of each row to include. Recall:                                   

Rewrite:                                            Which rows to include. Rewrite:                                            Which rows to include. 

Expand the space by relaxing the ordering requirement:

Sample from

Clifford & Clifford, Proc SODA (2018)

(The permanent is invariant under permutations of rows)
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Clifford & Clifford Algorithm A

- Set of k-combinations from 

- Submatrix of      with rows                    and columns Submatrix of      with rows                    and columns Submatrix of      with rows                    and columns 

Marginals:

Chain rule:

Clifford & Clifford, Proc SODA (2018)
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Clifford & Clifford Algorithm A

1. Sample      from

2. Sample      from

…

n.   Sample      from

Sample      from

n.   Sample      from

Sample      from

Running time:

Clifford & Clifford, Proc SODA (2018)
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Further expand the space:

Introduce                                              - auxiliary column labels (permutation)Introduce                                              

Clifford & Clifford Algorithm B

Define a new marginal pmf:

Clifford & Clifford, Proc SODA (2018)

Sample from

(The permanent is invariant under permutations of columns)
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Clifford & Clifford Algorithm B

0.  Sample      from

1. Sample      from

2. Sample      from

… 

n.   Sample      from

0.  Sample      from

n.   Sample      from

Sample      from

Sample      from

Running time:                                            ?

Clifford & Clifford, Proc SODA (2018)
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Clifford & Clifford Algorithm B

Trick:

(Glynn formula for the permanent (Gray code ordered))

(Laplace expansion of the permanent)

+

Evaluate                                                          in                           time Evaluate                                                          in                           time Evaluate                                                          in                           time 

Clifford & Clifford, Proc SODA (2018)
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Clifford & Clifford Algorithm B

Running time:

Clifford & Clifford, Proc SODA (2018)

0.  Sample      from

1. Sample      from

2. Sample      from

… 

n.   Sample      from

0.  Sample      from

n.   Sample      from

Sample      from

Sample      from
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Bonus: MIS mixing time 

Jun S. Liu, Monte Carlo strategies in 
scientific computing (2001)

• For                 suggests that 50 burn in states required to sample from distribution at most ~1% close 
to target
For                 suggests that 50 burn in states required to sample from distribution at most ~1% close 



Could approximate rejection sampling work?
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With thanks to the QIP PC 

Aaronson & Arkhipov, arXiv:1309.7460 (2013)

Translation: Rejection sampling with uniform proposal could be good* to 
approximately sample from a distribution at least    close to the target distribution with 
probability          over boson sampling matrices with                and small 
approximately sample from a distribution at least    close to the target distribution with 
probability          over boson sampling matrices with                and small probability          over boson sampling matrices with                and small 

*with            accepts per reject
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Rejection sampling - How many permanents per sample?

• For                need              permanent computations per sample for reliable TVD 
• Seems slower than MIS for same    , but a comparison requires subtle considerations 

For                need              permanent computations per sample for reliable TVD For                need              permanent computations per sample for reliable TVD 
Seems slower than MIS for same    , but a comparison requires subtle considerations 
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Rejection sampling - summary

• We tested to see whether rejection sampling could perform approximate 
sampling for small     and with small TVD to the boson sampling distribution 

• It seems to work remarkably well, but still probably slower than MIS

• Clifford and Clifford sampler faster than both and samples exactly for all 
input unitaries

sampling for small     and with small TVD to the boson sampling distribution 
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Future work

• Verification schemes
• Using the exact sampler
• Without computing additional permanents?

(Agresti et al. arXiv:1712.06863)

• Loss tolerance scheme?

• Improve classical algorithms as much as possible
• E.g. Include realistic experimental error

(García-Patrón et al. arXiv:1712.10037, Renema et al. arXiv:1707.02793)

• Reduce linear optical circuit depth?
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Conclusion

• Classical boson sampling algorithms vastly outperform current state of the art 
quantum experiments

• Increased lower bound for the number of photons required to demonstrate 
quantum computational supremacy by boson sampling

• Decreased upper bound on quantum advantage by boson sampling as a 
function of     and 

• It’s important to optimise classical algorithms as much as possible –
2018 may be the year of the first quantum computational supremacy 
claim, it would be sad if it had to be retracted

function of     and 
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Thank you




