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Query complexity

Goal: 

𝑥1 𝑥2 𝑥3 𝑥𝑛⋯

𝑂𝑥𝑂𝑥



Why query complexity?
Complexity theoretic motivation

Algorithmic motivation

Other applications



Quantum query complexity

Quantum query complexity: Minimum number of uses of 𝑂𝑥 in a quantum 

circuit that for every input 𝑥, outputs 𝑓(𝑥) with error ≤ 1/3.
𝑄 𝑓

Example: .

Then 𝑄 OR𝑛 = 𝑄 AND𝑛 = Θ 𝑛 [Grover96, Bennett-Bernstein-Brassard-Vazirani97]  

Classically, we need Θ 𝑛 queries for both problems.

𝑂𝑥𝑈0 𝑂𝑥𝑈1 𝑈𝑇



Lower bounds on quantum query complexity
Positive-weights adversary method Negative-weights adversary method

Polynomial method



Approximate degree

Approximate degree: Minimum degree of a polynomial 𝑝(𝑥1, … , 𝑥𝑛) with real 

coefficients such that ∀𝑥 ∈ 0,1 𝑛, 𝑓 𝑥 − 𝑝 𝑥 ≤ 1/3. 
෪deg(𝑓)

Theorem ([Beals-Buhrman-Cleve-Mosca-de Wolf01]): For any 𝑓, 

𝑄 𝑓 ≥
1

2
෪deg(𝑓)

෪deg OR𝑛 = ෪deg = Θ 𝑛 𝑄 OR𝑛 = 𝑄 = Θ 𝑛

Examples:



Other applications of approximate degree
Upper bounds

[Klivans-Servedio04, Klivans-Servedio06, Kalai-Klivans-Mansour-Servedio08]

[Kahn-Linial-Samorodnitsky96, Sherstov09]

[Thaler-Ullman-Vadhan12, Chandrasekaran-Thaler-Ullman-
Wan14]

[Tal14, Tal17]

Lower bounds

[Sherstov07, Shi-Zhu07, Chattopadhyay-Ada08, Lee-Shraibman08,…]

[Minsky-Papert69, Beigel93, Sherstov08]

[Beigel94, Bouland-Chen-Holden-Thaler-Vasudevan16]

[Bogdanov-Ishai-Viola-Williamson16]





The 𝑘-distinctness problem

This generalizes element distinctness, which is 2-distinctness.

Upper bounds

[Ambainis07]

[Belovs12]

Lower bounds

[Aaronson-Shi04]

𝑘-distinctness: Given 𝑛 numbers in 𝑅 = {1,… , 𝑅}, does any number appear ≥𝑘 times?

Our result: 𝑄 Dist𝑘 = .



𝑘-junta testing

Upper bounds

[Atıcı-Servedio07]

[Ambainis-Belovs-Regev-deWolf16]

Lower bounds

[Atıcı-Servedio07]

[Ambainis-Belovs-Regev-deWolf16]

𝑘-junta testing: Given the truth table of a Boolean function, decide if 

(YES) the function depends on at most 𝑘 variables, or 

(NO) the function is far (at least 𝛿𝑛 in Hamming distance) from having this property. 

Our result: .



Summary of results



Surjectivity

Quantum query complexity

[Beame-Machmouchi12, Sherstov15]

Approximate degree

[Aaronson-Shi04, Ambainis05, Bun-Thaler17]

[Sherstov18]

SURJ is the first natural function to have 𝑄 𝑓 ≫ ! 

Surjectivity: Given 𝑛 numbers in 𝑅 (𝑅 = Θ(𝑛)), does every 𝑟 ∈ [𝑅] appear in the list?

Our result: and a new proof of .



Summary of results



Surjectivity upper bound

𝑄 SURJ = ෨𝑂(𝑛 Τ3 4)

Surjectivity lower bound

𝑄 SURJ = ෩Ω(𝑛 Τ3 4)

𝑘-distinctness

𝑄 Dist𝑘 = ෩Ω(𝑛
3
4 −

1
2𝑘)

Image size testing

𝑄 IST = ෩Ω( 𝑛)

𝑘-junta testing

𝑄 Junta𝑘 = ෩Ω( 𝑘)

Statistical distance

𝑄 SDU = ෩Ω( 𝑛)

Shannon entropy

𝑄 Entropy = ෩Ω( 𝑛)
Reduction

Intuition and ideas





Overview of the upper bound



Polynomials are algorithms

Polynomials are not algorithms



Overview of the upper bound
Idea 1: Polynomials are algorithms

Imagine that polynomials 𝑝1, 𝑝2, and 𝑝3 represent the acceptance probability of 

algorithms (that output 0 or 1) 𝐴1, 𝐴2, and 𝐴3.

