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Property testing

I Property testing: assume object
(1) has the property P, or
(2) is far from the property:

needs many changes to get P
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I Possible to test a property by accesssing a small fraction of
data.

I Useful for large data.



Example: testing sortedness

I Input: list of numbers A1, . . . ,An.

I Test if
I List is sorted: A1 ≤ A2 ≤ . . . ≤ An or
I List is far from sorted: at least εn numbers must be removed

to make it sorted.

I [EKKRV00]: test for sortedness with O(log n/ε) queries to Ai .



Example: Blum-Luby-Rubinfeld [BLR90] linearity test

I Def: f : {0, 1}n → {0, 1} is linear if f (x ⊕ y) = f (x)⊕ f (y)
for all x , y ∈ {0, 1}n

I Distinguishing if a function is truly linear or not requires 2n

queries

I Property testing: BLR test uses only 3 queries:
choose x , y ∈ {0, 1}n uniformly at random; query f (x), f (y)
and f (x ⊕ y); accept if f (x)⊕ f (y) = f (x ⊕ y)

I if f is linear: test accepts with probability 1
if f is ε-far from linear: test accepts with probability ≤ 1− ε

I Can repeat this O(1/ε) times to reduce 1− ε to 0.001



Property testing in the quantum world

I Quantum information expands this area: the tester can be a
quantum algorithm!

I Lots of interesting work in recent years of relevance to crypto
and experiments (also on quantum properties). See survey by
Ashley Montanaro and Ronald de Wolf.



Some quantum speed-ups for classical properties

I P = N-vertex bounded-degree bipartite graphs [ACL’11]
Classical: N1/2 queries,
Quantum: Õ(N1/3) queries (using element distinctness)

I “Forrelation”: P = {(f , g) : g ≈ f̂ } [AA’14]
Classical: N1/2 queries,
Quantum: 1 query



Our main result: junta testing

I f : {0, 1}n → {0, 1} is a k-junta if it
only depends on k of the n input bits

I How many queries to f do we need to distinguish k-juntas
from functions that are ε-far from any k-junta?

I Classically: O(k log k) suffice (Blais’09); Ω(k) needed

I [Atıcı-Servedio’07]: O(k) quantum queries, Fourier sampling

I We give a new quantum tester:

using O(
√
k log k) queries, running time Õ(n

√
k)



Main Ingredient: Combinatorial group “testing”

I n soldiers hand in blood samples, up to k soldiers are sick.
How do you identify the sick ones with few blood tests?

Answer: combine parts of blood samples of first n/2 soldiers,
testing this tells you if there is a sick soldier among those n/2;
recurse to find one sick soldier with log n tests.
k log n blood tests suffice to find set A of all k sick soldiers



Gapped group testing

I Formally: given fA : {0, 1}n → {0, 1},
there is unknown k-set A ⊆ [n] s.t. fA(S) = 1 iff S ∩ A

Query fA(S) = blood test for mix of blood from soldiers in S

I Gapped group testing: distinguish |A| ≤ k from |A| ≥ k + d
I Classical complexity: (k/d)2 queries
I Quantum complexity: (k/d)1/2 by adversary bound

I Note: 4th power quantum speed-up! (more than Grover)



Our quantum junta tester (sketch)

I Input f : {0, 1}n → {0, 1} either depends on k variables, or is
ε-far from any k-junta

I Lemma (roughly): in the latter case, there exists a d ≥ 1 such
that there are k + d variables each with ε/d “influence”

I The quantum tester: apply the quantum algorithm for group
testing, combined with a procedure that checks whether any
of the variables in a given subset has influence > ε/d

Cost:
√

k
d

√
d
ε = O(

√
k/ε) queries to f

I (since we don’t know d we need to try several guesses; d > k is

dealt with separately)



Zooming in:
some glimpses of the proofs



Adversary bound

I The main method for quantum query lower bounds.

I Considers weighted sum of inner products 〈ψx |ψy 〉 where |ψx〉
is algorithm’s state on the input x .

I Adv+(f ) - the best lower bound from this method (with the
best choice of weights).

I Finding the best lower bound = a semidefinite program.

I [Reichardt, 2009-2011]: dual SDP = finding the best
quantum algorithm.

I Universal method for designing quantum algorithms.



Adversary bound

I Computational problem f (x), x = (x1, . . . , xn).

I For each variable xi , we can choose a matrix Xi � 0 indexed
by inputs x , y .

I Goal: minimize
max
x

∑
i

Xi [x , x ]

subject to ∑
i :xi 6=yi

Xi [x , y ] = 1

for all x , y : f (x) 6= f (y).

I Minimum = Adv±.



Adversary bound for gapped group testing

X = {A ⊆ [n] : |A| = k}
Y = {B ⊆ [n] : |B| = k + d}

SDP which characterizes quantum query complexity:

min max
A∈X∪Y

∑
S⊆[n]

XS [A,A]

s.t.
∑

S : A∩S=∅ xor B∩S=∅

XS [A,B] = 1 ∀A ∈ X ,B ∈ Y;

XS � 0 ∀S ⊆ [n]

We give feasible solution XS = φSφ
∗
S ,

with φS a vector depending on real parameters α1, . . . , αn−k−d+1,
with objective value W = O(

√
k/d)

⇒ existence of a query-optimal algorithm



From adversary bound to algorithm

I Transformation U = RΛOf where Of ,RΛ - two reflections.

I Of - query, RΛ defined by the solution of the adversary SDP.

I If f = 1, |ψstart〉 ≈ |ψ〉 , RΛOf |ψ〉 = |ψ〉.
I If f = 0, the fraction of |ψstart〉 consisting of |ψ〉,

RΛOf |ψ〉 = λ|ψ〉, |λ− 1| ≤ 1
W is small.

I Eigenvalue estimation distinguishes the two cases, in O(W )
steps.



Time-efficient implementation

I Need: reflection through Λ := span{ψA : A ∈ X},

ψA = |0〉+ γ

n−k−d+1∑
s=1

αs

∑
S⊆[n] : |S |=s, S∩A=∅

|S〉

I Λ - symmetric w.r.t. permuting elements of {1, 2, . . . , n}.
I Schur-Weyl transform: expresses state in the Fourier basis,

with basis states corresponding to representations of Sn.

I Λ has simple form in Fourier basis.



Time-efficient implementation

I Cost: O(
√
k/d) executions of U = Of RΛ

I How many elementary gates needed to implement RΛ?

I Implementing RΛ:

1. Use QFT (Schur-Weyl) to change to Fourier basis
2. Reflect in Fourier basis
3. Undo step 1

I [Bacon-Chuang-Harrow, 06]: Schur-Weyl transform with Õ(n)
gates.

I Time complexity becomes Õ(n
√
k/d) for group testing, and

Õ(n
√

k/ε) for junta testing



Lower bounds

I Image testing: given black-box access to g : [n]→ [m], test if
I |Image(g)| ≤ l ;
I g is ε-far from any h : |Image(h)| ≤ l ;

I Junta testing ⇒ Image testing;

I Image testing requires Ω(l1/3) queries (collision lower bound).

I Does it require Ω(
√
l) queries?

I Example: distinguish whether g is
I a 2-1 function (|Image(g)| = n/2);
I 3-1 on half of domain and 1-1 on half of domain

(|Image(g)| = 2n/3).



Summary & some questions

I We gave Õ(
√
k)-query quantum algorithm for testing

whether f is k-junta or far from all k-juntas

I With time-efficient implementation

I Based on an optimal algorithm for gapped group testing

Questions:

1. Is there a better algorithm for junta testing?
Best known lower bound is Ω(k1/3) (from collision problem)

2. Testing if f : {0, 1}n → {0, 1} is monotone?
Best classical upper bound is Õ(

√
n), lower bound Ω(n1/4).

Quantum upper bound Õ(n1/4) (Belovs-Blais).

3. More quantum testers for graph properties?


