#### arXiv:1505.07432



Zhengfeng Ji

IQC, UWaterloo

#### arXiv:1505.07432

mmmm

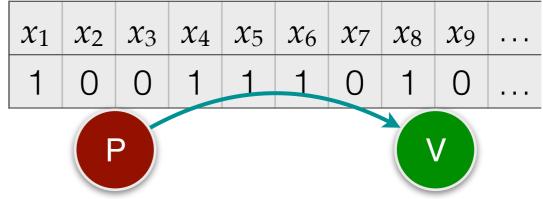
Zhengfeng Ji

IQC, UWaterloo



- Proof verification is a central concept in computer science
  - NP, IP, MIP, PCP, ...

- Proof verification is a central concept in computer science  $x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 \dots$ 
  - NP, IP, MIP, PCP, ...



- Proof verification is a central concept in computer science
  - NP, IP, MIP, PCP, ...



- Proof verification is a central concept in computer science
  - NP, IP, MIP, PCP, ...



- Cook-Levin theorem: 3-SAT is NP-complete
  - 3-SAT, G3C, Ising

- Proof verification is a central concept in computer science
  - NP, IP, MIP, PCP, ...



- Cook-Levin theorem: 3-SAT is NP-complete
  - 3-SAT, G3C, Ising  $(x_1 \lor x_3 \lor x_5) \land (x_2 \lor \neg x_3 \lor \neg x_5) \land \dots$

- Proof verification is a central concept in computer science
  - NP, IP, MIP, PCP, ...



- Cook-Levin theorem: 3-SAT is NP-complete
  - 3-SAT, G3C, Ising  $(x_1 \lor x_3 \lor x_5) \land (x_2 \lor \neg x_3 \lor \neg x_5) \land \dots$
- Quantum proof verification
  - QMA, QIP, MIP\*, QMIP, Quantum PCP?

- Proof verification is a central concept in computer science
  - NP, IP, MIP, PCP, ...



- Cook-Levin theorem: 3-SAT is NP-complete
  - 3-SAT, G3C, Ising  $(x_1 \lor x_3 \lor x_5) \land (x_2 \lor \neg x_3 \lor \neg x_5) \land \dots$
- Quantum proof verification
  - QMA, QIP, MIP\*, QMIP, Quantum PCP?
- Local Hamiltonian problem

- Proof verification is a central concept in computer science
  - NP, IP, MIP, PCP, ...



- Cook-Levin theorem: 3-SAT is NP-complete
  - 3-SAT, G3C, Ising  $(x_1 \lor x_3 \lor x_5) \land (x_2 \lor \neg x_3 \lor \neg x_5) \land \dots$
- Quantum proof verification
  - QMA, QIP, MIP\*, QMIP, Quantum PCP?
- Local Hamiltonian problem

$$H = \sum_{j=1}^{m} H_j$$

- Proof verification is a central concept in computer science
  - NP, IP, MIP, PCP, ...



 $H = \sum_{j=1}^{m} H_j$ 

- Cook-Levin theorem: 3-SAT is NP-complete
  - 3-SAT, G3C, Ising  $(x_1 \lor x_3 \lor x_5) \land (x_2 \lor \neg x_3 \lor \neg x_5) \land \dots$
- Quantum proof verification
  - QMA, QIP, MIP\*, QMIP, Quantum PCP?
- Local Hamiltonian problem

• Proof verification without seeing the whole proof

 $(x_1 \lor x_3 \lor x_5) \land (x_2 \lor \neg x_3 \lor \neg x_5) \land \dots$ 

| $x_1$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $\chi_4$ | $\chi_5$ | <i>x</i> <sub>6</sub> | <i>X</i> 7 | $\chi_8$ | <i>X</i> 9 |  |
|-------|-----------------------|-----------------------|----------|----------|-----------------------|------------|----------|------------|--|
| _     | 0                     | 0                     | -        | 1        | -                     | -          | -        | _          |  |

• Proof verification without seeing the whole proof

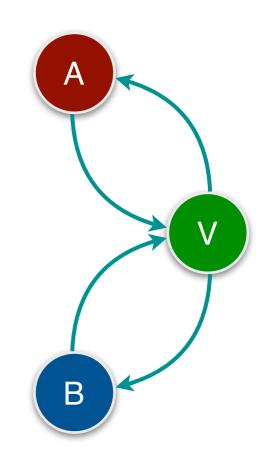
$$(x_1 \lor x_3 \lor x_5) \land (x_2 \lor \neg x_3 \lor \neg x_5) \land \dots$$

| <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $\chi_4$ | $\chi_5$ | <i>x</i> <sub>6</sub> | <i>x</i> <sub>7</sub> | $x_8$ | <i>x</i> 9 |  |
|-----------------------|-----------------------|-----------------------|----------|----------|-----------------------|-----------------------|-------|------------|--|
| -                     | 0                     | 0                     | -        | 1        | -                     | -                     | -     | -          |  |

• Proof verification without seeing the whole proof

$$(x_1 \lor x_3 \lor x_5) \land (x_2 \lor \neg x_3 \lor \neg x_5) \land \dots$$

| $x_1$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $\chi_4$ | $\chi_5$ | <i>x</i> <sub>6</sub> | <i>X</i> 7 | $\chi_8$ | <i>X</i> 9 |  |
|-------|-----------------------|-----------------------|----------|----------|-----------------------|------------|----------|------------|--|
| -     | 0                     | 0                     | -        | 1        | -                     | -          | -        | -          |  |



• Proof verification without seeing the whole proof

$$(x_1 \vee x_3 \vee x_5) \wedge (x_2 \vee \neg x_3 \vee \neg x_5) \wedge \dots$$

В

| $x_1$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $\chi_4$ | $\chi_5$ | <i>x</i> <sub>6</sub> | $\chi_7$ | $\chi_8$ | <i>x</i> 9 |  |
|-------|-----------------------|-----------------------|----------|----------|-----------------------|----------|----------|------------|--|
| -     | 0                     | 0                     | -        | 1        | -                     | -        | -        | -          |  |

- The power of the second prover
  - Query a variable in the clause randomly, check consistency (oracularization)

• Proof verification without seeing the whole proof

$$(x_1 \vee x_3 \vee x_5) \wedge (x_2 \vee \neg x_3 \vee \neg x_5) \wedge \dots$$

