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Outline of the talk

• A bridge between probability theory, matrix analysis, and quantum optics.

• Summary of results.

• Properties of log-det conditional mutual information.

• Gaussian states in a nutshell.

• Main result: the Rényi-2 Gaussian squashed entanglement coincides with the 
Rényi-2 Gaussian entanglement of formation for Gaussian states.

• Conclusions & open problems.



Connecting probability theory and matrix analysis

• It has been known for a long time that one can turn information 
theoretical inequalities into determinantal inequalities by 
applying them to Gaussian random variables.1

• All differential Rényi entropies reduce to 1/2 ln det (V) up to additive constants! Balanced entropy 
inequalities become inequalities between linear combinations of log determinants.

1. T.M. Cover and J.A. Thomas. Determinant inequalities via information theory. SIAM J. Matrix Anal. Appl. 
9(3):384-392, 1988.
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Example: strong subadditivity
• Strong subadditivity (SSA) is the most important “Shannon-type” entropy inequality. It tells us 

that any three random variables TA, TB, TC satisfy

I(TA : TB |TC) ..= H(TATC) +H(TBTC)�H(TC)�H(TATBTC) � 0

• IM is the conditional mutual information (CMI) formed using the following log-det entropy 
defined on positive definite matrices:

M(V ) ..=
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2
ln detV

Log-det CMII(TA : TB |TC) =
1

2
ln

detVAC detVBC

detVC detVABC
=.. IM (A : B|C)V

• When the three variables are jointly normal: 

T = (TA, TB , TC) ⇠ N (V ), VABC =

0
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The grand plan
• Why is this relevant for quantum information?

! In continuous variable systems, Gaussian random variables model the outcomes of Gaussian 
measurements performed on Gaussian states.

! Rényi-2 entropies of Gaussian states are given by log-determinant expressions.

Gaussian 
measurements on 
Gaussian states

Classical

Quantum

• This correspondences led to the introduction of operationally motivated Rényi-2 entropic 
quantifiers for Gaussian states.2

2. L. Mi!ta Jr. and R. Tatham. Gaussian intrinsic entanglement. Phys. Rev. Lett. 117:240505, 2016.
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Our results in a nutshell

• We study general properties of the log-det conditional mutual information:

! we analyse its behaviour under various matrix operations, most notably matrix inversion;

! we show - among the other things - that the log-det mutual information is convex on the 
geodesics of the “trace metric”.

• We then establish remainder terms for the strong subadditivity inequality. This is done in two 
ways:

! perturbing known bounds; and

! exploiting new techniques based on recoverability theory.

• Our main result establishes the equality between two apparently very different Gaussian 
entanglement measures, when computed on Gaussian states:

! Rényi-2 Gaussian squashed entanglement; and

! Rényi-2 Gaussian entanglement of formation.



Schur complements

! Determinant factorisation:

det(VAB) = det(VA) det(VAB/VA)

• Schur complements answer a number of problems in matrix analysis & probability theory.3

VAB > 0 () VA > 0 and VAB/VA > 0

! Positivity of block matrices:

V �1 =

✓
⇤ ⇤
⇤ (VAB/VA)�1

◆! Formula for block inverse:

• Definition. BA

VAB =

✓
VA X
XT VB

◆
VAB/VA

..= VB �XTV �1
A XSchur complement:

! Conditional distribution of normal variables:

TAB ⇠ N (VAB) =) TB |(TA = t) ⇠ N (VAB/VA)

3. F. Zhang (ed.). The Schur Complement and Its Applications. Springer New York, 2005.



First properties of log-det CMI

• Theorem. For all VABC > 0, one has

IM (A : B|C)V = IM (A : B)VABC/VC

IM (A : B|C)V = IM (A : B)V �1

• These are two ways to reduce a conditional mutual information to a simple mutual information. The 
second one, in particular, is somewhat surprising. It will come in handy later.

• Sketch of proof. For the first identity, observe that TAB|(TC = t) is distributed normally, with 
covariance matrix VABC /VC (which is independent from t). Then

IM(A :B|C)V = I(TA :TB |TC) = ETC(I(TA :TB)|TC) = ETC

�
IM (A :B)VABC/VC

�
= IM(A :B)VABC/VC
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2
ln

detVAC detVBC

detVC detVABC

• Log-det (conditional) mutual information:

IM (A : B)W =
1

2
ln

detWA detWB

detWAB



Second statement: block inversion formulae + determinant factorisation rule:

(V �1)AB = (VABC/VC)
�1, (V �1)A = (VABC/VBC)
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�1
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Application: lower bounds on log-det CMI
• Strong subadditivity is saturated iff the variables form a Markov chain. In other words,

I(TA : TB |TC) = 0 () TA — TC — TB

• Problem: in the case of T = (TA , TB , TC) being Gaussian,  how can we read this from the covariance 
matrix? The question was answered by Ando & Petz4, but here we can give a one-line proof.

