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THE POLYNOMIAL METHOD STRIKES BACK

We use the polynomial method to prove (nearly)
optimal lower bounds on the gquantum query
complexity of several problems, resolving several
open questions from prior work.

The problems include k-distinctness, image size
testing, k-junta testing, approximating statistical
distance, approximating Shannon entropy, and
surjectivity.
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Query complexity

Let f:{0,1}"* = {0,1} be a function and x € {0,1}" be an input to f.

x j— xl xz x3 coo xn

Goal: Compute f(x) by reading as few bits of x as possible.

Equivalently, compute f(x) using a
circuit/algorithm with the least number
of uses of this oracle:

[ — Ox—>xi

In the quantum setting, we have this
oracle:
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Why query complexity?

Complexity theoretic motivation

- We can prove statements about the power of different computational models!
(E.g., exponential separation between classical and quantum algorithms)

Algorithmic motivation

« Algorithms often transfer to the circuit model, while the abstraction of query
complexity often gets rid of unnecessary details.

« Most quantum algorithms are naturally phrased as query algorithms. E.g., Shor,
Grover, Hidden Subgroup, Linear systems (HHL), etc.

Other applications

 Oracle separations between classes, lower bounds on restricted models, upper and
lower bounds in communication complexity, circuit complexity, data structures, etc.



Quantum query complexity

Quantum query complexity: Minimum number of uses of 0, in a quantum (F)
circuit that for every input x, outputs f(x) with error < 1/3. Qlf
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Example: Let OR,(x) = Viz; x; and AND,, (x) = Al x;.
Then Q(OR,,) = Q(AND,,)) = @(\/ﬁ) [Grover96, Bennett-Bernstein-Brassard-Vaziranio7]

Classically, we need ©(n) queries for both problems.




Lower bounds on quantum query complexity

Positive-weights adversary method Negative-weights adversary method

Easy to use, but has many limitations. Equals (up to constants) quantum query
Cannot show any of the results of this paper.  complexity, but difficult to use.

In recent years, the adversary methods have become

the tools of choice for proving lower bounds.

Polynomial method

« Equals (up to constants) quantum query complexity for many natural functions
 Can show lower bounds for algorithms with unbounded error, small error, and no error
« Works when the positive-weights adversary fails (e.g., the collision problem)

 Lower bounds “lift" to lower bounds in communication complexity!
(For an application of this, see the talk by Shalev Ben-David at 10:40 in this room.)



Approximate degree

Approximate degree: Minimum degree of a polynomial p(xy, ..., x,,) with real i
coefficients such that vx € {0,1}", |f(x) — p(x)| < 1/3. eg(f)

Examples: ¢ p(xq, ..., x,) = x1x, -+ x,, exactly computes the AND,, function.

o p(x1,%3) = %xl + %xz approximates the AND, function.

deg(OR,,) = deg(AND,,) = ©(v/n) Q(OR,) = Q(AND,) = 6(yn)

Theorem ([Beals-Buhrman-Cleve-Mosca-de Wolf01]): For any f, Th | lal method
0S¢ e polynomial metho
Q(f) = 5 deg(f) .




Other applications of approximate degree

Upper bounds
« Learning algorithms [Klivans-Servedio04, Klivans-Servedio06, Kalai-Klivans-Mansour-Servedio08]

« Algorithmic approximations of inclusion-exclusion [Kahn-Linial-Samorodnitsky96, Sherstov09]

- Differentially private data release [Thaler-Ullman-Vadhan12, Chandrasekaran-Thaler-Ullman-
Wan14]

« Formula & Graph Complexity Lower Bounds [Tal14, Tal17]

Lower bounds

« Communication Complexity [Sherstov07, Shi-Zhu07, Chattopadhyay-Ada08, Lee-Shraibman08,...]
 Circuit Complexity [Minsky-Papert69, Beigel93, Sherstov08]

 Oracle Separations [Beigel94, Bouland-Chen-Holden-Thaler-Vasudevan16]

 Secret Sharing Schemes [Bogdanov-Ishai-Viola-Williamson16]



Results



The k-distinctness problem

k-distinctness: Given n numbers in [R] = {1, ..., R}, does any number appear >k times?

