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INTRODUCTION Why do we study identically 
prepared state compression



POPULATION CODING

 How a stimulus is encoded in the “states” of neurons. 

“States'' of a neuron: probability distributions of reactions to 
different stimuli.

����� = 0.9 1 1 +0.1 0 0      ������ = 0.2 1 1 +0.8 0 0

1/0: a spike/no spike.

 A group of � ≫  1 neurons reacting to the same stimulus →
tensor-power form states ��

⊗� (� = bite/touch).

 Population coding: the state ��
⊗� of a large group of neurons is a 

coding for the stimulus �.



A QUANTUM EXTENSION OF POPULATION CODING

 Population coding → A population of quantum states ��
⊗� carrying �.

 Goal: reduce the cost of transmission of identically prepared state ��
⊗�

with unknown �.



A TYPICAL SCENARIO IN QIP

A source emitting identical copies of a quantum state, unknown to the 
experimenter (e.g. cloning, metrology, learning …)

 How much information is in it?

 What is the shortest description length (and how to reach it)?

�� �� �� �� ��



COMPRESS IDENTICAL COPIES OF AN UNKNOWN STATE

 Goal: minimize the total (classical + quantum) memory cost  ℳ (focusing on the leading order 
of �).

 Constraint: consider only faithful protocols:
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�
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⊗� − � ∘ ℰ ��
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RELATED WORKS

 This work: a compression protocol for qudits states, 
requiring the minimum total memory and less quantum memory.

Families of identically prepared states Qubits Bits

Pure qubit states [Plesch and Buzek’10] log� 0

Mixed qubit states [YY, Chiribella, and Hayashi‘16] log� 1/2 log�

Mixed qubit clocks 
[YY, Chiribella, and Hayashi arXiv 1703.05876]

1/2 log� 1/2 log�

Classical populations with � parameters 
[Hayashi and Tan‘17]

0 �/2 log�

Qudit states [YY, Chiribella, and Ebler‘16] � (log�) 0

Not general

Not optimal



MEMORY COST OF COMPRESSION How many bits and qubits do 

we need to encode ��
⊗�



CLASSICAL AND QUANTUM PARAMETERS

A non-degenerate state family {��
⊗�:� = �,� ∈ Θ} is characterized by two kinds 

of real parameters: 

��=���� ��
�

 Classical (independent) parameters �: determining the spectrum

 Quantum (independent) parameters �: determining the eigenbasis



EXAMPLES

 Full qudit state family: �� = � − 1 and �� = �� − �.

 Phase-covariant state family: �� = 0 and �� = � − 1

�� = ������
�    �� = ∑ ����|�⟩⟨�|� .

 Classical distribution family: �� = � − 1 and �� = 0.



MEMORY COST OF THE COMPRESSION

 [What we expect] (by observation from previous results):  

1. 1/2 log� bits per classical parameter

2. 1/2 log� qubits per quantum parameter

 [Main result] For each independent parameter �, it takes:
1. 1/2 + � log� bits                                 for � classical
2. 1/2 log� bits + � log� qubits               for � quantum

to encode faithfully the �-copy state. 

 � > 0 is a parameter independent of � (proportional to the quantum/classical 
ratio), which can be arbitrarily close to zero. 



COMPRESSION PROTOCOL How to achieve the 
minimal memory cost 



PROTOCOL FOR QUDIT STATES

 Localization. 

 Local asymptotic equivalence of �-tensor power qudit states and 
Gaussian (displaced thermal ⊗ classical Gaussian) states. 

 Compression of displaced thermal ⊗ classical Gaussian states.



LOCALIZATION
 Take out ����/� copies (� > 0 is a small constant) and use them for tomography.  

Left with � − ����/� copies (the lost copies can be retrieved later by amplification).

 Good enough tomography pins � to a neighborhood 

Θ� ≔ �: ||�|| < ��
�

�
�

�

�

of size � (��
�

�
�

�

�)with exponentially vanishing error. 

 Encode the tomography outcome [to 1/ � precision] into a classical memory; 
1/2 log� bits per independent parameter.

 Total memory = tomography outcome + compression in Θ� 
(the overall quantum memory cost can be reduced).



QUANTUM LOCAL ASYMPTOTIC NORMALITY (Q-LAN)
 Q-LAN [Kahn and Guta ‘09]

In the neighborhood Θ�, ��
⊗� is asymptotically equivalent to a classical-quantum Gaussian 

state:

��
⊗� �����

� �� = � ��
����� ⊗ �

��
�����

 Classical mode ������ : a Gaussian distribution with �� variates; 

 Quantum mode �
�����

: a multimode (number of modes depending on ��) displaced 
thermal state (“noisy” laser).

 Problem reduced to compression of Gaussian states in a small neighborhood Θ�.



COMPRESSION OF GAUSSIAN STATES
 Compress ���

����� ⊗ ���
�����

with ||��||,||�′|| < �
�

�

 To compress ��–variate Gaussian ���
����� with constant covariance matrix and unknown mean ||��|| < �

�

�: 
truncation in an-� (����)hypercube is enough.

 To compress the multimode displaced thermal (“noisy laser”) state ���
�����

with �� unknown parameters     

||��|| < �
�

�  of intensity/phase : 
photon number truncation in an-� (����)hypercube is enough

Memory cost tomography Gaussian compression

per classical parameter ½ log� bits � log� bits

per quantum parameter ½ log� bits � log� qubits



ERROR BOUND

 The compression error is upper bounded as 

�� = � (���/�)+ �  ��� � ,

where the latter is the error of Q-LAN. Especially,  �(�) > 0 for � ∈ (0,2/9).

 Faithfulness lim
�→�

�� = 0 is guaranteed as long as � > 0. 

 The error vanishes slower when less quantum memory is used.

 # qubits / # bits can be made arbitrarily close to 0.



OPTIMALITY

 Construct a mesh on Θ containing n�/��� mutually 
distinguishable states for any � > 0. � = �� + �� .

 Consider any faithful compression protocol (ℰ,�):

 Can faithfully communicate �/2 − � log� bits of messages.

 The communication cost log|ℳ| cannot be smaller than the 
amount of messages.

� ���/��� ,� > 0

Θ

�� ��

⇒ ���

⊗� distinguishable from ���

⊗�



QUANTUM MEMORY IS ESSENTIAL Why fully classical 
memory doesn’t work



DOES FULLY CLASSICAL MEMORY WORK?

 No constraint on the size of the memory: Is it possible to reversibly convert ��
⊗� into 

classical bits with an error vanishing in � ?

 ��
⊗� �����������

 � 
�������������� 

 ��
⊗�

 A positive answer might trivialize many quantum information tasks.

 Fact: a state family can be perfectly compressed into classical memory iff. 
it is classical, i.e. ��,�� = 0 for any ��,�� from the family.

 Compression is only approximately perfect. Cannot directly apply the fact.



 Bures distance (see e.g. [Nielsen&Chuang]) and (quantum) Hellinger distance [Holevo’72]:

 Lemma [Luo, Zhang’04] �� ≥ ��; equality holds iff. ��,�� = 0.

 Theorem If ℰ is a q.-c. channel and � is a c.-q. channel satisfying ||�ℰ �� − ��||� ≤
� � = 1,2 , then the following holds

�� ��,�� ≤ �� ��,�� + 2 �.

 Faithful compression using classical memory works only for states whose �� → ��.

PROOF FOR �-APPROXIMATE COMPRESSION



PROOF FOR �-APPROXIMATE COMPRESSION
 Consider ���

⊗� and �
����/ �
⊗� ; � > 0 is a vector of quantum parameters.

• Approximation by Gaussian states: 

���

⊗� �����
��

�
����/ �
⊗� �����

�� ≔ ������
�

• A compression protocol for ���

⊗� ,�
����/ �
⊗� → a protocol for ��, ��.

• By Theorem, �� ��,�� → ��(��,��)if there is a faithful protocol with solely classical memory

• �� ��,�� > ��(��,��)(independent of �). Contradiction

• State families containing both ���

⊗� and �
����/ �
⊗�  cannot be faithfully encoded in a classical memory.



SUMMARY AND OPEN PROBLEMS

 Compression of ��
⊗�:

I. minimal memory cost: approximately 1/2 log� for each degree of freedom;

II. the required memory is mainly classical; (classical profile)

III. a fully classical memory is not OK (quantum signature required)

 Extension to non-product states and many-body systems. 

 Minimal quantum memory?
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