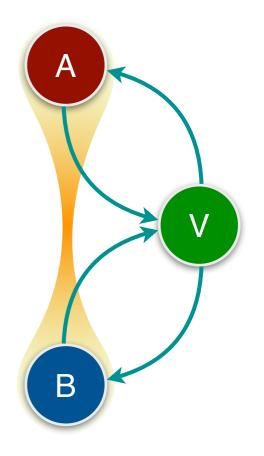
В

| $x_1$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $\chi_4$ | $\chi_5$ | <i>x</i> <sub>6</sub> | $\chi_7$ | $\chi_8$ | <i>x</i> 9 |  |
|-------|-----------------------|-----------------------|----------|----------|-----------------------|----------|----------|------------|--|
| -     | 0                     | 0                     | -        | 1        | -                     | -        | -        | -          |  |

- The power of the second prover
  - Query a variable in the clause randomly, check consistency (oracularization)
- NP-hardness of multi-player games

- Bell inequalities
- Entanglement can either weaken or strengthen the expressive power

[Cleve et al. 04]



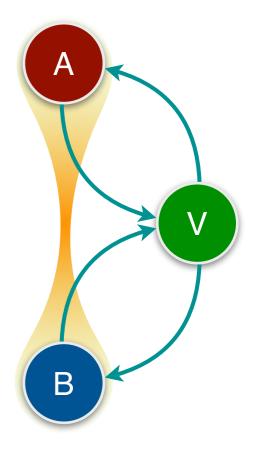
- Bell inequalities
- Entanglement can either weaken or strengthen the expressive power

[Cleve et al. 04]

• NP-hardness [Kempe et al. 08]

[Ito, Kobayashi, Matsumoto 09]

• **NEXP**-hardness, at least as powerful as classical [Ito, Vidick 12]



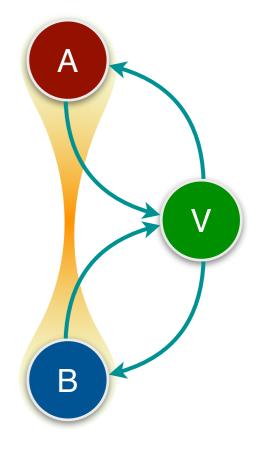
- Bell inequalities
- Entanglement can either weaken or strengthen the expressive power

[Cleve et al. 04]

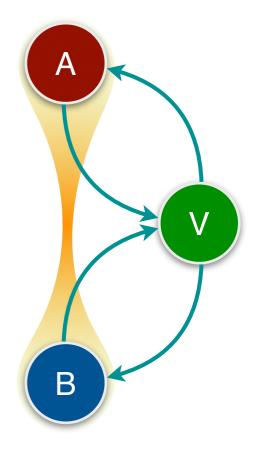
• NP-hardness [Kempe et al. 08]

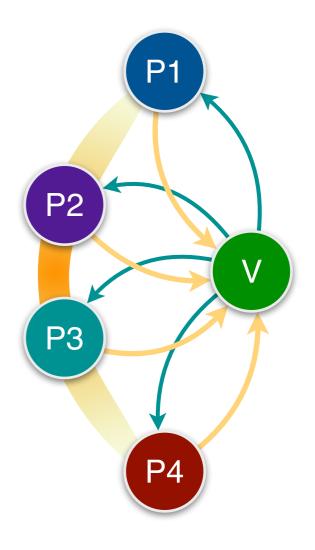
[Ito, Kobayashi, Matsumoto 09]

- **NEXP**-hardness, at least as powerful as classical [Ito, Vidick 12]
- Entanglement-resistant techniques

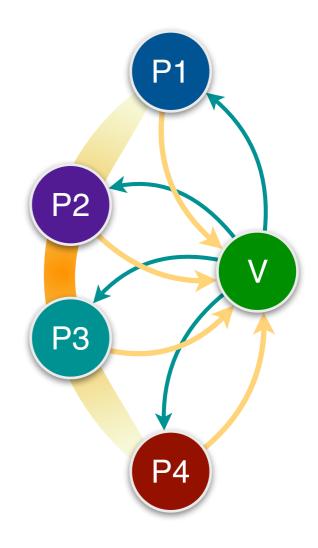


- Bell inequalities
- Entanglement can either weaken or strene"Quantum hardness" for entangled games?
- NP-hardness [Kempe et al. 08] [Ito, Kobayashi, Matsumoto 09]
- **NEXP**-hardness, at least as powerful as classical [Ito, Vidick 12]
- Entanglement-resistant techniques

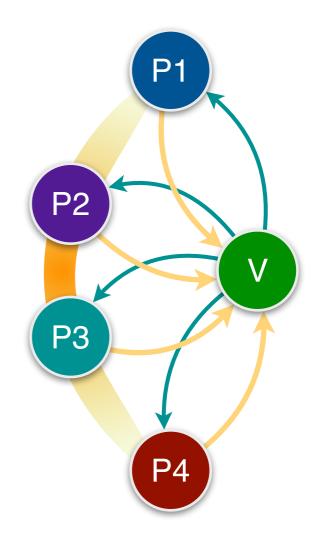


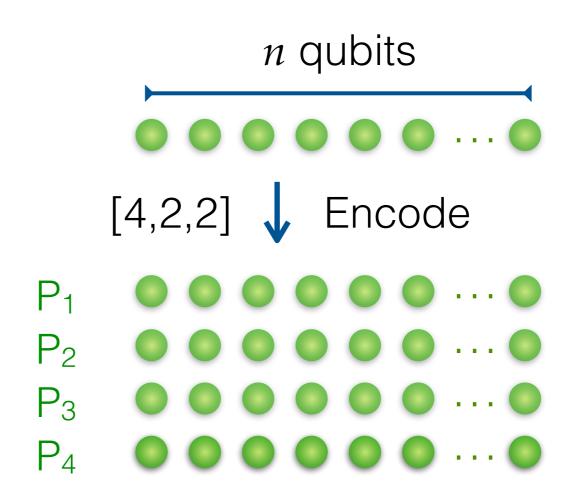


- Fitzsimons-Vidick protocol
- Encode the proof using the 4-qubit quantum error detecting code and do the following with equal probability:
  - Perform the encoding check
  - Perform the energy check

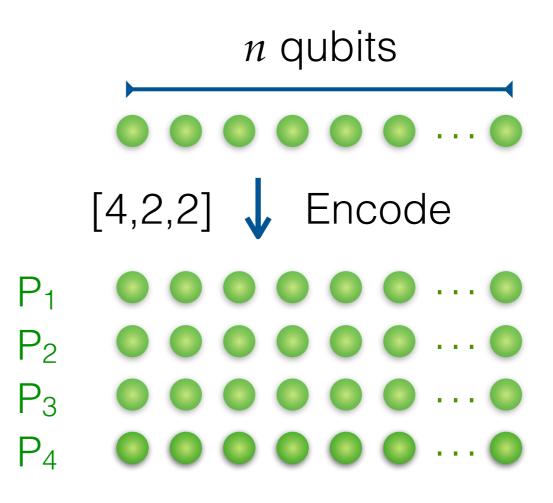


- Fitzsimons-Vidick protocol
- Encode the proof using the 4-qubit quantum error detecting code and do the following with equal probability:
  - Perform the encoding check
  - Perform the energy check
- Quantum oracularization
  - Classical oracularization as an error detecting code
     0 → 00, 1 → 11