This generalizes element distinctness, which is 2-distinctness.

Upper bounds
+ Q(Disty) = 0(nk/*+1), using quantum walks [Ambainis07]
Q(Disty) = 0(n3/4~1/ exp(K)) ysing learning graphs [Belovs12]

Lower bounds
Q(Dist,) = Q(Q(Dist,)) = Q(n?/?), using the polynomial method [Aaronson-Shi04]

Our result: Q(Disty) = Q(n3/471/(2k)),



k-junta testing

k-junta testing: Given the truth table of a Boolean function, decide if
(YES) the function depends on at most k variables, or
(NO) the function is far (at least dn in Hamming distance) from having this property.

Upper bounds
Q(Juntay) = 0(k) [Atici-Servedio07]

» Q(Juntay) = O(Vk) [Ambainis-Belovs-Regev-deWolf16]

Lower bounds
@nonadaptive Juntay) = Q(\/E) [Atici-Servedio07]
Q(Juntay) = Q(k/3) [Ambainis-Belovs-Regev-deWolf16]

Our result: Q(Juntay) = Q(Vk).



Summary of results

Problem Best Prior Upper Bound Our Lower Bound Best Prior Lower Bound
k-distinctness O(n3/4-1/(2"*=4)) |Bel124] Q(n3/4-1/(2k)) Q(n2/3) [AS04]
Image Size Testing O(y/nlogn) [ABRAW16] Q(y/n) Q(n'/3) [ABRAW16]
k-junta Testing O(Vklogk) [ABRAW16] Q(Vk) Q(k'/3) [ABRAW16]
SDU O(y/n) [BHH11] Q(y/n) Q(n'/3) [BHH11, AS04]
Shannon Entropy O(y/n) [BHH11,LW17] Q(v/n) Q(n'/3) [LW17]

Table 1: Our lower bounds on quantum query complexity and approximate degree vs. prior work.



Surjectivity
Surjectivity: Given n numbers in [R] (R = ©(n)), does every r € [R] appear in the list?

Quantum query complexity
« Q(SUR]) = ©(n) [Beame-Machmouchi12, Sherstov15]

Approximate degree
Conjecture: deg(SUR]) = Q(n).

. deg(SUR]) = Q(n?/3) [Aaronson-Shi04, Ambainis05, Bun-Thaler17]
deg(SUR)) = 0 (n3/*) [Sherstov18]

Our result: deg(SUR]) = Q(n3/*) and a new proof of deg(SUR]) = 0(n3/%).

SURJ is the first natural function to have Q(f) > deg(f)!



Summary of results

Problem Best Prior Upper Bound Our Lower Bound Best Prior Lower Bound
k-distinctness O(n3/4-1/(2"*=4)) |Bel124] Q(n3/4-1/(2k)) Q(n2/3) [AS04]
Image Size Testing O(y/nlogn) [ABRAW16] Q(y/n) Q(n'/3) [ABRAW16]
k-junta Testing O(Vklogk) [ABRAW16] Q(Vk) Q(k'/3) [ABRAW16]
SDU O(y/n) [BHH11] Q(y/n) Q(n'/?) [BHH11, AS04]
Shannon Entropy O(y/n) [BHH11,LW17] Q(y/n) Q(n'/3) [LW17]

Table 1: Our lower bounds on quantum query complexity and approximate degree vs. prior work.

Problem |Best Prior Upper Bound | Our Upper Bound | Our Lower Bound | Best Prior Lower Bound
Surjectivity O(n3/*) [Shel§] O(n3/*) Q(n3/) Q(n?/3) [AS04]

Table 2: Our bounds on the approximate degree of Surjectivity vs. prior work.



