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Boson sampling

Input:
U11 U1n Ulm m > n Ull Uln
__ . A=
U= - (m = n?)
Uml Umn .. Umm Uml Umn
How many copies of each row 4 ™\
Output: Sample S with prob.
S=(81,---38m) € Pmn P 2p
_ _ |Per(Ag)|
Ag : m X n matrix made from taking Pr(S) = ' '
rows of A according to .S \_ 51 .- Sm: )
s; € 10,1} « Collision Free Subspace (CFS)

AA: Efficient classical algorithm for (even approximate) boson
sampling would have surprising complexity theoretic consequences

Aaronson & Arkhipov, arXiv:1011.3245 (2010) 4



Boson sampling — example (n=3)
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Usi Usx Uss Pr(S) = |Per(Ag)|?
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Boson sampling — Matrix permanents

X e crm

PGI’(X) — Z Hxi,cr(i) {Det(X Z Sgn sza }

ceS, i=1 ocES,

#P -hard

Time complexity: ~ O(n2") Time complexity: ~ O(n?37%)
(Ryser or Glynn) (Fast matrix multiplication)



Boson sampling — Linear optical experiment
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multiphoton transformation

/
{(S|U|1...10...0)?

[

The experiment “naturally” performs boson sampling ]

Aaronson & Arkhipov, arXiv:1011.3245 (2010)
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No feed-forward required



Previous expectations — quantum computational supremacy

If one could implement our experiment with (saythen certainly a classical computer
could verify the answers—but at the same time, one would be getting direct evidence that a quantum
Aaronson & Arkhipov, computer could efficiently solve an “interestingly difficult” problem, one for which the best-known
arXiv:1011.3245 (2010) classical algorithms require many millions of operations. While disproving the Extended Church-
Turing Thesis is formally impossible, such an experiment would arguably constitute the strongest
evidence against the ECT to date.

the first steps. The eventual goal would be to demonstrate BOSONSAMPLING with (sa
ohotonS: a regime where the quantum experiment probably would outperform its fastest
classical simulation, if not by an astronomical amount. In our view, this would be an exciting
proof-of-principle for quantum computation.

Aaronson & Arkhipov,
arXiv:1309.7460 (2013)

though, this linear optics experiment is still not at all easy — to reach the regime

Preskill, where digital simulation is currently infeasible one should detect a coincidence of

arXiv:1203.5813 (2012) abouhotons, whose paths through the interferometer can interfere. Further-
Goldstein et al., extending to N of ordeith currently available coherence input modes [3-11]. HomexeaJt remains a challenge to
Phys. Rev. B 95 (2017) times, clearly growing Beyond the capabilities of modern ~ scale up the devices 1§ protons [1] traversing a
correspondingly large nefWork, a regime in which a

classical supercomputing. We note that the fidelity will not ki oo wangliis Tl i Crgatid to sl

form classical computers.

Barkhofen et al.,
Phys. Rev. Lett 118 (2017)

. cavities decoherence time. The final theoretical result leads to a significant improxzement jn the efficiency and an
Latmiral et al., additional step towards quantum supremacy which can be achieved with § 7 photons in 50 glodes experiment
New J. Phys 18 (2016) '



Brute force sampling

-

1

2. While more samples required

\_

. Compute Pr(S)V.S <

n

2.1. Sample S with prob. Pr(S) 1012
@ 10°
n? &
( )>>n"’>>n2” £ 100
n
10°

N\ (m . .
n X n matrix permanents in the CFS

>300 years —
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Our results — classical sampling algorithms

« Metropolised independence sampling (MIS)
Neville et al. Nature Physics (2017)

Markov chain Monte Carlo

Collision free subspace

Experimentally verified approximate sampling

~ 100 n x n matrix permanents per sample for n < 30 (and probably beyond)

« Exact boson sampling
Clifford & Clifford, Proc. SODA (2018)

* Full space with collisions
* Rigorously proven exact sampling
« Equivalent of ~ 2 n X n matrix permanents per sample

10



Our results — sampler timing (on a laptop)

- —— Brute force sampling

5o MIS /
—®— Clifford & Clifford

12 /

mean sample time (log4y(s))
Co

. 4 6 8 10 12 28 30
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Experimental time “complexity” — photon loss