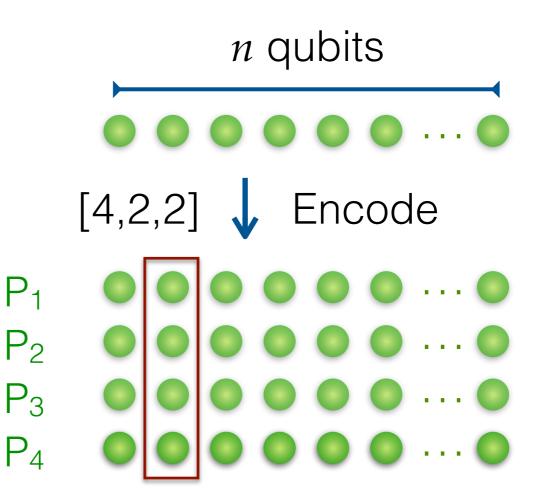




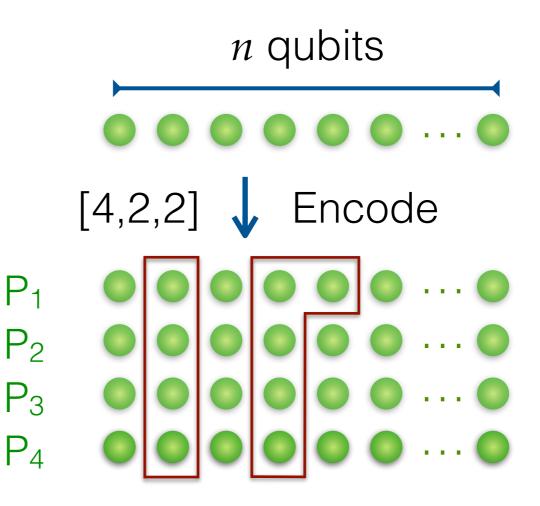
 Encode and distribute among the four provers



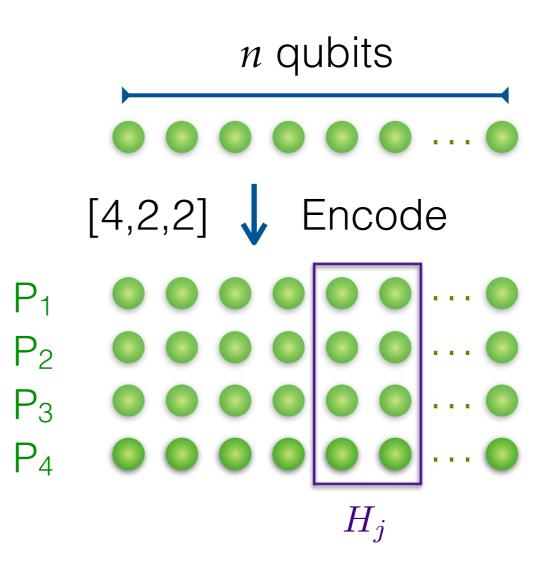
- Encode and distribute among the four provers
- Encoding check



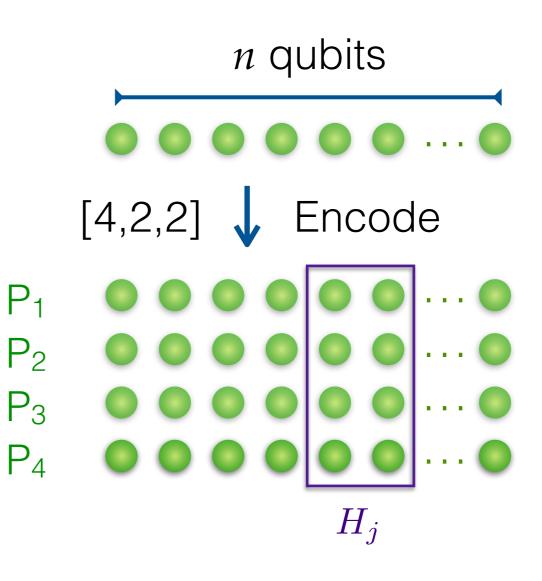
- Encode and distribute among the four provers
- Encoding check



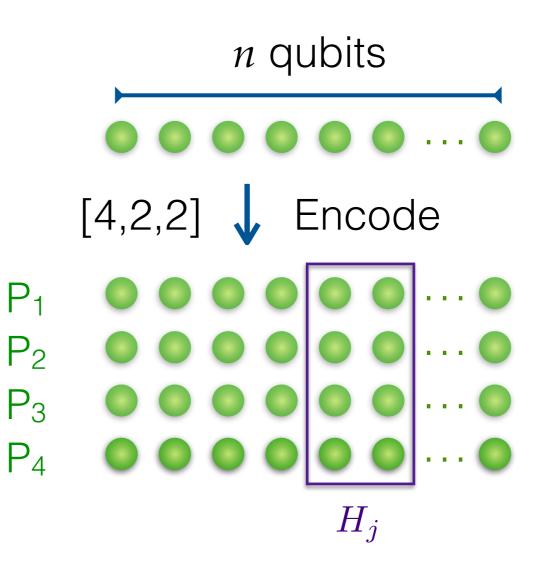
- Encode and distribute among the four provers
- Encoding check
- Energy check



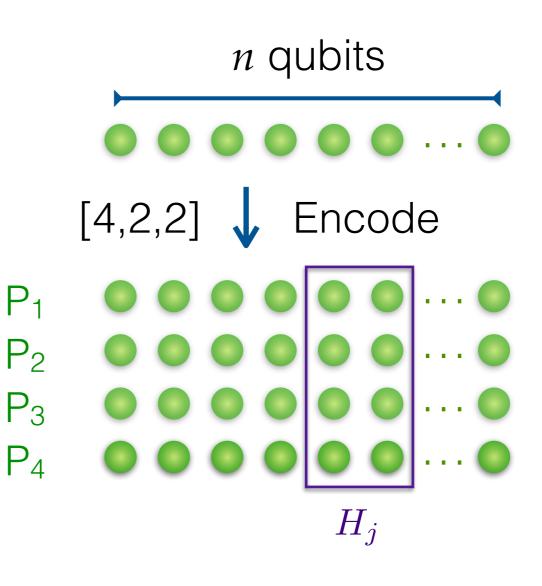
- Encode and distribute among the four provers
- Encoding check
- Energy check
- Questions:  $O(\log n)$  bits
- Answers: O(1) qubits



