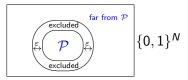
Efficient Quantum Algorithms for (Gapped) Group Testing and Junta Testing

Andris Ambainis (University of Latvia)

Joint with Alexander Belov (CWI), Oded Regev (NYU), Ronald de Wolf (CWI) QIP'16

Property testing



- Possible to test a property by accessing a small fraction of data.
- Useful for large data.

Example: testing sortedness

- Input: list of numbers A_1, \ldots, A_n .
- Test if
 - List is sorted: $A_1 \leq A_2 \leq \ldots \leq A_n$ or
 - List is far from sorted: at least en numbers must be removed to make it sorted.

• [EKKRV00]: test for sortedness with $O(\log n/\epsilon)$ queries to A_i .

Example: Blum-Luby-Rubinfeld [BLR90] linearity test

- ▶ Def: $f : \{0,1\}^n \to \{0,1\}$ is linear if $f(x \oplus y) = f(x) \oplus f(y)$ for all $x, y \in \{0,1\}^n$
- Distinguishing if a function is truly linear or not requires 2ⁿ queries
- Property testing: BLR test uses only 3 queries: choose x, y ∈ {0,1}ⁿ uniformly at random; query f(x), f(y) and f(x ⊕ y); accept if f(x) ⊕ f(y) = f(x ⊕ y)
- if f is linear: test accepts with probability 1 if f is ε-far from linear: test accepts with probability ≤ 1 − ε
- Can repeat this $O(1/\varepsilon)$ times to reduce $1-\varepsilon$ to 0.001

Property testing in the quantum world

- Quantum information expands this area: the tester can be a quantum algorithm!
- Lots of interesting work in recent years of relevance to crypto and experiments (also on quantum properties). See survey by Ashley Montanaro and Ronald de Wolf.

Some quantum speed-ups for classical properties

- ▶ $\mathcal{P} = N$ -vertex bounded-degree bipartite graphs [ACL'11] Classical: $N^{1/2}$ queries, Quantum: $\widetilde{O}(N^{1/3})$ queries (using element distinctness)
- ▶ "Forrelation": $\mathcal{P} = \{(f,g) : g \approx \hat{f}\}$ [AA'14] Classical: $N^{1/2}$ queries, Quantum: 1 query

Our main result: junta testing

f: {0,1}ⁿ → {0,1} is a *k*-junta if it only depends on *k* of the *n* input bits

- How many queries to f do we need to distinguish k-juntas from functions that are ε-far from any k-junta?
- Classically: $O(k \log k)$ suffice (Blais'09); $\Omega(k)$ needed
- [Atıcı-Servedio'07]: O(k) quantum queries, Fourier sampling
- ▶ We give a new quantum tester: using $O(\sqrt{k} \log k)$ queries, running time $\widetilde{O}(n\sqrt{k})$

Main Ingredient: Combinatorial group "testing"

n soldiers hand in blood samples, up to k soldiers are sick. How do you identify the sick ones with few blood tests?

Answer: combine parts of blood samples of first n/2 soldiers, testing this tells you if there is a sick soldier among those n/2; recurse to find one sick soldier with log n tests. $k \log n$ blood tests suffice to find set A of all k sick soldiers

Gapped group testing

- Formally: given f_A: {0,1}ⁿ → {0,1}, there is unknown k-set A ⊆ [n] s.t. f_A(S) = 1 iff S ∩ A Query f_A(S) = blood test for mix of blood from soldiers in S
- Gapped group testing: distinguish $|A| \le k$ from $|A| \ge k + d$
 - Classical complexity: $(k/d)^2$ queries
 - Quantum complexity: $(k/d)^{1/2}$ by adversary bound
- Note: 4th power quantum speed-up! (more than Grover)

Our quantum junta tester (sketch)

- Input $f : \{0,1\}^n \to \{0,1\}$ either depends on k variables, or is ε -far from any k-junta
- Lemma (roughly): in the latter case, there exists a d ≥ 1 such that there are k + d variables each with ε/d "influence"
- The quantum tester: apply the quantum algorithm for group testing, combined with a procedure that checks whether any of the variables in a given subset has influence > ε/d Cost: √^k/_d√^d/_ε = O(√k/ε) queries to f
- (since we don't know d we need to try several guesses; d > k is dealt with separately)

Zooming in: some glimpses of the proofs

Adversary bound

- The main method for quantum query lower bounds.
- ► Considers weighted sum of inner products (\u03c6\u03c6 \u03c6 \u03
- ► Adv⁺(f) the best lower bound from this method (with the best choice of weights).
- Finding the best lower bound = a semidefinite program.
- [Reichardt, 2009-2011]: dual SDP = finding the best quantum algorithm.
- Universal method for designing quantum algorithms.

