Separating Quantum Communication and Approximate Rank

Anurag Anshu Rahul Jain Shalev Ben-David
Robin Kothari

Ankit Garg
Troy Lee

Anurag Anshu

Rahul Jain

Shalev Ben-David

Robin Kothari

Ankit Garg

Troy Lee

Communication complexity

Quantum communication complexity

- Alice and Bob can exchange qubits
- They can start with shared entanglement
- They can err with bounded probability (say, 1/3)
- F: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ is known in advance
- Q^{cc}(F) = minimum number of qubits exchanged in the best protocol
- Note: for all F, $Q^{cc}(F) \le n$

Query vs. Communication

Query Complexity

Studies queries

$$f: \{0,1\}^n \to \{0,1\}$$

Is easy

Communication Complexity

Studies communication

$$F: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$$

Is hard

(Recommendation: work on query complexity!)

Query vs. Communication

- Q: How many different deterministic 1-query algorithms?
- A: n (where n is the input size)

- Q: How many different deterministic 1-bit communication protocols?
- A: 2^{2^n} (where n is the input size)
- (Because the bit Alice sends to Bob can be any function of her input, and there are 2^{2^n} different functions on n bits)

How on Earth do we lower bound communication complexity?

A long time ago, in the previous talk....

- Approximate degree was a useful lower bound technique for quantum query complexity
- It was thought to be defeated after Ambainis's adversary method (and its generalization to negative weights) was introduced
- But it can still strike back

- In communication complexity: approx degree is approx logrank
- It has <u>never been defeated</u> no adversary methods
- Until now (a new hope?)

"logrank"?

- Consider a communication task in terms of the <u>communication matrix</u>
- For example, consider EQUALITY

What does a (deterministic) protocol look like?

"logrank"?

Consider a communication task in terms of the <u>communication matrix</u>

• What does a (deterministic) protocol look like?

Logrank as a lower bound on communication

- If there is a T-round protocol for F...
- Then the matrix of F can be decomposed into 2^T rectangles...
- Which means the rank of the matrix is at most 2^T

- Hence $D^{cc}(F) \ge \log rank(F)$
- Logrank is a measure that <u>lower bounds</u> communication complexity!
- It is also easy to compute (polynomial in 2ⁿ, the size of the matrix)
- However, logrank(F) is not equal to D^{cc}(F)
- Conjecture: logrank(F) is polynomially related to D^{cc}(F)

logrank ≈ polynomial degree

Query Complexity

Partial assignments

 \approx

Monomials

Linear combination of few monomials

 \approx

Low-degree polynomial

Communication Complexity

Rectangles

≈

Rank-1 matrices

Linear combination of few rectangles

 \approx

Low-rank matrix

Approximate logrank

- Logrank of an <u>approximating matrix</u>
- The min, out of all matrices M that are pointwise 1/3 close to F, of logrank(M)
- Lower bounds <u>quantum</u> communication complexity
- Communication analogue of approximate degree (polynomial method)
- Our result here: exists F for which Q(F) ≥ alogrank(F) ^{4-o(1)}
- "polynomial method in communication complexity is far from tight"
- No separation previously known

Lifting Theorems

- Let $f:\{0,1\}^n \rightarrow \{0,1\}$ be any query function
- Fix a small communication task G, usually inner product on 2x2 bits (or log n bits)

X

G

- Define fog by replacing each input bit of f with G
 - Alice gets all the x's, Bob gets all the y's
- Compare: query complexity of f vs. communication complexity of f°G
- "Lifting theorem": complexity of f (in some query model) is the same as that of fog (in a similar communication model)

Lifting Theorems

- GPW15, RM99: $D(f) \approx D^{cc}(f \circ G)$ (G is log n size)
- GPW17, AGJKM17: $R(f) \approx R^{cc}(f \circ G)$ (G is log n complexity)
- folklore: $deg(f) \approx logrank(f \circ G)$ (G is constant size)
- Sherstov09: adeg(f) ≈ alogrank(f∘G) (G is constant size)
- Conjecture: Q(f) ≈ Q^{cc}(f∘G)
- If you can prove this conjecture, our work here is obsolete!
 - Because we already have query function f with $Q(f) \ge adeg(f)^{4-o(1)}...$
 - So a lifting theorem would imply f∘G has Q^{cc}(f∘G) ≥ alogrank(f∘G)^{4-o(1)}
- This happened to our QIP talk last year!

