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Testing a Quantum Device
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Delegating a Quantum Computation

= |
[ )

<
<

oNoNeo

!

0,1or L



Desired properties




Desired properties

Verifiability:
Either the verifier outputs L,

OR she is outputting the correct outcome of the
computation (with very high probability).
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Verifiability:
Either the verifier outputs L,

OR she is outputting the correct outcome of the
computation (with very high probability).

Blindness:

The final state of the server and his view
of the transcript don’t depend

on the verifier’s input to the protocol.
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Single-Prover delegation

* (Slightly) Quantum verifier,

e Single prover bound by quantum mechanics,

* Verifier interacts (quantumly) with provers




[Aharonov, Ben-Or, Eban 2010]
[Broadbent 2015]
[Fitzsimons, Kashefi 2017]

Morimae 2014]

Morimae, Fitzsimons 2016]

Complexity of delegating m-gate circuit: O(m)
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Two-provers delegation




Two-provers delegation

e Classical verifier

* Two provers bound by quantum mechanics,
and non-communicating.

* Verifier interacts (classically) with provers.




les

Bell Inequal




CHSH Game




CHSH Game




CHSH Game




CHSH Game

Alice and Bob win if a & b = xy




CHSH Game

Alice and Bob win if a & b = xy




CHSH Game

a

Optimal classical

. 3
success prob.: 3

Alice and Bob win if a & b = xy




CHSH Game

X Alice a

Optimal classical
success prob.: %

Optimal quantum

success prob.:
cos® T ~ .85

Alice and Bob win if a & b = xy



CHSH Game

Optimal classical
success prob.: %

Optimal quantum

success prob.:
cos® T ~ .85

Alice and Bob win if a & b = xy



CHSH Game

EPR) =

o

1
+—=[Dallp

0)410) 5 2

Optimal classical
success prob.: %

Optimal quantum

success prob.:
cos® T ~ .85

Alice and Bob win if a & b = xy



CHSH Game

1
+—=[Dallp

2 10),10) 5 7

EPR) = —

AO:Jz, A1:O'X

Optimal classical
success prob.: %

Optimal quantum

success prob.:
cos® T ~ .85

Alice and Bob win if a & b = xy



CHSH Game

1 1
|EPR) = E‘O>A‘O>B + EHM\DB

Optimal classical
Ay=o0y, AL =o0x success prob.: %

Optimal quantum
Oz + O Oy — O
By = 2 5 X, B, = Z > X success prob.:

cos® T ~ .85

Alice and Bob win if a & b = xy
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If Alice and Bob play CHSH and win with probability opt, they
must share an EPR pair.
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If Alice and Bob play CHSH and win with probability opt, they
must share an EPR pair.

If Alice and Bob play n rounds of CHSH and win an opt — ¢
fraction of the games, their strategy must be within d(e,n) of
the n-fold tensor product of optimal single-round strategies.

[Reichardt, Unger, Vazirani 2012]



CHSH Game

If Alice and Bob play CHSH and win with probability opt, they
must share an EPR pair.

If Alice and Bob play n rounds of CHSH and win an opt — ¢
fraction of the games, their strategy must be within d(e,n) of
the n-fold tensor product of optimal single-round strategies.

This property is called RIGIDITY or SELF-TESTING

[Reichardt, Unger, Vazirani 2012]
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actual computation.
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RUYV Protocol

* Key insight: alternate Rigidity test with
actual computation.

* Enforce that Prover 2 prepares certain
resource states on Prover 1’s side.

* Have Prover 1 use these resource states to perform
computation by teleportation.

[Reichardt, Unger, Vazirani 2012]
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Complexity of delegating m-gate circuit: O(m®'”?)

[Reichardt, Unger, Vazirani 2012]

-

McKague 2013]
‘Gheorghiu, Kashefi, Wallden 2015]
Hajdusek, Perez-Delgado, Fitzsimons 2015] ~ Q(m?)

Fitzsimons, Hajdusek 2015]

Natarajan, Vidick 2016]




Our result In one sentence:

We develop new rigidity results, and use them
to turn a single-prover delegation protocol
into a two prover protocol with overall
complexity scaling as O(m logm).
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EPR Protocol

Slightly quantum

ze{0,1}" | \/

R

P
R

- V selects encrypting key at random: a & {O, 1}"

- SendsencryptedinputtoP: X% |z1) ® -+ ® X |z,)

Sharen EPR pairs,V measures each half in comp. basis

with outcomes €1, .., €Ep,
Halves of P collapse to ’61, e 6n>

V sets the encryptingkeys to a; .= €; @ I;

[Broadbent 2016]
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EPR Protocol

Slightly quantum

ze{0,1}" | \/

R

- More generally, the state of a wire is:
X7y, a,be{0,1}
- For example, P applies Hadamard gate:
HXZ" ) = XPZ°H |)
-V updates encrypting keys:
a —b, b —a

[Broadbent 2016]
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EPR Protocol

Slightly quantum
ze{0,1}" | \/ P

- Clifford gates (H, CNOT) are easy to implement!

- T-gates are more complicated to implement without revealing
the encrypting keys:

TXZ" ) = X" Z°P° (T [¢))

[Broadbent 2016]
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EPR Protocol: T-gadget

FACT: There exists a sub-protocol that implements a T-gate on an
encrypted input, without revealing the encrypting keys.

- We call this sub-protocol a T-gadget.
- The verifier can implementit by measuring
products of single-qubit Clifford observables

What about verifiability?

Verifier randomly chooses between a computation run and
test runs.

Test runs are indistinguishable from computationruns from the Prover’s perspective!
But the verifier’s inputis fixed, and she expects deterministicreplies.

[Broadbent 2016]
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single-qubit Clifford observables.
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Rigidity Game

Completeness: Honest Alice and Bob win with probability 1.

Soundness: If Alice and Bob win with probability 1 — €, their
strategy must be within O(e¢) of the honest strategy.

Features:

e Can test that provers measure any product of
single-qubit Clifford observables.

e Robustness independent of number of EPR pairs tested.
(|[Natarajan, Vidick 2016] tests for Pauli X and Z
measurements)







My, M, .., M




My, M, .., M




My, Mo, .., M



















((My, My), (M7, My), (a1,a4), (b1,bs)) € Spgl



Verifier on a Leash Protocol

e (lassical verifier, two quantum provers
e Total complexity: O(mlogm)
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Verifier on a Leash Protocol

Classical verifier, two quantum provers
Total complexity: O(mlogm)
Round complexity: O(7T-depth)

Encrypted input

Py




Dog-Walker Protocol

Classical verifier, two quantum provers
Total complexity: O(mlogm)
Round complexity: O(1)

Input is known to Py

Py
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o from O(m?) to O(m319?) protocols for classical verifier to
delegate m-gate circuit to two quantum provers

New: i P,

e new rigidity theorems with robustness
independent of number of EPR
pairs tested. Vv

e O(mlogm) protocols for classical verifier to 8
delegate m-gate circuit to two quantum provers.
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Open Questions

* Avoiding the non-communicationassumption
(while keeping the client classical)?

- Single-Round Protocols: [Grilo 2017]

- Single-server Protocols (with classical client):

‘Mahadev 2017]

* Noise tolerance?
- [Arnon-Friedman, Yuen 2017]