- Encode and distribute among the four provers
- Encoding check
- Energy check
- Questions:  $O(\log n)$  bits
- Answers: O(1) qubits



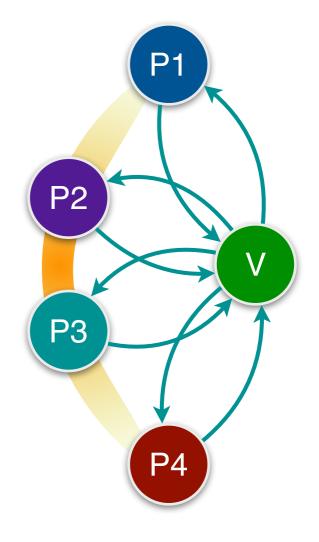
- Encode and distribute among the four provers
- Encoding check
- Energy check
- Questions:  $O(\log n)$  bits
- Answers: O(1) qubits
- De-quantization of both the answer messages and verifier



### Main results

 A 4-player protocol for the local Hamiltonian problem

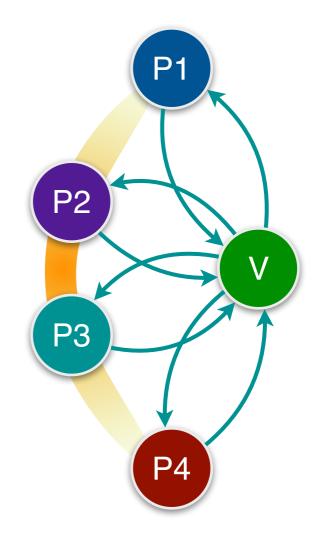
Questions: logarithmic number of bits, Answers: constant number of bits



 A 4-player protocol for the local Hamiltonian problem

Questions: logarithmic number of bits, Answers: constant number of bits

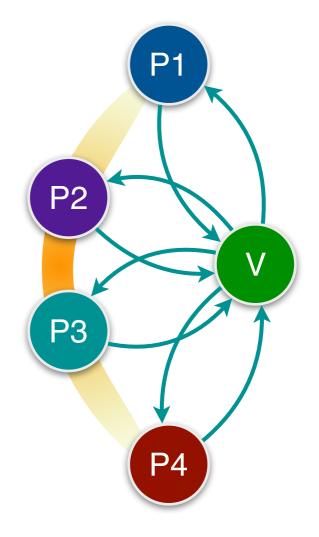
 Entangled games are QMA-hard, an improvement of the known NP-hardness results



 A 4-player protocol for the local Hamiltonian problem

Questions: logarithmic number of bits, Answers: constant number of bits

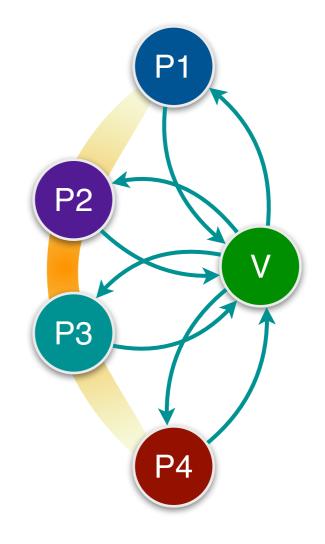
- Entangled games are QMA-hard, an improvement of the known NP-hardness results
- Essential use the shared entanglement, quantum hardness of entangled games

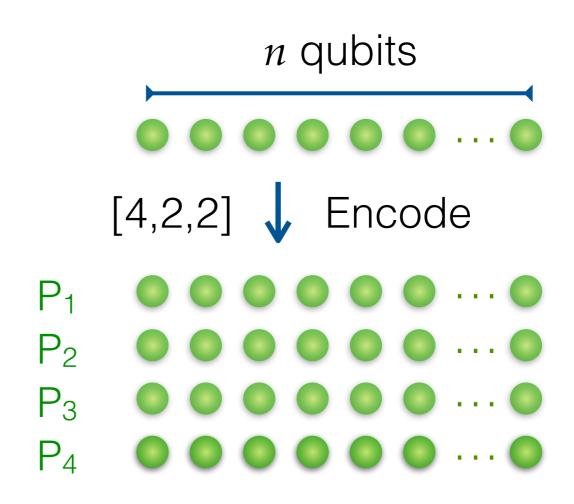


 A 4-player protocol for the local Hamiltonian problem

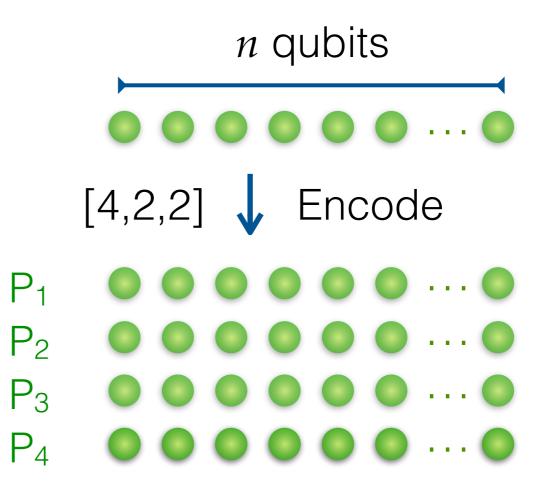
Questions: logarithmic number of bits, Answers: constant number of bits

- Entangled games are QMA-hard, an improvement of the known NP-hardness results
- Essential use the shared entanglement, quantum hardness of entangled games
- For exponentially small gapped c,s,
   MIP⊊MIP\*(4,1,c,s) under assumptions

