COMPRESSION OF IDENTICALLY PREPARED QUDITS

ARXIV:1701.03372 (TO APPEAR ON IEEE TIT)

Yuxiang Yang

The University of Hong Kong

QIP '18, Delft

ACKNOWLEDGEMENT

Yuxiang Yang

Ge Bai

Giulio Chiribella

Masahito Hayashi

INTRODUCTION

Why do we study identically prepared state compression

POPULATION CODING

How a stimulus is encoded in the "states" of neurons.

"States" of a neuron: probability distributions of reactions to different stimuli.

 $\rho_{bite} = 0.9|1\rangle\langle 1|+0.1|0\rangle\langle 0| \quad \rho_{touch} = 0.2|1\rangle\langle 1|+0.8|0\rangle\langle 0|$

1/0: a spike/no spike.

> A group of $n \gg 1$ neurons reacting to the same stimulus \rightarrow tensor-power form states $\rho_{\theta}^{\otimes n}$ (θ = bite/touch).

> Population coding: the state $\rho_{\theta}^{\otimes n}$ of a large group of neurons is a coding for the stimulus θ .

A QUANTUM EXTENSION OF POPULATION CODING

> Population coding \rightarrow A population of quantum states $\rho_{\theta}^{\otimes n}$ carrying θ .

> Goal: reduce the cost of transmission of identically prepared state $\rho_{\theta}^{\otimes n}$ with **unknown** θ .

A TYPICAL SCENARIO IN QIP

A source emitting identical copies of a quantum state, unknown to the experimenter (e.g. cloning, metrology, learning ...)

How much information is in it?

> What is the shortest description length (and how to reach it)?

COMPRESS IDENTICAL COPIES OF AN UNKNOWN STATE

Soal: minimize the total (classical + quantum) memory cost \mathcal{M} (focusing on the leading order of n).

Constraint: consider only faithful protocols:

$$\lim_{n \to \infty} \epsilon_n = 0 \qquad \qquad \epsilon_n \coloneqq \frac{1}{2} \sup_{\theta} \left\| \rho_{\theta}^{\otimes n} - \mathcal{D} \circ \mathcal{E} \left(\rho_{\theta}^{\otimes n} \right) \right\|_{1}$$

RELATED WORKS

Families of identically prepared states	Qubits	Bits	
Pure qubit states [Plesch and Buzek'10]	logn	0	
Mixed qubit states [YY, Chiribella, and Hayashi'16]	$\log n$	$1/2\log n$	
Mixed qubit clocks [YY, Chiribella, and Hayashi arXiv 1703.05876]	$1/2\log n$	1/2 logn	Not general
Classical populations with d parameters [Hayashi and Tan'17]	0	d/2 logn	
Qudit states [YY, Chiribella, and Ebler'16]	0 (logn)	0	> Not optimal

This work: a compression protocol for qudits states, requiring the minimum total memory and less quantum memory.

MEMORY COST OF COMPRESSION

How many bits and qubits do we need to encode $\rho_{\theta}^{\otimes n}$

CLASSICAL AND QUANTUM PARAMETERS

A non-degenerate state family $\{ \rho_{\theta}^{\otimes n} : \theta = (\mu \xi) \geq 0 \}$ is characterized by two kinds of **real** parameters:

 $\rho_{\theta} = U_{\xi} \rho_{\mu} U_{\xi}^{\dagger}$

> Classical (independent) parameters μ : determining the spectrum

> **Quantum** (independent) parameters ξ : determining the eigenbasis

EXAMPLES

> Full qudit state family:
$$f_c = d - 1$$
 and $f_q = d^2 - d$.

 \succ Phase-covariant state family: $f_c = 0$ and $f_q = d - 1$

$$\rho_{\theta} = U_{\theta} \rho_0 U_{\theta}^{\dagger} \quad U_{\theta} = \sum_k e^{i\theta_k} |k\rangle \langle k|.$$

> Classical distribution family: $f_c = d - 1$ and $f_q = 0$.

MEMORY COST OF THE COMPRESSION

> [What we expect] (by observation from previous results):

- 1. $1/2 \log n$ bits per classical parameter
- 2. $1/2 \log n$ qubits per quantum parameter

[Main result] For each independent parameter	[.] t, it takes:
1. $(1/2 + \delta)\log n$ bits	for t classica
2. $1/2\log n$ bits + $\delta \log n$ qubits	for t quantum

to encode faithfully the n-copy state.

