The Quantum Space Race John Martinis, Google

Hardware Challenges: Quantity Quality

Quality in Quantum Chemistry Experiments

Comparison of Qubit Systems for Google & IBM Dec 2017

Different system designs IBM: fixed frequency qubits Google: tunable qubits

better coherence faster gates

Compare qubit devices Google 5 and 9 with IBM 20 Not completely fair, as good performance harder with 2D architecture, but at least not comparing with 2 qubit device Google will soon have 2D data on supremacy device, expect same as 1D

Systems: statistics from **all** qubits (not just best) Compare with histogram integral, better display for small statistics

IBM Data from ThinkQ Conference (preliminary!)

Everyone Quotes T1 and T2

Google 4x worse in T1

Single Qubit Gate Errors

Google better by ~ 2-10x

Measurement Errors

Google better by ~ 10x

Two Qubit Gate Errors (most critical)

Google better by ~ 2-10x

System Benchmarking

T1 & T2 coherence metric not reliable

Future: system fidelity with
 10-80: quantum supremacy
 49+: error correction rate

Quantum Supremacy Algorithm: Qubit Speckle 1) Choose 1 instance, randomly from gateset

2) Run quantum computer, measure k (2ⁿ possible outcomes) repeat sampling 100,000 times

(Random guess: any outcome k has probability $p_{cl} = 1/2^n$)

- 3) Calculate $|\psi\rangle$, p(k)= $|\langle k|\psi\rangle|^2$ store in lookup table
- 4) Correlation: cross entropy
- 5) Compare to theory
- 6) Try another instance

 $S = \langle \ln p(k)/p_{cl} \rangle$ $S_{qu} \approx 0.42 \quad \text{quantum}$ $S_{cl} \approx -0.58 \quad \text{classical}$

days

200 drives

speckle = coherence
predict = fidelity

Windows

A fatal exception 0E has occurred at 0028:C562F1B7 in UXD ctpci9x(05) + 00001853. The current application will be terminated.

- · Press any key to terminate the current application.
- Press CTRL+ALT+DEL again to restart your computer. You will lose any unsaved information in all applications.

Press any key to continue _

Intrinsic Errors in Quantum Computation

 $S_{tot} \cong P_0 S_{qu} + (1-P_0) S_{cl}$

Probability of no error: $P_0 = exp[-N_g \epsilon_g]$

Average number of errors: $N_g \epsilon_g = 49 \times 7 \times 0.005 = 1.7$

Need: Quantity with Quality

FIG. 13. Numerical upper bound for the treewidth of the interaction graph of the Ising model corresponding to circuits with 6×6 , 7×6 , and 7×7 qubits as a function of the circuit depth (see Sec. VB).

FIG. 1. Time per output probability for a typical instance as a function of depth on a single workstation, using TensorFlow as the engine for the computation and a vertical elimination ordering (see Sec. IVA). Different colors corresponds to dif-

39

41 43 45

Quantum Supremacy with gmon Qubits

9-qubit gate calibrated from 8 2-qubit gates

h ~ 200 MHz g ~ 30 MHz t: 1 ns to 20 us Cal. to ~0.1MHz

Typical dataset with 5 qubits

Histogram of measured probabilities

Collapses to exponential distribution

Histogram of measured probabilities

decoherence kills qubit speckle

Compare probabilities of experiment and theory

speckle pattern matches theory

Measuring fidelity

Scaled fidelity for 45 qubits

Useful: Learning a better control model

9 Qubits: theory

fractal nature gives complex spectrum

9 Qubits: theory + experiment

extract complex physically useful information

1-Excitation Spectroscopy

1-Excitation Spectroscopy

$$\chi_1(n) = \left\langle \sigma_n^X \right\rangle + i \left\langle \sigma_n^Y \right\rangle$$

Energy-Level Statistics

2-Excitation Spectroscopy

$$\chi_2(n,m) \equiv \langle \sigma_n^X \sigma_m^X \rangle - \langle \sigma_n^Y \sigma_m^Y \rangle + i \langle \sigma_n^X \sigma_m^Y \rangle + i \langle \sigma_n^Y \sigma_m^X \rangle$$

2 Excitation Spectroscopy n, m

Now 45 energy levels

Participation Ratio & Mobility Edges

2nd moment of probabilities:

$$PR_{\text{Space}}(\alpha) \equiv 1/\sum_{n} P_{\alpha,n}^2$$

$$PR_{\rm Energy}(n) \equiv 1/\sum_{\alpha} P_{\alpha,n}^2$$

Disorder causes eigenstates to move to center of energy band and lattice

Google Quality

Quantum supremacy device (sq. array) in test Quantity + Quality

2-10x quality takes time

2018