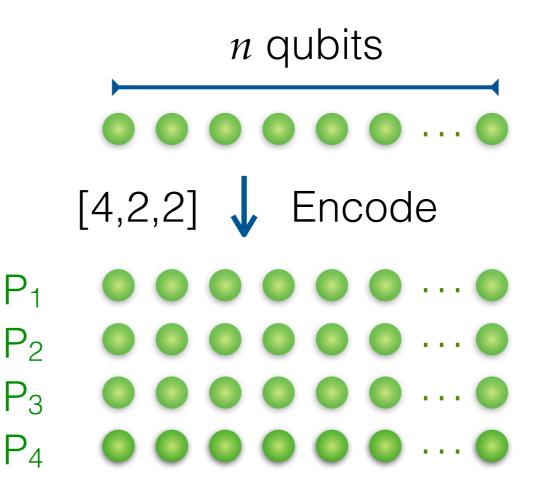




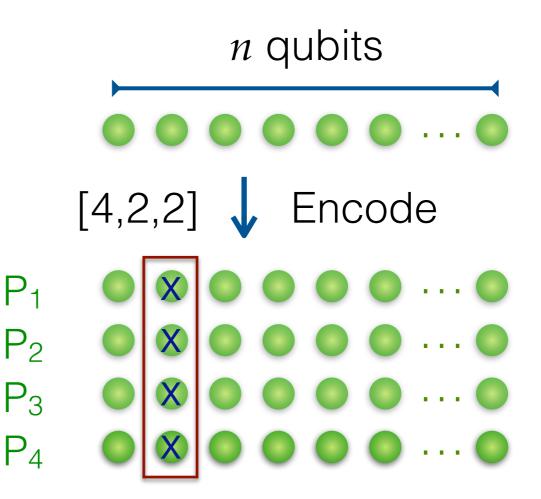
 Follows Fitzsimons-Vidick protocol very closely



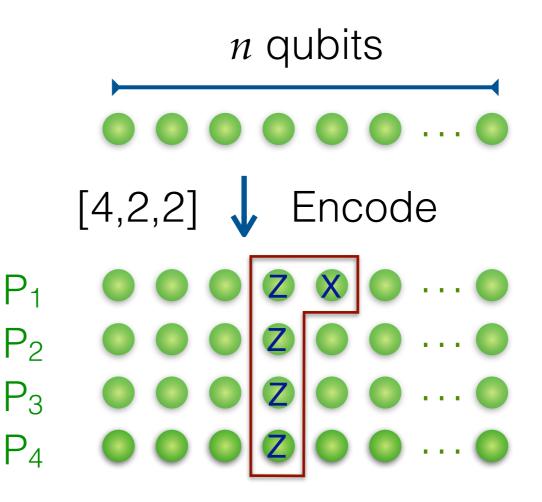
- Follows Fitzsimons-Vidick protocol very closely
- Sends measurement specifications and asks for the outcome instead of asking for qubits from the provers



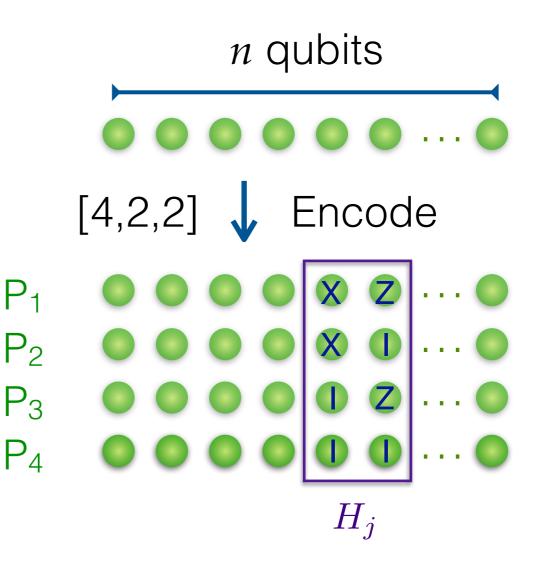
- Follows Fitzsimons-Vidick protocol very closely
- Sends measurement specifications and asks for the outcome instead of asking for qubits from the provers



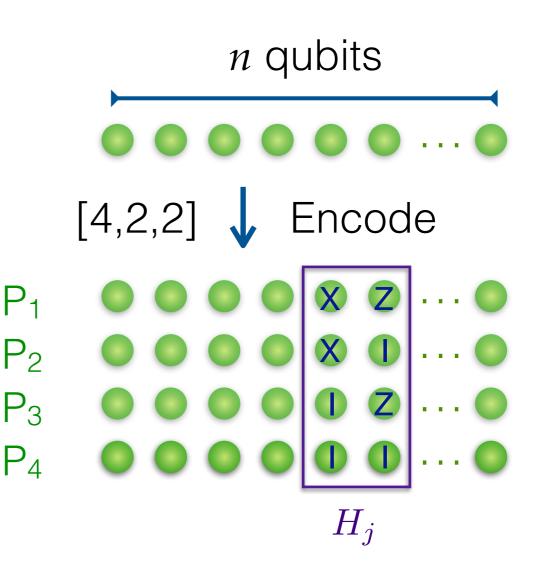
- Follows Fitzsimons-Vidick protocol very closely
- Sends measurement specifications and asks for the outcome instead of asking for qubits from the provers



- Follows Fitzsimons-Vidick protocol very closely
- Sends measurement specifications and asks for the outcome instead of asking for qubits from the provers



- Follows Fitzsimons-Vidick protocol very closely
- Sends measurement specifications and asks for the outcome instead of asking for qubits from the provers
- How can we trust the provers?

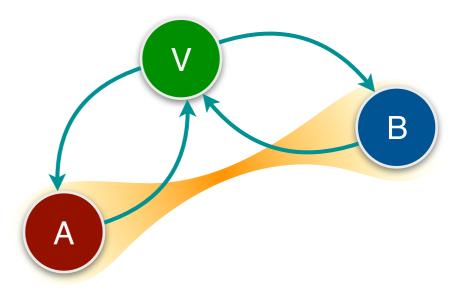




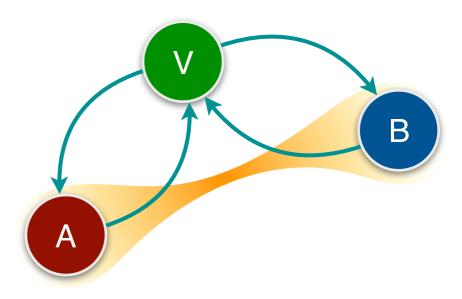
 The classical verifier can only collect information about Pr[answers a,b,c,... | questions s,t,u,...]