> $\delta > 0$ is a parameter independent of n (proportional to the quantum/classical ratio), which can be arbitrarily close to zero.

COMPRESSION PROTOCOL

How to achieve the minimal memory cost

PROTOCOL FOR QUDIT STATES

> Localization.

> Local asymptotic equivalence of n-tensor power qudit states and Gaussian (displaced thermal \otimes classical Gaussian) states.

 \succ Compression of displaced thermal \otimes classical Gaussian states.

LOCALIZATION

- > Take out $n^{1-\delta/2}$ copies ($\delta > 0$ is a small constant) and use them for tomography. Left with $n - n^{1-\delta/2}$ copies (the lost copies can be retrieved later by amplification).
- Sood enough tomography pins θ to a neighborhood $\Theta_L \coloneqq \left\{ \theta \colon ||\theta|| < n^{-\frac{1}{2} + \frac{\delta}{3}} \right\}$ of size $O(n^{-\frac{1}{2} + \frac{\delta}{3}})$ with exponentially vanishing error.
- > Encode the tomography outcome [to $1/\sqrt{n}$ precision] into a classical memory; $1/2\log n$ bits per independent parameter.
- > Total memory = tomography outcome + compression in Θ_L (the overall quantum memory cost can be reduced).

QUANTUM LOCAL ASYMPTOTIC NORMALITY (Q-LAN)

Q-LAN [Kahn and Guta '09]

In the neighborhood Θ_L , $\rho_{\theta}^{\otimes n}$ is asymptotically equivalent to a classical-quantum Gaussian state:

$$\rho_{\theta}^{\otimes n} \stackrel{Q-LAN}{\longleftrightarrow} \gamma_{\sqrt{n}\theta} = \gamma_{\sqrt{n}\mu}^{class} \otimes \gamma_{\sqrt{n}\xi}^{quant}$$

> Classical mode γ^{class} : a Gaussian distribution with f_c variates;

> Quantum mode γ^{quant} : a multimode (number of modes depending on f_q) displaced thermal state ("noisy" laser).

 \geq Problem reduced to compression of Gaussian states in a small neighborhood $\Theta_{\rm L}$.

COMPRESSION OF GAUSSIAN STATES

> Compress $\gamma_{\mu'}^{class} \otimes \gamma_{\xi'}^{quant}$ with $||\xi'||, |\mu'|| < n^{\frac{\delta}{3}}$

To compress f_c -variate Gaussian $\gamma_{\mu'}^{class}$ with constant covariance matrix and unknown mean $||\mu'|| < n^{\frac{\delta}{3}}$: truncation in an- $O(n^{\delta f_c})$ hypercube is enough.

To compress the multimode displaced thermal ("noisy laser") state $\gamma_{\xi'}^{quant}$ with f_q unknown parameters $||\mu'|| < n^{\frac{\delta}{3}}$ of intensity/phase :

photon number truncation in an- $O(n^{\delta f_q})$ hypercube is enough

Memory cost	tomography	Gaussian compression
per classical parameter	1/2 logn bits	$\delta \log n$ bits
per quantum parameter	1/2 logn bits	$\delta \log n$ qubits

ERROR BOUND

 \geq The compression error is upper bounded as

$$\epsilon_n = O(n^{-\delta/2}) + O(n^{-\kappa(\delta)}),$$

where the latter is the error of Q-LAN. Especially, $\kappa(\delta) > 0$ for $\delta \in (02/9)$.

> Faithfulness
$$\lim_{n \to \infty} \epsilon_n = 0$$
 is guaranteed as long as $\delta > 0$.

> The error vanishes slower when less quantum memory is used.

> # qubits / # bits can be made arbitrarily close to 0.

OPTIMALITY

> Construct a mesh on Θ containing $n^{f/2-\delta}$ mutually distinguishable states for any $\delta > 0$. $f = f_c + f_q$.