Surjectivity upper bound
Q(SUR)) = 0(n**)

k-junta testing
Q(Junta,) = Q(Vk)

Shannon entropy

Q(Entropy) = Q(v/n)

Statistical distance

Q(SDU) = Q(/n)

Surjectivity lower bound
Q(SUR)) = 0(n*/*)

Intuition and ideas

Common

proof k-distinctness
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High level overview of
technigues



Overview of the upper bound
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Polynomials are algorithms
Polynomials are not algorithms



Overview of the upper bound

|dea 1. Polynomials are algorithms

Polynomials can mimic algorithmic primitives like If-then-else, majority voting,
reductions, sampling, etc.

Example: Implementing an if-then-else statement

Imagine that polynomials p;, p,, and p; represent the acceptance probability of
algorithms (that output 0 or 1) A4, 4,, and A;.

Algorithm:  If A; outputs 1, then output A4,, else output 4;.
Polynomial: p; (x)p,(x) + (1 — p1(xX))ps ().

Key idea: This is well defined even if p; € [0,1] and do not represent probabilities.



Overview of the upper bound

|dea 2: Polynomials are not algorithms

We can use polynomials taking values outside [0,1], even if the final polynomial is
bounded in [0,1].
p(x)

g ggé(ﬁ)




Overview of lower bounds

1. Use linear programming formulation of approximate degree.
Show degree > d by exhibiting a dual witness.
(Works for simple functions, like AND, OR, etc.)

2. For composed functions, combine dual e
witnesses of individual functions.

(Difficult step) @ @ @ @

3. Express surjectivity, k-distinctness, and
Image size testing as composed functions.

Remainder of the talk; More about lower bounds




Approximate degree
of AND o OR



Upper bound: deg(AND,, o OR,,) = O(y/mn).

Proof 1: Use robust quantum search [Hayer-Mosca-de Wolf03]
Proof 2: Vf, g, deg(f  g) = 0 (d’gg(f)dzg(g)) [Sherstov13]

m X n input bits

Lower bound [Sherstov13, Bun-Thaler13]: deg(AND,, o OR,,) = Q(mn).

Open for 10+ years! Proof uses the method of dual polynomials.

PS: See Adam Bouland'’s talk at 11:15 for an alternate proof using quantum arguments.



Dual polynomials

Approximate degree can be expressed as a linear program

Primal formulation

deg(f) < d iff there exists a polynomial p of degree d, i.e., p = Ys:is]<q ¥s x>, S,

ve €0,1}%,  |f(x) —p()| =1/3

Dual formulation

deg(f) > d iff there exists ¥: {0,1}" - R,

1. 2y vx)] =1 (1) Y is £1 normalized

2. Ifdeg(q) <dthen ), yY(x)g(x) =0 (2)y has pure high degree d
3. YL y(x)(—1)/® > 1/3. (3) ¢ is well correlated with f



Lower bound for AND,,, e OR,

deg(f) > d iff there exists ¥: {0,1}" - R,

1. 2xlvx)] =1 (1) Y is £1 normalized
2. Ifdeg(q) <dthen ), y¥(x)g(x) =0 (2) ¢ has pure high degree d
3. YL y(x)(—=1)/® > 1/3. (3) ¢ is well correlated with f

Proof strategy for deg(AND,,  OR,) = Q(ymn):
1. Start with Y anp and Pogr witnessing deg(AND,,) = Q(v/m) and deg(OR,,) = Q(y/n)

2. Combine these into ¥ witnessing deg(AND,,, o OR,,) = Q(y/mn) using the technique
of dual block composition.



Dual block composition for f o g

Dual formulation

deg(f) > d iff there exists ¥: {0,1}" - R,

1. 2l =1 (1) Y is £1 normalized
2. Ifdeg(q) <dthen ), yY(x)gq(x) =0 (2)y has pure high degree d
3. YL y(x)(—=1)/® > 1/3. (3) ¢ is well correlated with f

Given two dual witnesses ¢ for f and Y, for g, we can define Y., for f o g as follows:

Wrog = 2™ 5 (sgn (lpg(xl)), .., SEN (wg(xn))) g (x| (Shi-zhu09, Lee09, Sherstov13]

Composed dual automatically satisfies (1) and (2).
[Sherstov13, Bun-Thaler13] show that property (3) is also satisfied for AND,,, e OR,,.