- The classical verifier can only collect information about Pr[answers a,b,c,... | questions s,t,u,...]
- Alice and Bob want to prove that they have jointly prepared a quantum state

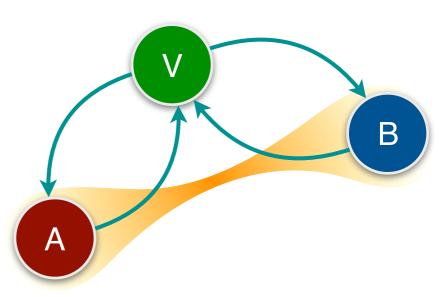


- The classical verifier can only collect information about Pr[answers a,b,c,... | questions s,t,u,...]
- Alice and Bob want to prove that they have jointly prepared a quantum state
- Example I: EPR



- The classical verifier can only collect information about Pr[answers a,b,c,... | questions s,t,u,...]
- Alice and Bob want to prove that they have jointly prepared a quantum state
- Example I: EPR
  - Use CHSH rigidity

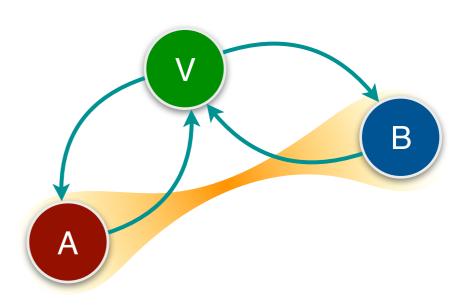
[Reichardt, Unger, Vazirani 13]



[Reichardt, Unger,

Vazirani 13]

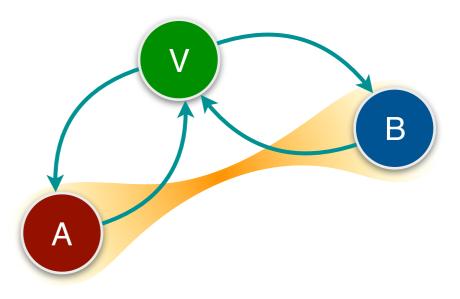
- The classical verifier can only collect information about Pr[answers a,b,c,... | questions s,t,u,...]
- Alice and Bob want to prove that they have jointly prepared a quantum state
- Example I: EPR
  - Use CHSH rigidity
- Example II: Werner states



[Reichardt, Unger,

Vazirani 13]

- The classical verifier can only collect information about Pr[answers a,b,c,... | questions s,t,u,...]
- Alice and Bob want to prove that they have jointly prepared a quantum state
- Example I: EPR
  - Use CHSH rigidity
- Example II: Werner states
  - Impossible! [Werner 89]



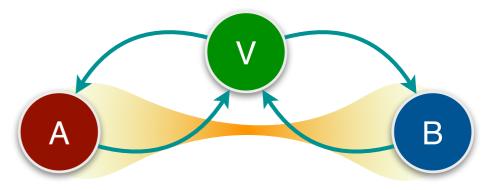
[Reichardt, Unger,

Vazirani 13]

- The classical verifier can only collect information about Pr[answers a,b,c,... | questions s,t,u,...]
- Alice and Bob want to prove that they have jointly prepared a quantum state
- Example I: EPR
  - Use CHSH rigidity
- Example II: Werner states
  - Impossible! [Werner 89]
- Stabilizer games

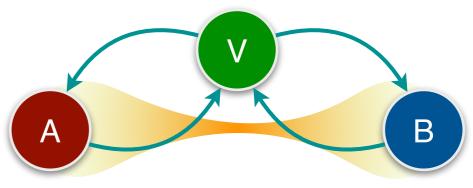


CHSH:  $a \oplus b \stackrel{?}{=} s \wedge t$ 



• The EPR state as a stabilizer

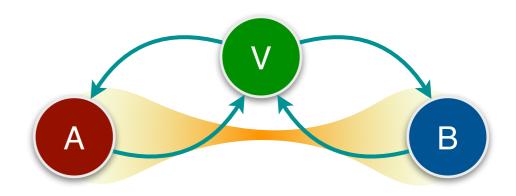
CHSH:  $a \oplus b \stackrel{?}{=} s \wedge t$ 



X X Z Z

• The EPR state as a stabilizer

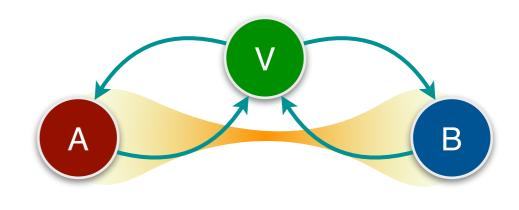
$$\begin{array}{c|c} \mathbf{X} & \mathbf{X} \\ \hline \mathbf{X} & \mathbf{X} \\ \mathbf{Z} & \mathbf{Z} \end{array} & \langle XX + ZZ \rangle = 2 \end{array}$$



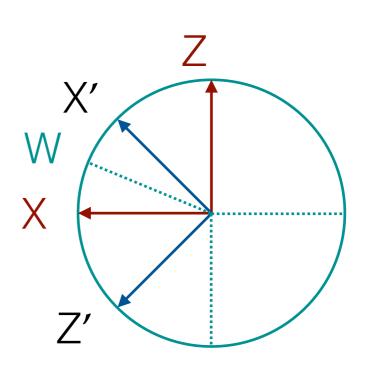
CHSH:  $a \oplus b \stackrel{\scriptscriptstyle{2}}{=} s \wedge t$ 

• The EPR state as a stabilizer

 $\begin{array}{c|c} \mathbf{X} \ \mathbf{X} \\ \hline \mathbf{Z} \ \mathbf{Z} \end{array} & \langle XX + ZZ \rangle = 2 \\ & X = \frac{X' + Z'}{\sqrt{2}} \quad Z = \frac{X' - Z'}{\sqrt{2}} \end{array}$ 



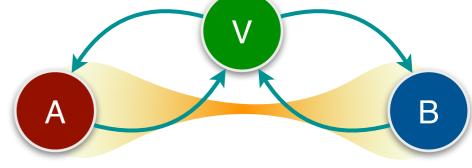
CHSH:  $a \oplus b \stackrel{?}{=} s \wedge t$ 



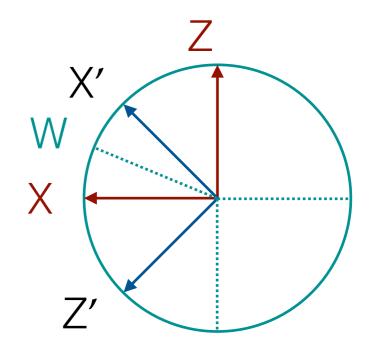
• The EPR state as a stabilizer

 $\begin{array}{c|c} \mathbf{X} \ \mathbf{X} \\ \hline \mathbf{Z} \ \mathbf{Z} \end{array} & \langle XX + ZZ \rangle = 2 \\ & X = \frac{X' + Z'}{\sqrt{2}} \quad Z = \frac{X' - Z'}{\sqrt{2}} \end{array}$ 

CHSH:  $a \oplus b \stackrel{\scriptscriptstyle{2}}{=} s \wedge t$ 



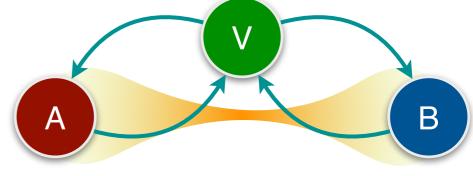
 $\langle XX' + XZ' + ZX' - ZZ' \rangle = 2\sqrt{2}$  $\langle X(X' + Z') + Z(X' - Z') \rangle \le 2$ 



• The EPR state as a stabilizer

 $\begin{array}{c|c} \mathbf{X} \ \mathbf{X} \\ \hline \mathbf{Z} \ \mathbf{Z} \end{array} & \langle XX + ZZ \rangle = 2 \\ & X = \frac{X' + Z'}{\sqrt{2}} \quad Z = \frac{X' - Z'}{\sqrt{2}} \end{array}$ 

CHSH:  $a \oplus b \stackrel{\scriptscriptstyle{\scriptscriptstyle\circ}}{=} s \wedge t$ 



Ζ

W

Х

 $\langle XX' + XZ' + ZX' - ZZ' \rangle = 2\sqrt{2}$  $\langle X(X' + Z') + Z(X' - Z') \rangle \le 2$ 

• Apply the 45-degree rotation trick to the stabilizers of the [4,2,2] code

|       |   | + X X X X'               |
|-------|---|--------------------------|
| X X X | X | + X X X Z'               |
| ΖΖΖ   | Z | + Z Z Z X'               |
|       |   | - Z Z Z <mark>Z</mark> ' |

• Apply the 45-degree rotation trick to the stabilizers of the [4,2,2] code

|         | + X X X X' | + | 0 | 0 | 0 | 2 |
|---------|------------|---|---|---|---|---|
| X X X X | + X X X Z' | + | 0 | 0 | 0 | 3 |
| ZZZZ    | + Z Z Z X' | + | 1 | 1 | 1 | 2 |
|         | - Z Z Z Z' | - | 1 | 1 | 1 | 3 |

• Apply the 45-degree rotation trick to the stabilizers of the [4,2,2] code

|         | + X X X X' | + 0 0 0 2         |
|---------|------------|-------------------|
| X X X X | + X X X Z' | + 0 0 0 3         |
| ZZZZ    | + Z Z Z X' | + 1 1 1 2         |
|         | - Z Z Z Z' | - 1 1 1 3         |
|         |            | Parity Outcotiona |

Parity Questions

• Apply the 45-degree rotation trick to the stabilizers of the [4,2,2] code

|         | + X X X X'               | + 0 0 0 2 |
|---------|--------------------------|-----------|
| X X X X | + X X X Z'               | + 0 0 0 3 |
| ZZZZ    | + Z Z Z X'               | + 1 1 1 2 |
|         | - Z Z Z <mark>Z</mark> ' | - 1 1 1 3 |

Parity Questions

• Special player: the 4-th player

• Apply the 45-degree rotation trick to the stabilizers of the [4,2,2] code

|         | + X X X | X' | + 0 | 0 0 | 2 |
|---------|---------|----|-----|-----|---|
| X X X X | + X X X | Z' | + 0 | 0 0 | 3 |
| ZZZZ    | + Z Z Z | X' | + 1 | 1 1 | 2 |
|         | - Z Z Z | Z' | - 1 | 1 1 | 3 |
|         |         |    |     |     |   |

Parity Questions

- Special player: the 4-th player
- No full rigidity, but partial rigidity: the special player must measure honestly

# Partial rigidity of the special player stabilizer game

Lemma (Partial Rigidity). For any strategy  $S = (\rho, \{R_w^{(i)}\})$ of the special player stabilizer game whose value is at least  $\omega_{sps}^* - \varepsilon$  there exists an isometry  $V : \mathcal{H}_4 \to \mathbb{C}^2 \otimes \hat{\mathcal{H}}_4$ such that  $P^{(4)} = V^{\dagger}(Z' \otimes I)V$ 

 $R_3^{(4)} = V^{\dagger}(Z' \otimes I)V,$  $R_2^{(4)} \approx_{\sqrt{\varepsilon}} V^{\dagger}(X' \otimes I)V.$ 

# Partial rigidity of the special player stabilizer game

Lemma (Partial Rigidity). For any strategy  $S = (\rho, \{R_w^{(i)}\})$ of the special player stabilizer game whose value is at least  $\omega_{sps}^* - \varepsilon$  there exists an isometry  $V : \mathcal{H}_4 \to \mathbb{C}^2 \otimes \hat{\mathcal{H}}_4$ such that  $R_3^{(4)} = V^{\dagger}(Z' \otimes I)V,$ 

 $R_2^{(4)} \approx_{\sqrt{\varepsilon}} V^{\dagger} (X' \otimes I) V.$ 

Proof of the lemma uses the Jordan's lemma and a proof technique for the CHSH rigidity from [Reichardt, Unger, Vazirani 13]

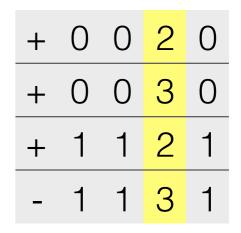
### Stabilizer games

### Stabilizer games

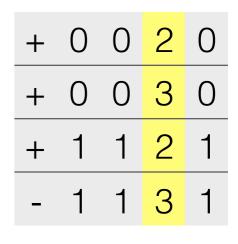
• The stabilizer game is a 4-player game with 2-bit questions and single-bit answers

- The stabilizer game is a 4-player game with 2-bit questions and single-bit answers
- With equal probability, the verifier performs

- The stabilizer game is a 4-player game with 2-bit questions and single-bit answers
- With equal probability, the verifier performs
  - Random special-player games



- The stabilizer game is a 4-player game with 2-bit questions and single-bit answers
- With equal probability, the verifier performs
  - Random special-player games
  - Direct checking of encoding



| + | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| + | 1 | 1 | 1 | 1 |

- The stabilizer game is a 4-player game with 2-bit questions and single-bit answers
- With equal probability, the verifier performs
  - Random special-player games
  - Direct checking of encoding
- Optimal strategy:
  - Share any state in the code space
  - Measure honestly

| + | 0 | 0 | 2 | 0 |
|---|---|---|---|---|
| + | 0 | 0 | 3 | 0 |
| + | 1 | 1 | 2 | 1 |
| - | 1 | 1 | 3 | 1 |

| + | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| + | 1 | 1 | 1 | 1 |

- The stabilizer game is a 4-player game with 2-bit questions and single-bit answers
- With equal probability, the verifier performs
  - Random special-player games
  - Direct checking of encoding
- Optimal strategy:
  - Share any state in the code space
  - Measure honestly
- Full rigidity! Device independence

| + | 0 | 0 | 2 | 0 |
|---|---|---|---|---|
| + | 0 | 0 | 3 | 0 |
| + | 1 | 1 | 2 | 1 |
| - | 1 | 1 | 3 | 1 |

| + | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| + | 1 | 1 | 1 | 1 |

- The stabilizer game is a 4-player game with 2-bit questions and single-bit answers
- With equal probability, the verifier performs
  - Random special-player games
  - Direct checking of encoding
- Optimal strategy:
  - Share any state in the code space
  - Measure honestly
- Full rigidity! Device independence
- Encoded Werner states are certifiable!