 \succ Consider any faithful compression protocol (\mathcal{ED}) :

$$(\theta) \longrightarrow \rho_{\theta}^{\otimes n} \longrightarrow \mathcal{D} \longrightarrow \mathcal{D} \longrightarrow \widehat{\mathcal{M}}_{\widehat{\theta}} \longrightarrow \widehat{\theta}$$

> Can faithfully communicate $(f/2 - \delta)\log n$ bits of messages.

> The communication cost $\log |\mathcal{M}|$ cannot be smaller than the amount of messages.

QUANTUM MEMORY IS ESSENTIAL

Why fully classical memory doesn't work

DOES FULLY CLASSICAL MEMORY WORK?

> No constraint on the size of the memory: Is it possible to reversibly convert $\rho_{\theta}^{\otimes n}$ into classical bits with an error vanishing in n?

$$\blacklozenge \rho_{\theta}^{\otimes n} \xrightarrow{measurement} \theta \xrightarrow{re-preparation} \rho_{\theta}^{\otimes n}$$

> A positive answer might trivialize many quantum information tasks.

> Fact: a state family can be perfectly compressed into classical memory iff. it is classical, i.e. $[\rho_1 \rho_2] = 0$ for any $\rho_1 \rho_2$ from the family.

> Compression is only approximately perfect. Cannot directly apply the fact.

PROOF FOR ϵ -APPROXIMATE COMPRESSION

Bures distance (see e.g. [Nielsen&Chuang]) and (quantum) Hellinger distance [Holevo'72]:

$$d_H(\rho_1, \rho_2) := \sqrt{2 - 2 \operatorname{Tr} \left(\rho_1^{1/2} \rho_2^{1/2}\right)}$$
$$d_B(\rho_1, \rho_2) := \sqrt{2 - 2 \operatorname{Tr} \left|\rho_1^{1/2} \rho_2^{1/2}\right|}.$$

Example Luo, Zhang'04] $d_H \ge d_B$; equality holds iff. $[\rho_1 \rho_2] = 0$.

> **Theorem** If \mathcal{E} is a q.-c. channel and \mathcal{D} is a c.-q. channel satisfying $||\mathcal{D}\mathcal{E}(\rho_i) - \rho_i||_1 \leq \epsilon \ (i = 12)$, then the following holds

$$d_H(\rho_1 \rho_2) \le d_B(\rho_1 \rho_2) + 2\sqrt{\epsilon}.$$

> Faithful compression using classical memory works only for states whose $d_H o d_B$.

PROOF FOR ϵ -**APPROXIMATE COMPRESSION**

 \succ Consider $ho_{ heta_0}^{\otimes n}$ and $ho_{ heta_0+t/\sqrt{n}}^{\otimes n}$; t>0 is a vector of quantum parameters.

Approximation by Gaussian states:

$$\rho_{\theta_0}^{\bigotimes n} \stackrel{Q-LAN}{\longleftrightarrow} \gamma_0$$
$$\rho_{\theta_0+t/\sqrt{n}}^{\bigotimes n} \stackrel{Q-LAN}{\longleftrightarrow} \gamma_t \coloneqq D_t \gamma_0 D_t^{\dagger}$$

- A compression protocol for $\rho_{\theta_0}^{\otimes n} \rho_{\theta_0+t/\sqrt{n}}^{\otimes n} \rightarrow a \text{ protocol for } \gamma_0 \gamma_t$.
- By **Theorem** $d_H(\gamma_0 \gamma_t) \rightarrow d_B(\gamma_0 \gamma_t)$ if there is a faithful protocol with solely classical memory
- $d_H(\gamma_0 \gamma_t) > d_B(\gamma_0 \gamma_t)$ (i ndependent of *n*). Contradiction
- State families containing both $\rho_{\theta_0}^{\otimes n}$ and $\rho_{\theta_0+t/\sqrt{n}}^{\otimes n}$ cannot be faithfully encoded in a classical memory.

SUMMARY AND OPEN PROBLEMS

> Compression of $\rho_{\theta}^{\otimes n}$:

- I. minimal memory cost: approximately $1/2 \log n$ for each degree of freedom;
- II. the required memory is mainly classical; (classical profile)
- III. a fully classical memory is not OK (quantum signature required)

> Extension to non-product states and many-body systems.

Minimal quantum memory?

Thanks for your attention! arXiv:1701.03372 & IEEE TIT (preprint)