Adversary bound

• Computational problem f(x), $x = (x_1, \ldots, x_n)$.

i

- For each variable x_i, we can choose a matrix X_i ≥ 0 indexed by inputs x, y.
- Goal: minimize

$$\max_{x} \sum_{i} X_{i}[x, x]$$

subject to

$$\sum_{x_i \neq y_i} X_i[x, y] = 1$$

for all $x, y : f(x) \neq f(y)$. Minimum = Adv^{\pm} . Adversary bound for gapped group testing

$$\mathcal{X} = \{A \subseteq [n] : |A| = k\}$$
$$\mathcal{Y} = \{B \subseteq [n] : |B| = k + d\}$$

SDP which characterizes quantum query complexity:

$$\min \max_{A \in \mathcal{X} \cup \mathcal{Y}} \sum_{S \subseteq [n]} X_S[A, A]$$

s.t.
$$\sum_{\substack{S: A \cap S = \emptyset \text{ xor } B \cap S = \emptyset}} X_S[A, B] = 1 \quad \forall A \in \mathcal{X}, B \in \mathcal{Y}_S$$
$$X_S \succeq 0 \qquad \forall S \subseteq [n]$$

We give feasible solution $X_S = \phi_S \phi_S^*$, with ϕ_S a vector depending on real parameters $\alpha_1, \ldots, \alpha_{n-k-d+1}$, with objective value $W = O(\sqrt{k/d})$

 \Rightarrow *existence* of a query-optimal algorithm

From adversary bound to algorithm

- ► Transformation $U = R_{\Lambda}O_f$ where O_f, R_{Λ} two reflections.
- O_f query, R_{Λ} defined by the solution of the adversary SDP.

• If
$$f = 1$$
, $|\psi_{start}\rangle \approx |\psi\rangle$, $R_{\Lambda}O_{f}|\psi\rangle = |\psi\rangle$.

- ▶ If f = 0, the fraction of $|\psi_{start}\rangle$ consisting of $|\psi\rangle$, $R_{\Lambda}O_{f}|\psi\rangle = \lambda|\psi\rangle$, $|\lambda - 1| \leq \frac{1}{W}$ is small.
- Eigenvalue estimation distinguishes the two cases, in O(W) steps.

Time-efficient implementation

Need: reflection through Λ := span{ψ_A : A ∈ X},

$$\psi_{\mathcal{A}} = |\mathbf{0}\rangle + \gamma \sum_{s=1}^{n-k-d+1} \alpha_s \sum_{S \subseteq [n]: \ |S|=s, \ S \cap \mathcal{A}=\emptyset} |S\rangle$$

• A - symmetric w.r.t. permuting elements of $\{1, 2, \ldots, n\}$.

- Schur-Weyl transform: expresses state in the Fourier basis, with basis states corresponding to representations of S_n.
- Λ has simple form in Fourier basis.

Time-efficient implementation

- Cost: $O(\sqrt{k/d})$ executions of $U = O_f R_{\Lambda}$
- How many elementary gates needed to implement R_{Λ} ?
- Implementing R_{Λ} :
 - 1. Use QFT (Schur-Weyl) to change to Fourier basis
 - 2. Reflect in Fourier basis
 - 3. Undo step 1
- ▶ [Bacon-Chuang-Harrow, 06]: Schur-Weyl transform with $\widetilde{O}(n)$ gates.
- ► Time complexity becomes $\widetilde{O}(n\sqrt{k/d})$ for group testing, and $\widetilde{O}(n\sqrt{k/\varepsilon})$ for junta testing

Lower bounds

▶ Image testing: given black-box access to $g : [n] \rightarrow [m]$, test if

- $|Image(g)| \leq l;$
- g is ϵ -far from any $h : |Image(h)| \le I$;
- ► Junta testing ⇒ Image testing;
- Image testing requires $\Omega(l^{1/3})$ queries (collision lower bound).
- Does it require $\Omega(\sqrt{I})$ queries?
- Example: distinguish whether g is
 - a 2-1 function (|*Image*(g)| = n/2);
 - ▶ 3-1 on half of domain and 1-1 on half of domain (|Image(g)| = 2n/3).

Summary & some questions

- ► We gave Õ(√k)-query quantum algorithm for testing whether f is k-junta or far from all k-juntas
- With time-efficient implementation
- Based on an optimal algorithm for gapped group testing

Questions:

- 1. Is there a better algorithm for junta testing? Best known lower bound is $\Omega(k^{1/3})$ (from collision problem)
- 2. Testing if $f : \{0,1\}^n \to \{0,1\}$ is monotone? Best classical upper bound is $\widetilde{O}(\sqrt{n})$, lower bound $\Omega(n^{1/4})$. Quantum upper bound $\widetilde{O}(n^{1/4})$ (Belovs-Blais).
- 3. More quantum testers for graph properties?