Proving the separation

- Approach 1: Ambainis's adversary method
 - Problem: no adversary method in communication complexity!

- Approach 2: cheat sheet method
- Cheat sheets do two things:
 - Turn partial functions into total functions (sort of)
 - They <u>decrease</u> the degree (sometimes)

• Our only hope: cheat sheets in communication complexity

Cheat sheets in query complexity

Cheat sheet tells us something about parity that makes it easier to certify

Making parity easy to certify

- Certificate complexity of parity is n
- To convince you the input string has parity 0, I have to show you all the bits
- But what if you're quantum?

- Trick: parity has a circuit of size O(n)
- I will give you the output of each gate
- You Grover search for a wrongly-computed gate!
- Upshot: if f has circuit size n, then $adeg(f_{CS})=O(\sqrt{n})$
 - If you can find f with $adeg(f_{CS}) >> Vn$, you get circuit lower bounds

Lifting to communication complexity

- adeg(Parity_{CS}) ≈ √n
- Q(Parity_{CS}) ≈ n
- Take gadget G = IP_{log n}
- Consider Parity_{CS} G
- Have alogrank(Parity_{CS} ∘ G) ≈ √n
- Conjecture Q^{cc}(Parity_{CS} ∘ G) ≈ n

Too hard to prove the quantum lower bound

No lifting theorem

Cheat sheets in communication complexity

- Step 1: define IP_{CS}
 - 100 log n copies of IP
 - Alice and Bob get an additional part of the input, consisting of n¹⁰⁰ cells, but they must XOR their inputs to read a cell
- Step 2: prove alogrank(IP_{CS}) ≤ O(√n)
 - Not hard
- Step 3: Prove $Q^{cc}(IP_{CS}) \ge \Omega(n)$
 - Idea: add coauthors until the problem is solved

Figure 2: The structure of the proof of Theorem 33. Note that Claim 35 and Claim 37 only follow if both of their incoming arcs hold.

Cheat sheets in communication complexity

- We prove a general cheat sheet theorem for Q^{cc} (sort of): $Q^{cc}(f_{CS}) = \Omega(Q^{cc}_{1/poly(n)}(f))$
- Get a lower bound on f_{cs} from a lower bound on small-bias quantum communication for f
- This is fine when f=IP (discrepancy method)
- Conclusion: $Q^{cc}(f_{CS}) \ge alogrank(f_{CS})^2$
- What about the power 4 separation?
- First, recall the query version of the separation

k-Sum (Belovs-Spalek 2012)

Block k-Sum

• A negated variant of k-sum

BKK

RecBKK

•••

RecBKK_{CS}

 $Q \approx adeg^{4-o(1)}$

Recipe for power 4 separation

• Ingredients:

- A Boolean function g such that adeg(g)≥C(g)² (Bun, Thaler)
- An XOR lemma for approximate degree (Sherstov)
- A composition theorem for adeg-with-low-bias (folklore, Bun-Thaler)
- A lifting theorem for alogrank (Sherstov)
- Our quantum communication cheat sheet theorem

• Instructions:

- Take g above, and write h := Parity_{log n} ° g. Apply XOR lemma
- Compose h with itself a bunch of times, get f. Apply composition theorem
- Lift to communication task F by composing with IP₂. Apply lifting theorem
- Add a cheat sheet. Apply cheat sheet theorem
- Use the small C(f) and the self-composed nature of f to show certificates can be quantumly checked as fast as $adeg(f)^{1/4}$
- Conclude that alogrank(H_{CS}) \approx adeg(f)^{1/4}, $Q(H_{CS}) \approx$ adeg(f). Serve fresh

Open problems

- Do you even lift?
 - Prove a lifting theorem for quantum communication complexity
- Separate quantum information complexity from alogrank
 - Our techniques don't quite do this
- Find better lower bound techniques for Q^{cc}
 - A communication version of the adversary bound?

Next talk: Adam Bouland

- Previous talk: polynomials lower bounding quantum algorithms
- This talk: polynomials and quantum algorithms are separate
- Next talk: quantum algorithms lower bounding polynomials

- The story of Darth Belovs the Wise?
- (Not a story the classical complexity theorists would tell you)

Thanks!