Algorithm:    If 𝐴1 outputs 1, then output 𝐴2, else output 𝐴3.

Polynomial:   𝑝1 𝑥 𝑝2 𝑥 + 1 − 𝑝1 𝑥 𝑝3(𝑥).

Example: Implementing an if-then-else statement

Key idea: This is well defined even if 𝑝𝑖 ∉ [0,1]



×

=

Overview of the upper bound
Idea 2: Polynomials are not algorithms



Overview of lower bounds

𝑓

𝑔 𝑔 𝑔 𝑔





AND𝑚 ∘ OR𝑛

Open for 10+ years! Proof uses the method of dual polynomials.

PS: See Adam Bouland’s talk at 11:15 for an alternate proof using quantum arguments.

Lower bound [Sherstov13, Bun-Thaler13]: ෪deg AND𝑚 ∘ OR𝑛 = Ω 𝑚𝑛 .

Proof 1: Use robust quantum search [Høyer-Mosca-de Wolf03]

Proof 2: ∀𝑓, 𝑔, ෪deg = 𝑂 ෪deg 𝑓 ෪deg 𝑔 [Sherstov13]

Upper bound: ෪deg AND𝑚 ∘ OR𝑛 = 𝑂 𝑚𝑛 .

𝑚 × 𝑛 input bits



Dual polynomials
Approximate degree can be expressed as a linear program

෪deg 𝑓 ≤ 𝑑 iff there exists a polynomial 𝑝 of degree 𝑑, i.e., 𝑝 = σ𝑆: 𝑆 ≤𝑑 𝛼𝑆 𝑥
𝑆, s.t., 

∀𝑥 ∈ 0,1 𝑛, 𝑓 𝑥 − 𝑝 𝑥 ≤ 1/3

෪deg 𝑓 > 𝑑 iff there exists 𝜓: 0,1 𝑛 → ℝ,

1. σ𝑥 |𝜓 𝑥 | = 1 (1) 𝜓 is ℓ1 normalized

2. If deg 𝑞 ≤ 𝑑 then σ𝑥𝜓 𝑥 𝑞 𝑥 = 0 (2) 𝜓 has pure high degree 𝑑

3. σ𝑥𝜓 𝑥 −1 𝑓(𝑥) > 1/3.  (3) 𝜓 is well correlated with 𝑓



Lower bound for AND𝑚 ∘ OR𝑛

Proof strategy for ෪deg AND𝑚 ∘ OR𝑛 = Ω 𝑚𝑛 :

1. Start with 𝜓AND and 𝜓OR witnessing ෪deg = Ω 𝑚 and ෪deg = Ω 𝑛

2. Combine these into 𝜓 witnessing ෪deg AND𝑚 ∘ OR𝑛 = Ω 𝑚𝑛 using the technique 

of dual block composition.

෪deg 𝑓 > 𝑑 iff there exists 𝜓: 0,1 𝑛 → ℝ,

1. σ𝑥 |𝜓 𝑥 | = 1 (1) 𝜓 is ℓ1 normalized

2. If deg 𝑞 ≤ 𝑑 then σ𝑥𝜓 𝑥 𝑞 𝑥 = 0 (2) 𝜓 has pure high degree 𝑑

3. σ𝑥𝜓 𝑥 −1 𝑓(𝑥) > 1/3.  (3) 𝜓 is well correlated with 𝑓



Dual block composition for 𝑓 ∘ 𝑔

Composed dual automatically satisfies (1) and (2). 

[Sherstov13, Bun-Thaler13] show that property (3) is also satisfied for AND𝑚 ∘ OR𝑛.

𝜓𝑓∘𝑔 = 2𝑛 𝜓𝑓 sgn 𝜓𝑔 𝑥1 , … , sgn 𝜓𝑔 𝑥𝑛 ς𝑖=1
𝑛 𝜓𝑔 𝑥𝑖 [Shi-Zhu09, Lee09, Sherstov13]

෪deg 𝑓 > 𝑑 iff there exists 𝜓: 0,1 𝑛 → ℝ,

1. σ𝑥 |𝜓 𝑥 | = 1 (1) 𝜓 is ℓ1 normalized

2. If deg 𝑞 ≤ 𝑑 then σ𝑥𝜓 𝑥 𝑞 𝑥 = 0 (2) 𝜓 has pure high degree 𝑑

3. σ𝑥𝜓 𝑥 −1 𝑓(𝑥) > 1/3.  (3) 𝜓 is well correlated with 𝑓



෪deg SURJ = ෩Ω 𝑛3/4



Reduction to a composed function

SURJ reduces to AND𝑅 ∘ OR𝑛 function, restricted 

to inputs with Hamming weight ≤ 𝑛.

