Entangling Algorithms and Proofs

|Boaz> (Barak|

Based on joint work with Pravesh Kothari and David Steurer (arxiv 1701.06321)

A classical computer scientist's apology

Entanglement Is Hard

To create, control, understand

Image credit: John Preskill

Entanglement Is Hard

To create, control, understand

No "simple" formula for entanglement of two qudit mixed state ρ over \mathbb{C}^{d^2}

No "simple" formula for entanglement of e-states of $d^2 \times d^2$ measurement M.

Best known algorithms require "brute force" (i.e., $2^{\Omega(d)}$ time)

This talk: Better than brute force algorithm for (one version of) second problem.

No "simple" formula for entanglement of two qudit mixed state ρ over \mathbb{C}^{d^2}

No "simple" formula for entanglement of e-states of $d^2 \times d^2$ measurement M.

Best known algorithms require "brute force" (i.e., $2^{\Omega(d)}$ time)

This talk: Better than brute force algorithm for (one version of) second problem.

Thm: Better than brute force (i.e. $2^{\tilde{O}(\sqrt{d})}$ time) algorithm for best separable state problem.

Input: Measurement M on a two qudit system ($0 \le M \le I$ is $d^2 \times d^2$ matrix)

Goal: Distinguish between:

VS.

(i) M accepts some separable state with probability 1

(ii) *Every* separable state is accepted with probability $\leq 1 - \epsilon$

Certify *M* is entanglement witness

Separable states: Generated by rank one pure states $|u\rangle\langle v| \in \mathbb{C}^{d^2}$

Top e-space of *M*: Linear subspace $W \subseteq \mathbb{C}^{d^2}$

Goal: Find out if they intersect

Input: Linear subspace $W \subseteq \mathbb{C}^{d^2}$

Goal: Find rank one matrix ϵ -close to W

Top e-space of *M*: Linear subspace $W \subseteq \mathbb{C}^{d^2}$

Goal: Find out if they intersect

Trivial (brute force) algorithm: $2^{O(d)}$ time

Hardness: NP hard if $\epsilon = \frac{1}{poly(d)}$ [Gurvits'03, Gharbian'10] Requires $d^{\Omega(\log d)}$ time for constant ϵ [Harrow-Montanaro'13]

 $d^{O(\log d)}$ algorithm if M is 1-LOCC [Brandão-Christiandl-Yard'11]

Our Result: [B-Kothari-Steurer] $2^{\tilde{O}(\sqrt{d})}$ time

Analysis of algorithm of [Doherty-Parrilo-Spedalieri'04]

Sum of Squares

Sum of Squares Paradigm

Observation: Etasbertterstolvæpriobletran poitor extraxpower.1848]

Sum of Squares Paradigm

Observation: Easier to solve problems with extra power.

General philosophy

1) Prove correctness of "hypothetical" algorithm:

• Has unbounded time.

Identifiability →*recovery:* Sparse coding, mixture models, community recovery, tensor completion, ...

• Gets "hints" about solution.

Combining →rounding: Sparse vector problem, best separable state

2) "Lift" proof to show SoS succeeds as well.

Deg **l** SoS Proof System

[Artin'27,Krivine'61,Stengle'71,...,Grigoriev-Vorobjov'01]

AXIOM: $p^2 \ge 0$ for deg $p \le \ell$

Surprisingly powerful:

- Cauchy Schwarz
- Holder
- Hypercontractivity
- Invariance principle

[B-Brandao-Harow-Kelner-Steurer-Zhou'12, De-Mossel-Neeman'12, O'Donnell-Zhou'13, Kauers-O'Donnell-Tan-Zhou'14,..]

Deg **l** SoS Algorithm

[N.Shor'87,..,Parrilo'00,Lasserre'01]

INPUT: polynomial constraints on x_1, \ldots, x_d

OUTPUT: "fake" moments of distribution \mathcal{D} over \mathbb{R}^d satisfying constraints (via semi-definite programming)

SoS Proof System can't prove they are fake!

Sum of Squares and Quantum Information

Bell's Inequality: Alice gets $a \in \{0,1\}$ and outputs $X_a \in \{\pm 1\}$, Bob gets $b \in \{0,1\}$ and outputs $Y_b \in \{\pm 1\}$. Then $R = X_0Y_0 + X_0Y_1 + X_1Y_0 - X_1Y_1 \le 2$

 $\mathsf{Pf:} \ R = X_0(Y_0 + Y_1) + X_1(Y_0 - Y_1) \le \sqrt{\left[X_0^2 + X_1^2\right] \cdot \left[(Y_0 + Y_1)^2 + (Y_0 - Y_1)^2\right]} \\ R \le \left[\sqrt{2((2Y_0^2 + 2Y_1^2))}\right] = \left[\sqrt{8}\right] \approx 228 \mathbf{I}$

Quantum value of this game is $R = \sqrt{8}!$

Nature might not follow Einstein..

.. but she does respect Cauchy-Schwarz

Solving Best Separable State via the Sum of Squares Algorithm

THE DREAM IS REAL.

"Inception" approach for algorithm design

- 1. Dream you have access to moments of solution.
- Use moments to obtain answer.
 Then wake up and hope it still works.

THE DREAM IS REAL.

First Attempt: Can compute $\overline{A} = \mathbb{E}[|u\rangle\langle v|]$ (degree two moments $\mathbb{E}[u_i v_j]$)

Dist over matrices in $W \Rightarrow \overline{A}$ is in W

A might not be rank one

"Convexifying" rank one matrices

"Convexifying" rank one matrices

THM: [B-Kothari-Steurer'17] For every dist \mathcal{D} over rank one $d \times d$ matrices, exists $\tilde{O}(\sqrt{d})$ deg p s.t. $\overline{A} = \mathbb{E}[p(A)A]$ is "almost rank one" (i.e., $\|\overline{A} - |u\rangle\langle v\| \| \le \epsilon \| \|u\rangle\langle v\| \|$)

Why would that be true? And where does \sqrt{d} come from?

Inspiration: Lovett "sqrt rank theorem" in communication complexity

 $(p \text{ Schatten norm} \Rightarrow \text{deg} \approx d^{1/p})$

THM: [B-Kothari-Steurer'17] For every dist \mathcal{D} over rank one $d \times d$ matrices, exists $\tilde{O}(\sqrt{d}) \deg p$ s.t. $\overline{A} = \mathbb{E}[p(A)A]$ is "almost rank one" (i.e., $\|\overline{A} - |u\rangle\langle v\| \| \le \epsilon \| \|u\rangle\langle v\| \|$) THM: [B-Kothari-Steurer'17] For every dist \mathcal{D} over rank one $d \times d$ matrices, exists $\tilde{O}(\sqrt{d})$ deg p s.t. $\overline{A} = \mathbb{E}[p(A)A]$ is "almost rank one" (i.e., $\|\overline{A}_1^2 \rightarrow \mathcal{W}\| = \|\mathcal{A}_2 + \epsilon \cdot \| + \mathcal{W}\|^2$) $\| \cdot \| = 0$

Intuition: Random matrix eigenvalues follow Wigner semicircle law :

magnitude bounded by $O(\sqrt{d})$

"Reweigh" dist by $p(A) = (\langle u | A | u \rangle)^{\ell}$ \Rightarrow Boosts e-val of u by $\frac{\mathbb{E}[N^{\ell+2}]}{\mathbb{E}[N^{\ell}]\mathbb{E}[N^{2}]} \approx \ell$

Get $\lambda_1 \approx \ell \sqrt{d} \gg d$ and $\lambda_2, \dots, \lambda_d \approx \sqrt{d}$

Other applications: unsupervised learning

Observations: x_1, x_2, x_3, \dots from model $P(\theta)$

Example applications

• **Dictionary learning** [B-Kelner-Steurer'14,...]

- Tensor decomposition [Ge-Ma'15, Ma-Shi-Steurer'16]
- Tensor completion [B-Moitra'16, Potechin-Steurer'17]
- Tensor PCA [Hopkins-Shi-Steurer'15]
- Community detection [Hopkins-Steurer'17]
- Gaussian Mixture Models [Hopkins-Lin'17, Kothari-Steinhardt'17]
- Outlier-robust estimation [Kothari-Steurer'17]

THE DREAM IS REAL.

Summary

- Better than brute force $(2^{\tilde{O}(\sqrt{d})})$ time) alg for best separable state
- Still large gap from $2^{\Omega(\log d)}$ lower bound.
- Still open: noisy version, quantum separability problem
- Ideas lead to improved algorithms in several worst case and average case settings.
- Often SoS based algorithm gives best known guarantees.
- Is this accidental? Or part of larger pattern?