4. T. Ando and D. Petz. Acta Sci. Math. (Szeged) 75:265-281, 2009.
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Note that IM(A:B)V-1  = 0 is possible iff the off-diagonal blocks of (V-1)AB vanish. Introducing the 
projectors 𝚷A and 𝚷B onto the A and B subspaces, this can be rephrased as

• Saturation condition (= Markov chain condition): X � Y V �1
C Z| = 0

0 = I(TA : TB |TC) = IM (A : B|C)V = IM (A : B)V �1 , VABC =

0
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• The advantage of this approach over the traditional one is that by working a bit harder you can 
perturb this saturation condition and get a remainder term:

• A necessary condition for this strategy to succeed is that we work out the distribution of T': this 
new variable can be thought of as an “attempt” to reconstruct the original T once TB has been lost, 
assuming that TA − TC − TB  is a Markov chain.

Also T' is distributed normally:

T 0 ⇠ N (V 0) , V 0
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• Other remainder terms can be obtained by transforming the log-det CMI into a relative entropy 
and then applying any lower bound to the latter (e.g. negative log fidelity):

I(TA : TB |TC) = D(TkT 0) , pT 0(tA, tB , tC) = pTATC (tA, tC) pTB |TC
(tB |tC)



Matrix geometric mean

• The set !N of positive definite matrices is a differentiable manifold.

K > 0

Tangent space TK

• Then !N becomes a Riemaniann manifold. How are its geodesics shaped?

• All tangent spaces TK are isomorphic to T𝟙 (and hence to each other):

TK 3 X 7! K�1/2XK�1/2 2 T1

• T𝟙 (! Hermitian matrices) has a natural metric that comes from the Hilbert-Schmidt norm. This 

induces a metric, called the trace metric, on the whole manifold:

ds ..= kK�1/2dKK�1/2k2 =
⇣
Tr

⇥
(K�1dK)2

⇤⌘1/2

5. M. Moakher. SIAM J. Matrix Anal. & Appl. 26(3):735-747, 2005.
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Weighted geometric mean

As one it turn out, can give an analytical expression5 of the geodesic connecting M and N:



6. T. Ando. Linear Algebra Appl. 26:203-241, 1979. 

• The weighted geometric mean enjoys a wealth of useful properties:6

❖ Monotonicity under positive maps:

�(M#tN)  �(M)#t�(N)

❖ Determinant factorisation:

det(M#tN) = (detM)1�t(detN)t

• Consider bipartite block matrices VAB, WAB . Applying this monotonicity property to the map that 
projects onto the subspace A we get

(V#tW )A = ⇧A(V#tW )⇧|
A  (⇧AV⇧|

A)#t(⇧AW⇧|
A) = VA#tWA

Taking the determinant:

det (V#tW )A  det (VA#tWA) = (detVA)
1�t(detWA)

t



An important property of log-det MI

• Theorem. The log-det mutual information is convex on the geodesics of the trace metric, i.e.

• This is surprising, given that in general the log-det mutual information is not convex in the 
covariance matrix! It is also useful, as we shall see.

• Proof. Applying the determinantal inequality we have just found:
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2
ln
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Where’s the quantum?

• Until now we have explored the connections between classical probability theory and matrix 
analysis. Why is this relevant for quantum information?

Entropy inequalities for 
Gaussian random 

variables

Log-det inequalities for 
positive matrices Classical

Entropy inequalities for 
measurement outcomes

Rényi-2 entropy 
inequalities

Gaussian 
measurements on 
Gaussian states

Quantum
?

• First we need to introduce the basic formalism of quantum optics: Gaussian states, quantum 
covariance matrices etc.



Quantum Gaussian states

• Quantum optics ! quantum mechanics applied to a finite number of harmonic oscillators.

[x̂j , p̂k] = i�jk �! r̂

..= (x̂1, . . . , x̂n, p̂1, . . . , p̂n)
T
, [r̂, r̂T ] = i⌦ = i

✓
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• Thermal states of quadratic Hamiltonians, also called Gaussian states, form a privileged class of 
experimentally relevant quantum states.

• Covariance matrices of n-mode quantum states are exactly those 2n " 2n real matrices such that

V � i⌦ Heisenberg uncertainty principle!

Real symmetric matrices satisfying the above condition are called quantum covariance matrices 
(QCMs).

• Pure states are represented by minimal QCMs, or equivalently by QCMs with determinant 1. 

⇢̂G(V,w) pure () V � i⌦ and detV = 1

• As their classical relatives, they are parametrised by a mean vector w and a covariance matrix V.



• Experimentally, Gaussian measurements are easily accessible. These can be described by POVMs 
parametrised by another QCM, called seed.

