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A classical computer scientist’s apology




Entanglement |5 Hard

To create, control, understand ' _
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Entanglement Is Hard

To create, control, understand

No “simple” formula for entanglement of two qudit mixed state p over c?”
No “simple” formula for entanglement of e-states of d* X d* measurement M.

Best known algorithms require “brute force” (i.e., 29U time)

This talk: Better than brute force algorithm for (one version of) second problem.
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To create, control, understand

No “simple” formula for entanglement of two qudit mixed state p over c?”
No “simple” formula for entanglement of e-states of d* X d* measurement M.

Best known algorithms require “brute force” (i.e., 29U time)

This talk: Better than brute force algorithm for (one version of) second problem.



{Thm: Better than brute force (i.e. 200Vd) time) algorithm for best separable state problem}

Input: Measurement M on a two qudit system (0 < M < [ is d* X d* matrix)

e

Goal: Distinguish between: (,0>_ /ﬁ B
(i) M accepts some separable state with probability 1 o) - =0/1

VS. d) ) M

(il) Every separable state is accepted with probability < 1 — ¢ )

Certify M is entanglement witness

Separable states: Generated by rank one pure states |[u)(v| € c4*

Non convex set!

Top e-space of M: Linear subspace W < C%°

Goal: Find out if they intersect



Input: Linear subspace W < €%

Goal: Find rank one matrix e-close to W
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Top e-space of M: Linear subspace W < C%°

Goal: Find out if they intersect
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Input: Linear subspace W < €%

(assume W contains rank one matrix)

Goal: Find rank one matrix e-close to W

Trivial (brute force) algorithm: 29(®) time

Hardness: NP hard if e =

[Gurvits'0o3,Gharbian’10]
poly(d) 3

Requires d?U°8 @) time for constant € [Harrow-Montanaro'13]

d0U108 ) 3lgorithm if M is 1-LOCC [Brandzo-Christiandl-Yard'1a]

-
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Our Result: [B-Kothari-Steurer] 26(\/&) time

Analysis of algorithm of [Doherty-Parrilo-Spedalieri‘o4]
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Sum of Squares Paradigm

Observation: Easberttestoveemiob ldras wikhr e xtra povyera8,8]
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Sum of Squares Paradigm

Observation: Easier to solve problems with extra power.

problem




General philosophy

|ll

1) Prove correctness of “hypothetical” algorithm:

e Has unbounded time.

Identifiability 2recovery: Sparse coding, mixture models, community recovery,
tensor completion, ...

e Gets "hints” about solution.

Combining =rounding: Sparse vector problem, best separable state

2) “Lift"” proof to show SoS succeeds as well.




Deg £ SoS Proof System

[Artin'27,Krivine’61,Stengle’7z,...,Grigoriev-Vorobjov'o1]

AXIOM: p? > 0 fordegp < ¢

Surprisingly powerful:

Cauchy Schwarz
Holder
Hypercontractivity

nvariance principle

[B-Brandao-Harow-Kelner-Steurer-Zhou'12, De-
Mossel-Neeman’12,0’'Donnell-Zhou’13,Kauers-

O’'Donnell-Tan-Zhou'14,..]

Deg £ SoS Algorithm

[N.Shor'87,..,Parrilo’oo,Lasserre’o1]

INPUT: polynomial constraints on
X1y ey Xg

OUTPUT: “fake” moments of
distribution D over R satisfying
constraints (via semi-definite
programming)

So0S Proof System can’t prove they
are fake!



Sum of Squares and Quantum Information

/

Bell’s Inequality: Alice gets a € {0,1} and outputs X, € {£1}, Bob gets b € {0,1}
and outputs ¥, € {£1}. Then

S

\

Pf: R = XoYo+ Y1)+ X, (Y, -1 < \/[Xg +X12] ' [(YO i) G ) ]
[ )| - Vel

R <

Quantum value of this gameis R = +/8!

P

Nature might not follow Einstein..
.. but she does respect Cauchy-Schwarz




Solving Best Separable State via the
Sum of Squares Algorithm
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SoS Algorithm for Best Separable State

: — d*
Input: Subspace W < C d’ statistics of the form
Assumption: Exists rank one matrix |[u){(v| € W ¥ E[p(u,v)]fordegp < ¢

Get degree £ moments of e ~_

distribution overrank 1 N W

not

Goal: Find rank one matrix |t )(U| e-close to W/
convex!

First Attempt: Can compute A= E[|u){v|] (degree two moments E[u;v;])

Dist over matrices in W = Aisin W el
A might not be rank one (9F)



"Convexifying” rank one matrices

(1 32)

HM: [B-kothari-Steurer's;] FOr every dist D over rank one d X d matrices,

exists 0(v/d) degp s.t. A = E[p(A)A] is “almost rank one”

(e, Il A—Judv| I < ell [ulv| II)
C Fineiesd e [u{v| Il < € Il lu)(v] 5




"Convexifying” rank one matrices

GHI\/I: [B-Kothari-Steurer's;] FOr every dist D over rank one d X d matrices, ek
exists 0(v/d) degp s.t. A = E[p(A)A] is “almost rank one”
e, | A= JuXv| I < el JuXv] I
\ 81 22 - 3 ; j

Why would that be true? And where does v/d come from?

Inspiration: Lovett " sgrt rank theorem” in communication complexity

(p Schatten norm = deg = d'/?)
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GHI\/I: [B-Kothari-Steurer';;] FOr every dist D over rank one d X d matrices,

exists O (vVd) deg p s.t. A = E[p(A)A] is “almost rank one”

e, I A—Juw| I <ell Juyy| )

\_ _/
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/THM: [B-Kothari-Steurer'sy] FOr every dist D over rank one d X d matrices,
exists 0(v/d) degp s.t. A = E[p(A)A] is “almost rank one”

5 (i.e., | Z2=hulgut Ra<te h bup@| 1) 5

Intuition: Random matrix eigenvalues follow

P(A)

magnitude bounded by 0 (v/d) 0.006
“Reweigh” dist by p(4) = ((u|A|u))? 0.2
~ Boosts e-valofu by,

oosts e-valofu yE[N{,]E[NZ] ~

_\2d /23
GetA; = #\/d > d and A, ..., 15 = /d



Given:  « W subspace of €%

\

e Degree 0(v/d) moments of rank 1 N W

Can find rank one matrix close to W

Given: - W subspace of €%’
o Nrathatiga(sel) moments generated via SoS

Find rank one matrix close to W -

Proof of factis in
SOS framework!

What we want
\




Other applications: unsupervised learning

Observations: x4, x,, x3, ... from model P(0)

Goal: Recoveré

4y,
[ “90/73

%)
Ground 7
truth 6

Ground
truth 6




e Dictionary learning [B-Kelner-Steureras,...]
 Tensor decomposition [Ge-Ma'1s, Ma-Shi-Steurer'16]
* Tensor completion [B-Ngtra'lQPotechin-Steurer'ly]

N
rer'1s]
8/

THE DREAM IS REAL.



A different appr

oach to algorithm design

Problem P,

Problem P;

Optimal Algorithm



Summary

e Better than brute force (2(V®) time) alg for best separable state

e Still large gap from 22U°8 &) |ower bound.
e Still open: noisy version, quantum separability problem

* |deas lead to improved algorithms in several worst case and average
case settings.

» Often SoS based algorithm gives best known guarantees.

e Is this accidental? Or part of larger pattern?
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