Surjectivity lower bound

deg(SUR]) = Q(n3/%)



Reduction to a composed function

Surjectivity: Given n numbers in [R] (R = ©(n)), does every r € [R] appear in the list?

SURJ(x1, ..., X,) = /\ \/(xl- =1r?)
e[n]

re[R] i

SURJ reduces to ANDy o OR,, function, restricted
to inputs with Hamming weight < n.

We denote this function (ANDg o OR,,)=".

= deg(SUR]) = O(deg((ANDg o OR,,)<"))

Converse [Ambainis05, Bun-Thaler17]: deg(SUR]) = Q(deg((ANDg o OR,,) ))



Important: ANDg o OR,, # (ANDy o OR,,)="
deg(ANDg o OR,,) = O(VRn) = 0(n)

deg((ANDg o OR,)=") = 0(deg(SUR])) = 0(n3/%)



Progress so far towards deg(SURJ) = Q(n3/4)

1. We saw that deg(SUR]) = ©(deg((ANDg o OR,,)=")).
2. We saw using dual block composition that
deg(ANDg o OR,,) = Q(vRn) = Q(n), when R = 0(n).

Does the constructed dual also work for (ANDg o OR,,)="? No.

Dual formulation for problems where we only care about Hamming weight < H
deg(f=#) > d iff there exists 1,
T 2] =1
2. Ifdeg(q) <d then ), yY(x)qg(x) =0

3. Y0 (-1 >1/3.
4. Y(x)=0if|x| > H

(1) Y is 1 normalized

(2) ¥ has pure high degree d
(3) ¥ is well correlated with f
(

4) ¢ is only supported on the promise






Dual witness tor deg((ANDg o OR,,)<")

Dual formulation for problems where we only care about Hamming weight < H
deg(f=#) > d iff there exists 1,

1. i) =1 (1) Y is £1 normalized

2. Ifdeg(q) <dthen),yY(x)g(x) =0 (2)y has pure high degree d

3. Y, v(x)(-1)I™® > 1/3. (3) ¢ is well correlated with f

4. YPx)=0if |[x| >H (4) ¥ is only supported on the promise

Fix 1: Use a dual witness yog for OR,, that only certifies deg(OR,,) = Q(n'/*) and satisfies
a "dual decay condition”, i.e., [Por(x)] is exponentially small for |x| > n'/#. Thus the
composed dual has degree Q(vVRn'/*) = Q(n3/*) and almost satisfies condition (4).

Fix 2: Although condition (4) is only “"almost satisfied” in our dual witness, we can
postprocess the dual to have it be exactly satisfied [Razborov-Sherstov10].



Looking back at the lower bounds

How did we resolve questions that have resisted attack by the adversary method?

What is the key new ingredient in these lower bounds?

Lower bound for OR: Key property we exploit:

| G @ --oororennoooeeosooeeooooee ®

o-e ,
o 1 - n-1n 0 1 vn n-1n

Any polynomial like this must Any polynomial like this must

have degree Q(y/n). still have degree Q(y/n)!



Open problems



Open problems

1.

What is the quantum query complexity (or approximate degree) of
Triangle finding
Graph collision
Matrix product verification
k-distinctness (pin down the exponent precisely)

What is the approximate degree of k-sum? The quantum query complexity is
@(nk/k+1) [Ambainis07, Belovs-Spalek3].

s there a function in AC® with approximate degree Q(n)? The best known lower
bound is Q(n1=2"") for a depth-d AC® function (follows from our results).

Do all polynomial size DNFs have approximate degree o(n)? Best lower bound is
from k-distinctness. What about the quantum query complexity?



m Microsoft

Thanks!

Microsoft Quantum internship applications:

Microsoft Quantum Development Kit:





