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@ n copies of (unknown) mixed state p € C9*d

Given a property f,
how many copies of p do we need to estimate f up to e-accuracy? }

o
PRPR...Qp
—_—
Quantum measurement on n copies

o Copy complexity:
C(f,d,e) % min {n : there exists f such that f(p®") is an

+ ¢ estimate of f(p) with probability > 0.9}

[Montanaro and de Wolf '13]
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@ Quantum tomography: output p close to p with respect to some
distance measure.

o Requires O(d?) copies [HHJ+17,0W16,0W17]

@ Testing if p = o for some known o (next talk!)
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@ von Neumann entropy:
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@ More efficient than quantum tomography
e Fora =2, C(S5,,d,e) =0 (max{‘/g 4})
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@ Sublinear in the size of the input (d? is the natural dimensionality of
the input)

@ Classical estimation
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Theorem (AISW '17)

cis.0.9< 0% + PEE)Y.

o o 0 o 2 0
Moreover, the empirical estimator (EYD) requires Q (d?) copies to
estimate von Neumann entropy.

e Classical case [VV11,WY16,JVHW15]

B d log? d
C(H.d.e) =0 (5|ogd + 62>
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e f(p) is unitarily invariant if
fF(UpU') = f(p)
for all unitary U
e Equivalently, f is a property of the spectrum 1 of p

e Examples: von Neumann and Rényi entropies, rank of p, etc.

A quantum measurement, called weak Schur sampling, is optimal for
estimating unitarily invariant properties [KW01,CHWO07,Har05,CHr06].
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Preliminaries: Weak Schur Sampling

@ Weak Schur sampling output:
o Denote the whole procedure as A ~ SW,

@ A\ is a partition of n, denoted by A - n and represented by a Young
diagram:

Figure: English Young diagram for the partition A = (6,4, 3,3,1).

@ Since n — X" — A(X") is a Markov chain,

Estimating a quantum state property is at least as hard as estimating the
same property in the classical setting

11/ 24



Preliminaries: Definitions

@ “Semi-standard” Young tableau: filled diagram with strictly increasing
columns (top-to-bottom) and non-decreasing rows (left-to-right)

1

1

3

12/ 24



Preliminaries: Definitions

@ “Semi-standard” Young tableau: filled diagram with strictly increasing
columns (top-to-bottom) and non-decreasing rows (left-to-right)

1

1

3

@ "Standard” Young tableau: semi-standard with strictly increasing rows

1

2|

3

12/ 24



Preliminaries: Definitions

@ “Semi-standard” Young tableau: filled diagram with strictly increasing
columns (top-to-bottom) and non-decreasing rows (left-to-right)

1] 1 ‘
3

@ "Standard” Young tableau: semi-standard with strictly increasing rows

2]

3

@ Schur polynomial
} : : { }
o # of occurences of j in T
S)\(Xl,Xg,...,Xd)— HX,-
T :semi-standard tableau i=1
of shape A

12/ 24



Preliminaries: Definitions

@ “Semi-standard” Young tableau: filled diagram with strictly increasing
columns (top-to-bottom) and non-decreasing rows (left-to-right)

1] 1 ‘
3

@ "Standard” Young tableau: semi-standard with strictly increasing rows

Tz
3
@ Schur polynomial
d
5}\()(17)(27 o aXd) _ Z HX,{# of occurences of i in T}
T :semi-standard tableau i=1
of shape A
SWiy(X) = (#of standard Young tableaus of shape A) - sx(n) J
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Probability
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1]

1 2

3 d 1 2 3

v n
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Probability

(ed)V/*/d
1
d

Probability

]

1 2 3

2—2
@ Unless n =Q (d /o

g2/

d 1 2 3

1%

n

d

), we cannot tell them apart since

2d7y (SWhy, SWL,)? < X2 (SWy, SW,,) < 0.01

@ In classical case,

1
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Probability
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Empirical Estimator (EYD)

@ Assume the eigenvalues of p are sorted: 17 > 1, > ...
o A~ SW,

@ The empirical Young diagram algorithm sets

A
ni = —
n
@ It is known that [ARS88,KW01]
Al oo
Esw, N el
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von Neumann Entropy

—

@ The empirical estimate S(A) is

d
SN = Z

The empirical entropy estimate satisfies:

E [(S/(T) B S(p))z] <0 <d4 d? 4 Iog:n> .

Hence,

(5d5)<0<j§+|m€2€(21/5)).
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@ Bias is small by concentration results [OW17]
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@ Strong error probability bound:

Theorem (AISW '17)

For small enough ¢, if p is maximally mixed and n < O(d?/e?), then

(3

i=1

ﬁ—l‘ >5> >1— e d),

o Previously the best known lower bound was a constant (0.01) [OW15].
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Results: Non-integral Rényi Entropy

Theorem (AISW '17)
Fora > 1,

(S, d,e) < o<d2>.

Moreover, the empirical estimator (EYD) requires (d??> copies to
estimate Sq(p).
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Results: Non-integral Rényi Entropy

Theorem (AISW '17)

Fora > 1,

d2
C(S,d,e)< 0 (€2>

.. . . 2 .
Moreover, the empirical estimator (EYD) requires Q (d?) copies to

estimate Sq,(p).

Theorem (AISW '17)
Fora <1,

d2/(1
C(S,d,e) < 0 S
dit1/e

Moreover, the empirical estimator (EYD) requires Q (T) copies to
estimate Sq(p).
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o Integral Rényi entropy with a > 1:

dl—l/a d2—2/a
C(5a7 d7 6) =0 (max {527 W

@ von Neumann and non-integral Rényi entropies:

Table: Copy complexity of empirical estimators

« Upper Bound Lower Bound
von Neumann O(d?/e?) Q(d?/e)
a>1 0(d?/¢?) Q(d?/e)
a<l O(d?/ /2y | Q(d*Y/e et/ @)
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Open Questions

@ Exact characterization of the copy complexity of von Neumann
entropy, and Rényi entropy for non-integer «
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Open Questions

@ Exact characterization of the copy complexity of von Neumann
entropy, and Rényi entropy for non-integer «

@ Characterization of the copy complexity for restricted quantum
measurements
o Example: non-adaptive measurements

o Conjecture: Sy(p) is the easiest entropy to estimate

24 / 24



