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A classical computer scientist’s apology



Entanglement Is Hard
To create, control, understand
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Entanglement Is Hard
To create, control, understand

No “simple” formula for entanglement of  two qudit mixed state 𝜌𝜌 over ℂ𝑑𝑑2

No “simple” formula for entanglement of e-states of 𝑑𝑑2 × 𝑑𝑑2 measurement 𝑀𝑀.

Best known algorithms require “brute force” (i.e.,  2Ω 𝑑𝑑 time)

This talk: Better than brute force algorithm for (one version of) second problem.
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Thm: Better than brute force (i.e. 2 �𝑂𝑂 𝑑𝑑 time) algorithm for best separable state problem.

Input: Measurement 𝑀𝑀 on a two qudit system (0 ≼ 𝑀𝑀 ≼ 𝐼𝐼 is 𝑑𝑑2 × 𝑑𝑑2 matrix)

Goal: Distinguish between:

(i) 𝑀𝑀 accepts some separable state with probability 1
vs.

(ii) Every separable state is accepted with probability ≤ 1 − 𝜖𝜖

|𝜑𝜑⟩
|𝜓𝜓⟩

𝜌𝜌 0/1

Separable states: Generated by rank one pure states 𝑢𝑢 ⟨𝑣𝑣| ∈ ℂ𝑑𝑑2

Top e-space of 𝑀𝑀: Linear subspace 𝑊𝑊 ⊆ ℂ𝑑𝑑2

Goal: Find out if they intersect

Non convex set!

Certify 𝑀𝑀 is entanglement witness
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Goal:  Find rank one matrix 𝜖𝜖-close to 𝑊𝑊

Input: Linear subspace 𝑊𝑊 ⊆ ℂ𝑑𝑑2

(assume 𝑊𝑊 contains rank one matrix)

Trivial (brute force) algorithm: 2𝑂𝑂 𝑑𝑑 time

Hardness: NP hard if 𝜖𝜖 = 1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑

[Gurvits’03,Gharbian’10]

Requires 𝑑𝑑Ω log 𝑑𝑑 time for constant 𝜖𝜖 [Harrow-Montanaro’13]

𝑑𝑑𝑂𝑂 log 𝑑𝑑 algorithm if 𝑀𝑀 is 1-LOCC [Brandão-Christiandl-Yard’11]

Our Result: [B-Kothari-Steurer] 2 �𝑂𝑂 𝑑𝑑 time

Analysis of algorithm of [Doherty-Parrilo-Spedalieri’04]



Sum of Squares



Sum of Squares Paradigm

Observation: It’s better to be rich than poor   [Marx-Engels 1848]Observation: Easier to solve problems with extra power.



Sum of Squares Paradigm

problem

Observation: Easier to solve problems with extra power.

problem



General philosophy

1) Prove correctness of “hypothetical” algorithm:

• Has unbounded time.

• Gets “hints” about solution.

2) “Lift” proof to show SoS succeeds as well.

Identifiabilityrecovery: Sparse coding, mixture models, community recovery, 
tensor completion, …

Combiningrounding: Sparse vector problem, best separable state



Deg ℓ SoS Proof System

AXIOM: 𝑝𝑝2 ≥ 0 for deg𝑝𝑝 ≤ ℓ

Surprisingly powerful:

• Cauchy Schwarz
• Holder
• Hypercontractivity 
• Invariance principle
• …

[B-Brandao-Harow-Kelner-Steurer-Zhou’12, De-
Mossel-Neeman’12 ,O’Donnell-Zhou’13,Kauers-
O’Donnell-Tan-Zhou’14,..]

Deg ℓ SoS Algorithm

INPUT: polynomial constraints on 
𝑥𝑥1, … , 𝑥𝑥𝑑𝑑

OUTPUT: “fake” moments of 
distribution 𝒟𝒟 over ℝ𝑑𝑑 satisfying 
constraints (via semi-definite 
programming)

SoS Proof System can’t prove they 
are fake!

[Artin’27,Krivine’61,Stengle’71,…,Grigoriev-Vorobjov’01] [N.Shor’87,..,Parrilo’00,Lasserre’01]



Sum of Squares and Quantum Information

Bell’s Inequality: Alice gets 𝑎𝑎 ∈ {0,1} and outputs 𝑋𝑋𝑎𝑎 ∈ {±1}, Bob  gets 𝑏𝑏 ∈ {0,1}
and outputs 𝑌𝑌𝑏𝑏 ∈ {±1}. Then

𝑅𝑅 = 𝑋𝑋0𝑌𝑌0 + 𝑋𝑋0𝑌𝑌1 + 𝑋𝑋1𝑌𝑌0 − 𝑋𝑋1𝑌𝑌1 ≤ 2

Pf: 𝑅𝑅 = 𝑋𝑋0 𝑌𝑌0 + 𝑌𝑌1 + 𝑋𝑋1 𝑌𝑌0 − 𝑌𝑌1 ≤ 𝑋𝑋02 + 𝑋𝑋12 ⋅ 𝑌𝑌0 + 𝑌𝑌1 2 + 𝑌𝑌0 − Y1 2

𝑅𝑅 ≤ 2 2𝑌𝑌02 + 2𝑌𝑌12 = 8 ≈ 2.823

Quantum value of this game is  𝑅𝑅 = 8!

