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Abstract: We propose a family of exactly solvable toy models for the AdS/CFT corre-

spondence based on a novel construction of quantum error-correcting codes with a tensor

network structure. Our building block is a special type of tensor with maximal entangle-

ment along any bipartition, which gives rise to an isometry from the bulk Hilbert space

to the boundary Hilbert space. The entire tensor network is an encoder for a quantum

error-correcting code, where the bulk and boundary degrees of freedom may be identified as

logical and physical degrees of freedom respectively. These models capture key features of

entanglement in the AdS/CFT correspondence; in particular, the Ryu-Takayanagi formula

and the negativity of tripartite information are obeyed exactly in many cases. That bulk

logical operators can be represented on multiple boundary regions mimics the Rindler-

wedge reconstruction of boundary operators from bulk operators, realizing explicitly the

quantum error-correcting features of AdS/CFT recently proposed in [1].
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tessellation	into	triangles
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standard dyadic
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Definition. Thompson’s group 𝑇 is the group of piecewise linear 
homeomorphisms of the circle 𝑆# (understood as the interval 0, 1
with endpoints identified) that
• map dyadic rational numbers to dyadic rational numbers,
• are differentiable except at finitely many dyadic rational numbers
such that
• on intervals of differentiability the derivatives are powers of 2.
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holographic	states	are	elements	of	these	Hilbert	spaces



Perfect Tensor





V : Cd ⌦ Cd ! Cd



=

=

=



=+)2+</
@
$*>%)$%*/'4*5+)')"/%/$"*&



for	example,





?"9"0)%=3$<'&/%/+

|⌦�i =

�



?"9"0)%=3$<
<"5+



� �0 �00

H� H�0 H�00



H� H�0 H�00



H� H�0 H�00



H� H�0 H�00



H� H�0 H�00



H� H�0 H�00

2$*+C0)%$*$*0



$5)*#-3+&"$ 3"9"0)%=3$<'&/%/+'
2")'+>+)8'/+&&+99%/$"*



Dynamics



Dynamics ?



Ordinary	quantum	mechanics



here:



Thompson’s
group
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Definition. Thompson’s group ! is the group of piecewise linear 
homeomorphisms of the circle "# (understood as the interval $% &
with endpoints identified) that
! map dyadic rational numbers to dyadic rational numbers,
! are differentiable except at finitely many dyadic rational numbers
such that
! on intervals of differentiability the slopes are powers of '.
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How does Thompson’s group T act

on tessellations,

cutoffs, and

holographic states?



T	acts	on	the	boundary of	the	disk.



T	acts	on	the	boundary of	the	disk.

(All	vertices of	the	tessellations	
lie	on	the	boundary.)
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Theorem (Jones). The action

⇡(f)|gi ⌘ |fgi

defines a unitary representation of 
Thompson’s group T on the Hilbert space 
spanned by all states of the form

|fi ⌘ ⇡(f)|⌦�i.

V.	F.	R.	Jones.	arXiv:1607.08769



We	have	found	a	group	that

matches	our	choice	of	tessellations;✓
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has	a	unitary	representation	on	our	
choice	of	Hilbert	spaces;

✓
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We	have	found	a	group	that

can	be	understood	as	a	discrete	
version	of	diff+(S1).

matches	our	choice	of	tessellations;

has	a	unitary	representation	on	our	
choice	of	Hilbert	spaces;

✓

✓
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Future	Work

field	operators	for	Thompson’s	group

MERA instead	of	trees

other geometries	&	groups



In September 2018 I’ll be looking 
for postdoc positions.

The	dynamics	for	these	
holographic	states	is	given	by	
Thompson’s	group	T.




