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ABSTRACT: We propose a family of exactly solvable toy models for the AdS/CFT corre-
spondence based on a novel construction of quantum error-correcting codes with a tensor
network structure. Our building block is a special type of tensor with maximal entangle-
ment along any bipartition, which gives rise to an isometry from the bulk Hilbert space
to the boundary Hilbert space. The entire tensor network is an encoder for a quantum
error-correcting code, where the bulk and boundary degrees of freedom may be identified as
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distances are different!
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tessellation into triangles




tessellation into triangles

all vertices of the triangles
lie on the boundary
















dyadic rational number
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for example
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admissible tessellations:

Pachner flip

>




Cutoffs










finite volume

convex region




finite volume

convex region

bounded by

closed curve of

finitely many geodesics
that come from a
tessellation


















holographic states are elements of these Hilbert spaces
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Holographic state

& /‘ /W
0,) = $







/y//












B Bt 5






exactly one holographic state
for every tessellation
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Dynamics ?



Ordinary quantum mechanics
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here:
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Definition. Thompson'’s group T is the group of piecewise linear
homeomorphisms of the circle S (understood as the interval [0, 1]
with endpoints identified) that

* map dyadic rational numbers to dyadic rational numbers,

« are differentiable except at finitely many dyadic rational numbers
such that

« on intervals of differentiability the slopes are powers of 2.
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J. W. Cannon, W. J. Floyd, W. R. Parry, Introductory Notes on Richard
Thompsons’s Groups, Ens. Math. 42 (1996), no. 3—4, 215-256
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homeomorphisms of the circle ST (understood as the interval [0, 1]
with endpoints identified)
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* map dyadic rational numbers to dyadic rational numbers,
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« are differentiable except at finitely many dyadic rational numbers




« on intervals of differentiability the slopes are powers of 2.
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Generators of T

B(x) C(x)

J. W. Cannon, W. J. Floyd, W. R. Parry, Introductory Notes on Richard
Thompsons’s Groups, Ens. Math. 42 (1996), no. 3—4, 215-256



How does Thompson’s group T act
on tessellations,
cutoffs, and

holographic states?



T acts on the boundary of the disk.



T acts on the boundary of the disk.

(All vertices of the tessellations
lie on the boundary.)



























admissible admissible

R. Penner, M. Imbert, P. Lochak and L. Schneps in Geometric Galois Actions: Volume 2, The Inverse Galois Problem, Moduli Spaces
and Mapping Class Groups. London Mathematical Society Lecture Note Series, Cambridge University Press 1997












Theorem (Jones). The action

m(f)lg) = 1fg)

defines a unitary representation of
Thompson’s group T on the Hilbert space
spanned by all states of the form

f) = 7))

V. F. R. Jones. arXiv:1607.08769



We have found a group that

matches our choice of tessellations;



We have found a group that

matches our choice of tessellations;

has a unitary representation on our
choice of Hilbert spaces;



We have found a group that

matches our choice of tessellations;

has a unitary representation on our
choice of Hilbert spaces;

can be understood as a discrete
version of diff,(S?).
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field operators for Thompson’s group
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field operators for Thompson’s group

MERA instead of trees



Future Work

field operators for Thompson’s group

MERA instead of trees

other geometries & groups
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The dynamics for these
holographic states is given by
Thompson’s group T.
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In September 2018 T'll be looking
for postdoc positions.