Nature might not follow Einstein..
.. but she does respect Cauchy-Schwarz

𝑅𝑅 ≤ 2 2𝑌𝑌02 + 2𝑌𝑌12 = 8 = 2



Solving Best Separable State via the 
Sum of Squares Algorithm



“Inception” approach for algorithm design

1. Dream you have access to moments of 
solution.

2. Use moments to obtain answer.
3. Then wake up and hope it still works.



SoS Algorithm for Best Separable State
Input: Subspace 𝑊𝑊 ⊆ ℂ𝑑𝑑2

Assumption: Exists rank one matrix |𝑢𝑢⟩⟨𝑣𝑣| ∈ 𝑊𝑊

Extra assumption: Get degree ℓmoments of 
distribution over 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟 1 ∩𝑊𝑊

Goal: Find rank one matrix | �𝑢𝑢⟩⟨ �𝑣𝑣| 𝜖𝜖-close to 𝑊𝑊

𝑑𝑑ℓ statistics of the form 
𝔼𝔼[𝑝𝑝 𝑢𝑢, 𝑣𝑣 ] for deg 𝑝𝑝 ≤ ℓ

First Attempt: Can compute 𝐴𝐴 = 𝔼𝔼[|𝑢𝑢⟩⟨𝑣𝑣|] (degree two moments 𝔼𝔼[𝑢𝑢𝑖𝑖𝑣𝑣𝑗𝑗])

Dist over matrices in 𝑊𝑊⇒𝐴𝐴 is in 𝑊𝑊

𝐴𝐴 might not be rank one

not 
convex!



“Convexifying” rank one matrices

THM: [B-Kothari-Steurer’17] For every dist 𝒟𝒟 over rank one 𝑑𝑑 × 𝑑𝑑 matrices,

exists �𝑂𝑂( 𝑑𝑑) deg 𝑝𝑝 s.t. 𝐴𝐴 = 𝔼𝔼 𝑝𝑝 𝐴𝐴 𝐴𝐴 is “almost rank one”

(i.e., ∥ 𝐴𝐴 − |𝑢𝑢⟩⟨𝑣𝑣| ∥ ≤ 𝜖𝜖 ∥ |𝑢𝑢⟩⟨𝑣𝑣| ∥ )
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Why would that be true? And where does 𝑑𝑑 come from? 

(𝑝𝑝 Schatten norm ⇒ deg≈ 𝑑𝑑1/𝑝𝑝 )

Inspiration: Lovett “ sqrt rank theorem” in communication complexity
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THM: [B-Kothari-Steurer’17] For every dist 𝒟𝒟 over rank one 𝑑𝑑 × 𝑑𝑑 matrices,

exists �𝑂𝑂( 𝑑𝑑) deg 𝑝𝑝 s.t. 𝐴𝐴 = 𝔼𝔼 𝑝𝑝 𝐴𝐴 𝐴𝐴 is “almost rank one”
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Intuition: Random matrix eigenvalues follow Wigner semicircle law :

𝜆𝜆12 ≫ 𝜆𝜆22 + 𝜆𝜆32 + ⋯+ 𝜆𝜆𝑑𝑑2

+ 2𝑑𝑑− 2𝑑𝑑

magnitude bounded by 𝑂𝑂( 𝑑𝑑)

“Reweigh” dist by p 𝐴𝐴 = 𝑢𝑢 𝐴𝐴 𝑢𝑢 ℓ

⇒ Boosts  e-val of u by 
𝔼𝔼 𝑁𝑁ℓ+2

𝔼𝔼 𝑁𝑁ℓ 𝔼𝔼 𝑁𝑁2
≈ ℓ

Get 𝜆𝜆1 ≈ ℓ 𝑑𝑑 ≫ 𝑑𝑑 and 𝜆𝜆2, … , 𝜆𝜆𝑑𝑑 ≈ 𝑑𝑑



Recap
Given: • 𝑊𝑊 subspace of ℂ𝑑𝑑2

• Degree �𝑂𝑂( 𝑑𝑑) moments of 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟 1 ∩𝑊𝑊
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Given: • 𝑊𝑊 subspace of ℂ𝑑𝑑2

Can find rank one matrix close to 𝑊𝑊

Find rank one matrix close to 𝑊𝑊

Proof of fact is in 
SOS framework!

• Nothing else• “Fake”  �𝑂𝑂( 𝑑𝑑) moments generated via SoS



Other applications: unsupervised learning
Observations: 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … from model 𝑃𝑃(𝜃𝜃)

Goal:  Recover 𝜃𝜃

Ground 
truth 𝜃𝜃

�𝜃𝜃

Ground 
truth 𝜃𝜃

�𝜃𝜃



Example applications

• Dictionary learning [B-Kelner-Steurer’14,…]

• Tensor decomposition [Ge-Ma’15, Ma-Shi-Steurer’16]

• Tensor completion [B-Moitra’16, Potechin-Steurer’17]

• Tensor PCA [Hopkins-Shi-Steurer’15]

• Community detection [Hopkins-Steurer’17]

• Gaussian Mixture Models [Hopkins-Lin’17, Kothari-Steinhardt’17]

• Outlier-robust estimation [Kothari-Steurer’17]



A different approach to algorithm design

Optimal Algorithm 

Problem 𝑃𝑃1

Problem 𝑃𝑃2
Problem 𝑃𝑃3

Problem 𝑃𝑃4

Problem 𝑃𝑃1

Problem 𝑃𝑃2

Problem 𝑃𝑃3

Problem 𝑃𝑃4

?



Summary
• Better than brute force (2 �𝑂𝑂 𝑑𝑑 time) alg for best separable state

• Still large gap from 2Ω log 𝑑𝑑 lower bound.

• Still open: noisy version,  quantum separability problem

• Ideas lead to improved algorithms in several worst case and average 
case settings.

• Often SoS based algorithm gives best known guarantees.

• Is this accidental? Or part of larger pattern?



Thank you!
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