Pr(an input photon survives) = 7 (<

Pr(n input photons survive) = n"
[E(time per n photon output) = O ((

If n decreases with n (without some

there is no asymptotic advantage

Typical implementation

1)

2

dominating boost in survival probability),

-

2

o

U

~

(each photon sees O(n?) beamsplitters): % o< ™ (M
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Revised expectations

1.0

2 = £
EN o) o

N: transmission prob. / photon

&
(%

20 40 60 80 100
n: input photon number

A,B: Wang et al. Nature Photonics (2017) 13

m:n2

Source rep. rate: R(n) = 10 GHz

4 Y

g¢ (n) = (R(n)Pepsn™) "

\ J

ci(n) =8 x 10~ 1°n2"

\, J

7

QA(n,n) = max [O, log; (%)]

QS; : QA > 10
QS, : ¢ < 1 week, ¢; > 100 years.

1 day of supercomputer time:
58 photon boson sampling




MCMC - Metropolised independence sampling (MIS)

»  Markov chain: Pr(S®[s0=1 gy = (5] gi=1)

* Proposal distribution: Distinguishable particle distribution EJ:HIM:HM m
Prp(S) = Per(|Ag|?) Elementwise | - | -

g )

2. While more samples required

Sample initial state S with prob. Prp(

2.1. Sample S" with prob. Prp (S7)

Pr(S’) Prp(S) )
" Pr(9) PrD(S,)j

2.2. Pr(S — &) = min (1

o

Neville et al. Nature Physics (2017) 14



Metropolised independence sampling — Thinning
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Neville et al. Nature Physics (2017) 15



MIS — “Verification” overview

» Likelihood ratio test
» Alternative hypothesis: distinguishable particle sampling
« Used by experimentalists — photon distinguishability is a source of error

» Relevant to MIS — proposals from distinguishable particle distribution
e n=7,12,20,25

« 2-sample Bootstrap Kolmogorov-Smirnov (KS) test
* Null hypothesis: 2 samples are drawn from same distribution
« Comparison samplers: Brute force, rejection, alternative MIS (longer
thinning interval), distinguishable particles
« n=7,12,20

Neville et al. Nature Physics (2017)



MIS — “Verification” part 1
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Neville et al. Nature Physics (2017) 17
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MIS — “Verification” part 2

0.40
Distinguishable parliclas
B - IS
0.35 : ~, - -~ Rgjection sampling
5 T Naive sampling
0.30
0.25 n=/
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0.00 ' == S
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~log(|Per(As)|)
Neville et al. Nature Physics (2017) 18



Exact classical algorithms for boson sampling

Rough idea:

1. Expand the sample space
2. Compute marginal probabilities for row and column choices
3. Incrementally sample rows and columns using probabilistic chain rule

4. Exploit Laplace expansion of the permanent for further speedup

Clifford & Clifford, Proc SODA (2018) 19



Clifford & Clifford Algorithm A

Recall: S = (51,...,5m) How many of each row to include.

Rewrite: z = (21,...,2n) Which rows to include.
21 S22 << 2y

Expand the space by relaxing the ordering requirement:

r=(ry,...,r,) € [m]"

1
Sample from p(r) = I [PerA,|?

(The permanent is invariant under permutations of rows)

Clifford & Clifford, Proc SODA (2018) 20



Clifford & Clifford Algorithm A

Marginals:
(n—k)! 2
p(re, ... 1) = Y Z ‘Pel“Aﬁl,...,rk‘
' ceCy
Ci - Set of k-combinations from [7]
AL - - Submatrix of A with rows rq,..., 7, and columns ¢

Chain rule:

p(r) = p(r1)p(ra|ry)p(rs|ri, re) ... p(ralre, o T1)

Clifford & Clifford, Proc SODA (2018) 21



Clifford & Clifford Algorithm A

/1. Sample r1 from p(ry) )

2. Sample ro from p(ra|r1) o< p(ri,r2)

\n. Sample 7, from p(rn|ri, .. r_1) < p(ry, ... ;Tn)/

. i - k(T _ n
Running time: m;kQ (k) = O(mn3")

Clifford & Clifford, Proc SODA (2018) 22



Clifford & Clifford Algorithm B

Further expand the space:

Introduce a = (ay,...,a,) € w[n| -auxiliary column labels (permutation)

Define a new marginal pmf:

O(ry, ..., rp|la) = ’Peer‘l’

Sample from p(71,...,70) = Ea{p(r1,. .. a’f‘n|a)}]

(The permanent is invariant under permutations of columns)

Clifford & Clifford, Proc SODA (2018) 23



Clifford & Clifford Algorithm B

GSample a from Unif{r[n|} \

1. Sample r; from ¢(r1|a)

2. Sample ry from P(ra|r, o) o< ¢(r1,r2|Cx)

n. Sample 7, from ¢

-

(Tn|7°17 e :Tn—lya) X Cﬁ(ﬁ, e ,?“ﬂ?

Running time: kaQk = O(mn2") 2
k=1

Clifford & Clifford, Proc SODA (2018) 24



Clifford & Clifford Algorithm B

Trick: N
Per(X) = anjpefXﬁ].x{z—l

(Laplace expansion of the permanent)

+

o |3 (06 TS0

71=1 =1

Per(X) =

(Glynn formula for the permanent (Gray code ordered))

4

[Evaluate A(re|r1, .- Th—1,0) Vi € [m] in O(k2F + mk) time]

Clifford & Clifford, Proc SODA (2018) 25



Clifford & Clifford Algorithm B

GSample a from Unif{r[n|} \

1. Sample r; from ¢(r1|a)

2. Sample ry from P(ra|r, o) o< ¢(r1,r2|Cx)

n. Sample 7, from ¢

-

(Tn|rla s Jrn—lya) X (;b(rlj c o 7T’n|9

n

[Running time: Z (k2" + mk) = O(n2™ + mRQ)J
k=1

Clifford & Clifford, Proc SODA (2018) 25



Bonus: MIS mixing time

Total Variation . o .
= 59, Estimated number of MIS steps to get within specified total
0 2 - . .
N | — 1% variation distance of the Boson sampling target
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Number of photons n (m = nz)

« For n = 20 suggests that 50 burn in states required to sample from distribution at most ~1% close
to target

Jun S. Liu, Monte Carlo strategies in 27
scientific computing (2001)



Could approximate rejection sampling work?
With thanks to the QIP PC

Corollary 24 (Brandao) Lf:t and let A € C™*n be o Haar-random BOSONSAMPLING
matrir. Then for all £,8 > 0, with probability at least 1 — § over A, there exists a distribution D’

over Amn such that ||[D' — D%|| < = and
m 1

Translation: Rejection sampling with uniform proposal could be good* to
approximately sample from a distribution at least ¢ close to the target distribution with
robability 1 — ¢ over boson sampling matrices with m = n? and small n

*with O( % ) accepts per reject

Aaronson & Arkhipov, arXiv:1309.7460 (2013) 23



Rejection sampling - How many permanents per sample?
0.14 T } =T
} =

0.12
0.10

0.08

0.02 *

Est. TVD

*.ff%iii

Approx. Num. Perms / sample

For n = 20 need > 100 permanent computations per sample for reliable TVD < 1%
Seems slower than MIS for same 1, but a comparison requires subtle considerations

29



Rejection sampling - summary

» We tested to see whether rejection sampling could perform approximate
sampling for small n and with small TVD to the boson sampling distribution

» |t seems to work remarkably well, but still probably slower than MIS

» Clifford and Clifford sampler faster than both and samples exactly for all
input unitaries

30



Future work

* Improve classical algorithms as much as possible
* E.g. Include realistic experimental error
(Garcia-Patrén et al. arXiv:1712.10037, Renema et al. arXiv:1707.02793)

« Verification schemes
« Using the exact sampler
« Without computing additional permanents?
(Agresti et al. arXiv:1712.06863)

* Reduce linear optical circuit depth?

* Loss tolerance scheme?



Conclusion

« Classical boson sampling algorithms vastly outperform current state of the art
gquantum experiments

* Increased lower bound for the number of photons required to demonstrate
quantum computational supremacy by boson sampling

» Decreased upper bound on quantum advantage by boson sampling as a
function of n and 7

* It’s important to optimise classical algorithms as much as possible —
2018 may be the year of the first quantum computational supremacy
claim, it would be sad if it had to be retracted



Thank you
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