• When one makes a Gaussian measurement described by a seed 𝛾 on a Gaussian state with 
covariance matrix V, the outcome T is again distributed normally:

T ⇠ N
✓
1

2
(V + �)

◆

• Hence, its differential entropy becomes:

h(T ) =
1

2
ln det

✓
1

2
(V + �)

◆
+ n(ln 2⇡ + 1)

The quantum entropy 
of the Gaussian state 
itself is significantly 
more complicated…

• Moral: log-determinant entropies are the right thing to look at if what you care about are 
measured correlations.

• To recover log-determinant expressions from the quantum state directly one has to work with 
Rényi-2 entropies:

S2(⇢̂G(V,w)) ..= � lnTr [⇢̂(V,w)2] =
1

2
ln detV



Gaussian entanglement measures

• Consider a bipartite Gaussian state. How to quantify its entanglement? An important measure is 
the Rényi-! entanglement of formation, aka the convex roof of the Rényi-# entanglement 
entropy.

7. Wolf et al., Phys. Rev. A 69:052320, 2003 — Adesso et al., Phys. Rev. Lett. 109:190502, 2012.

• Since we are dealing with Gaussian states, it makes sense to restrict to Gaussian decompositions in 
the convex roof, and to look at # = 2. In this way one obtains the Rényi-2 Gaussian entanglement 
of formation.7

• The choice of # makes the expression extremely simple at the level of covariance matrices:

EG
F,2(A : B)V = inf

1

2
IM (A : B)�

s.t. �AB pure QCM and �AB  VAB

It has been conjectured to be 
linked to the secret key distillation 
rate in the Gaussian setting [Mi!ta 

& Tatham, PRL 2016].



Main result
• Theorem. For any quantum covariance matrix VABC , twice the Rényi-2 Gaussian entanglement of 

formation between A and B is a lower bound on the log-det CMI:

Furthermore, the r.h.s can be recovered by taking the infimum of the l.h.s over all (legal) 
extensions VABC of VAB :

inf
VABC� i⌦ABC

1

2
IM (A : B|C)V = EG

F,2(A : B)V

1

2
IM (A : B|C)V � EG

F,2(A : B)V

8. LL, C. Hirche, G. Adesso, and A. Winter. Phys. Rev. Lett. 117:220502, 2016. 

• Sketch of proof (first inequality). Start by defining8

�AB
..= (VABC/VC)#1/2

�
⌦AB(VABC/VC)

�1⌦T
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�

Even if it is not obvious at first glance, this is always a QCM, and moreover 𝛾AB $ VAB . Now, 
compute its determinant:

Hence, this 𝛾AB  is a pure QCM. This means that we can use it as an ansatz in the inf that defines 
the Rényi-2 Gaussian entanglement of formation!

det �AB =
�
det(VABC/VC) det

�
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Doing so yields:

 1
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+
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Convexity of log-det MI 
on the geodesics of the 

trace metric

Getting rid of Ω 
(orthogonal matrix)

Properties of log-det CMI

In the second part of the proof we had to construct suitable extensions that can saturate the above 
bound (a bit more cumbersome).

EG
F,2(A : B)V = inf

⌧AB  VAB , ⌧AB pure

1

2
IM (A : B)⌧

 1

2
IM (A : B)(VABC/VC)#1/2(⌦(VABC/VC)�1⌦|)

IM (A : B|C)V = IM (A : B)VABC/VC

IM (A : B|C)V = IM (A : B)V �1



Consequences

9. R.R. Tucci, arXiv:quant-ph/9909041. —  M. Christandl and A. Winter, J. Math. Phys. 45(3):829-840, 2004.

• The theorem reduces the inf on the l.h.s., which is in principle over extensions of unbounded 
dimension, to an optimisation over a compact set of matrices of fixed dimension.

inf
VABC� i⌦ABC

1

2
IM (A : B|C)V = EG

F,2(A : B)V

• The optimised mutual information is reminiscent of the squashed entanglement:10

Esq(A : B)⇢ ..= inf
⇢ABC

1

2
I(A : B|C)⇢

In fact, it is a “Rényi-2 Gaussian“ version of the squashed entanglement.

• Our results may be useful to tackle a conjecture in [Mi!ta & Tatham, PRL 2016]: the Rényi-2 
Gaussian entanglement of formation coincides with the Gaussian intrinsic entanglement, i.e. the 
intrinsic information of the measured correlations, when all the parties are assumed to employ only 
Gaussian processing.

• For comparison, remember that a simple expression for the von Neumann squashed entanglement 
remains out of reach, even for very simple states.



Conclusions

• Log-determinant expressions appear:
! in the entropies of normal variables;
! in the entropies of the outcomes of Gaussian measurements on Gaussian states;
! in the Rényi-2 entropies of Gaussian states.

• The log-determinant mutual information enjoys lots of useful properties: for instance, 
it is convex on the geodesics of the trace metric.

• These properties can be used to show that the Rényi-2 Gaussian squashed 
entanglement coincides with the Rényi-2 Gaussian entanglement of formation.

• This may shed light on the connections between these quantifiers and the 
cryptographically motivated Gaussian intrinsic entanglement.

Thank you!