We denote this function AND𝑅 ∘ OR𝑛
≤𝑛.

⇒ ෪deg SURJ = ෨𝑂 ෪deg AND𝑅 ∘ OR𝑛
≤𝑛

SURJ 𝑥1, … , 𝑥𝑛 = ሥ

𝑟∈ 𝑅

ሧ

𝑖∈ 𝑛

(𝑥𝑖 = 𝑟? )

Surjectivity: Given 𝑛 numbers in 𝑅 (𝑅 = Θ(𝑛)), does every 𝑟 ∈ [𝑅] appear in the list?

Converse [Ambainis05, Bun-Thaler17]: ෪deg SURJ = ෩Ω ෪deg AND𝑅 ∘ OR𝑛
≤𝑛



AND𝑅 ∘ OR𝑛 ≠ AND𝑅 ∘ OR𝑛
≤𝑛

෪deg AND𝑅 ∘ OR𝑛 = Θ 𝑅𝑛 = Θ(𝑛)

෪deg AND𝑅 ∘ OR𝑛
≤𝑛 = ෩Θ ෪deg SURJ



Progress so far towards ෪deg SURJ = ෩Ω 𝑛3/4

1. We saw that ෪deg SURJ = ෩Θ ෪deg AND𝑅 ∘ OR𝑛
≤𝑛 .

2. We saw using dual block composition that 

෪deg AND𝑅 ∘ OR𝑛 = Ω 𝑅𝑛 = Ω(𝑛), when 𝑅 = Θ 𝑛 .

Does the constructed dual also work for AND𝑅 ∘ OR𝑛
≤𝑛?  No.

෪deg 𝑓≤𝐻 > 𝑑 iff there exists 𝜓,

1. σ𝑥 |𝜓 𝑥 | = 1 (1) 𝜓 is ℓ1 normalized

2. If deg 𝑞 ≤ 𝑑 then σ𝑥𝜓 𝑥 𝑞 𝑥 = 0 (2) 𝜓 has pure high degree 𝑑

3. σ𝑥𝜓 𝑥 −1 𝑓(𝑥) > 1/3.  (3) 𝜓 is well correlated with 𝑓

4. 𝜓 𝑥 = 0 if 𝑥 > 𝐻 (4) 𝜓 is only supported on the promise





Dual witness for ෪deg AND𝑅 ∘ OR𝑛
≤𝑛

Fix 1: Use a dual witness 𝜓OR for OR𝑛 that only certifies ෪deg = Ω 𝑛1/4 and satisfies 

a “dual decay condition”, i.e., 𝜓OR 𝑥 is exponentially small for 𝑥 ≫ 𝑛1/4. Thus the 

composed dual has degree Ω 𝑅𝑛1/4 = Ω(𝑛3/4) and almost satisfies condition (4).

Fix 2: Although condition (4) is only “almost satisfied” in our dual witness, we can 

postprocess the dual to have it be exactly satisfied [Razborov-Sherstov10].

෪deg 𝑓≤𝐻 > 𝑑 iff there exists 𝜓,

1. σ𝑥 |𝜓 𝑥 | = 1 (1) 𝜓 is ℓ1 normalized

2. If deg 𝑞 ≤ 𝑑 then σ𝑥𝜓 𝑥 𝑞 𝑥 = 0 (2) 𝜓 has pure high degree 𝑑

3. σ𝑥𝜓 𝑥 −1 𝑓(𝑥) > 1/3.  (3) 𝜓 is well correlated with 𝑓

4. 𝜓 𝑥 = 0 if 𝑥 > 𝐻 (4) 𝜓 is only supported on the promise



Looking back at the lower bounds
How did we resolve questions that have resisted attack by the adversary method?

What is the key new ingredient in these lower bounds?

Lower bound for OR:

Any polynomial like this must 

have degree Ω 𝑛 .

Key property we exploit:

Any polynomial like this must 

still have degree Ω 𝑛 !





Open problems

[Ambainis07, Belovs-Špalek13]



microsoft.com/en-us/research/opportunity/internship-
microsoft-quantum/

microsoft.com/quantum