| + | 0 | 0 | 2 | 0 |
|---|---|---|---|---|
| + | 0 | 0 | 3 | 0 |
| + | 1 | 1 | 2 | 1 |
| - | 1 | 1 | 3 | 1 |

| + | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| + | 1 | 1 | 1 | 1 |

# Rigidity of the stabilizer game

Lemma (Rigidity). For any strategy  $S = (\rho, \{R_w^{(i)}\})$  of the stabilizer game whose value is at least  $\omega_{sg}^* - \varepsilon$ there exist isometries  $V_i : \mathcal{H}_i \to \mathbb{C}^2 \otimes \hat{\mathcal{H}}_i$  for all isuch that  $P_i^{(i)} = V_i^{\dagger} (\mathcal{T}_i^{\prime} \oplus I) V_i$ 

$$R_3^{(i)} = V_i^{\dagger}(Z' \otimes I)V_i,$$
  

$$R_2^{(i)} \approx_{\sqrt{\varepsilon}} V_i^{\dagger}(X' \otimes I)V_i,$$
  

$$R_1^{(i)} \approx_{\sqrt{\varepsilon}} V_i^{\dagger}(Z \otimes I)V_i,$$
  

$$R_0^{(i)} \approx_{\sqrt{\varepsilon}} V_i^{\dagger}(X \otimes I)V_i.$$

# Rigidity of the stabilizer game

Lemma (Rigidity). For any strategy  $S = (\rho, \{R_w^{(i)}\})$  of the stabilizer game whose value is at least  $\omega_{sg}^* - \varepsilon$ there exist isometries  $V_i : \mathcal{H}_i \to \mathbb{C}^2 \otimes \hat{\mathcal{H}}_i$  for all isuch that  $P_i^{(i)} = V_i^{\dagger} (\mathcal{T} \otimes I) V_i$ 

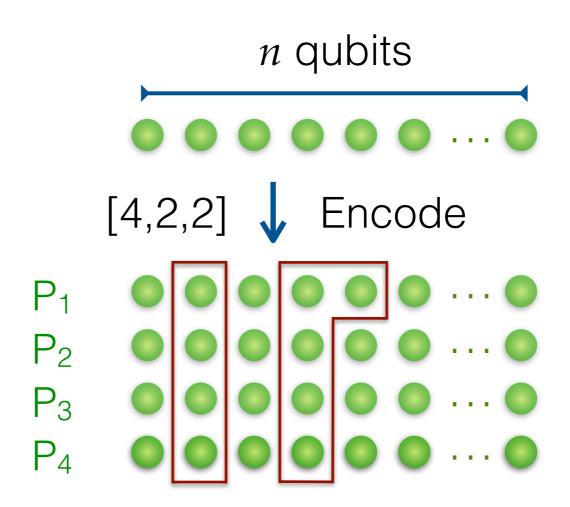
$$R_3^{(i)} = V_i^{\dagger}(Z' \otimes I)V_i,$$
  

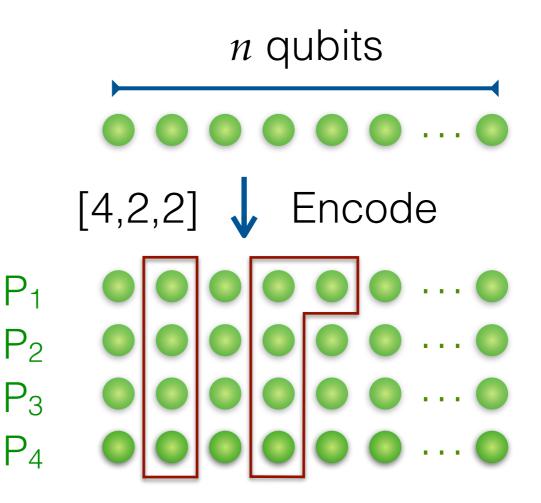
$$R_2^{(i)} \approx_{\sqrt{\varepsilon}} V_i^{\dagger}(X' \otimes I)V_i,$$
  

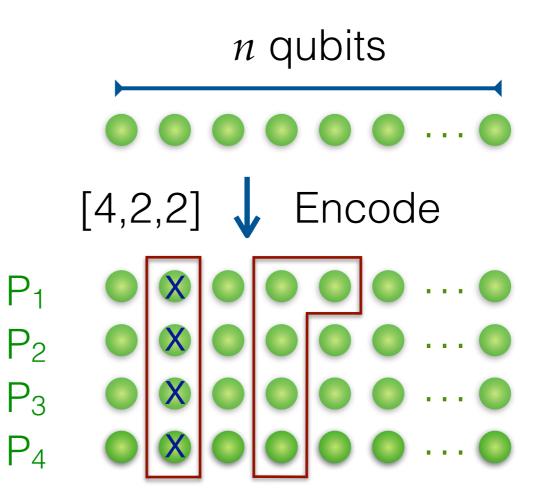
$$R_1^{(i)} \approx_{\sqrt{\varepsilon}} V_i^{\dagger}(Z \otimes I)V_i,$$
  

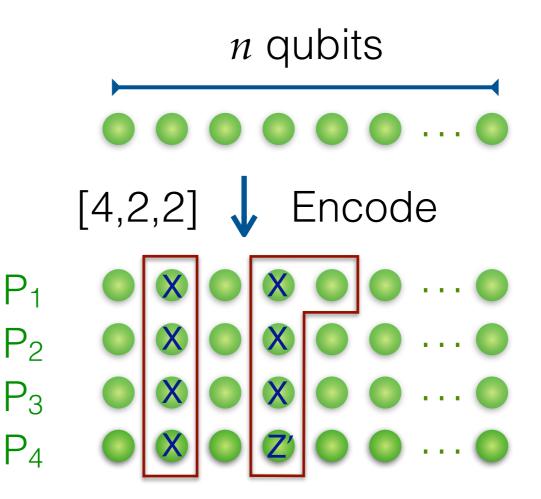
$$R_0^{(i)} \approx_{\sqrt{\varepsilon}} V_i^{\dagger}(X \otimes I)V_i.$$

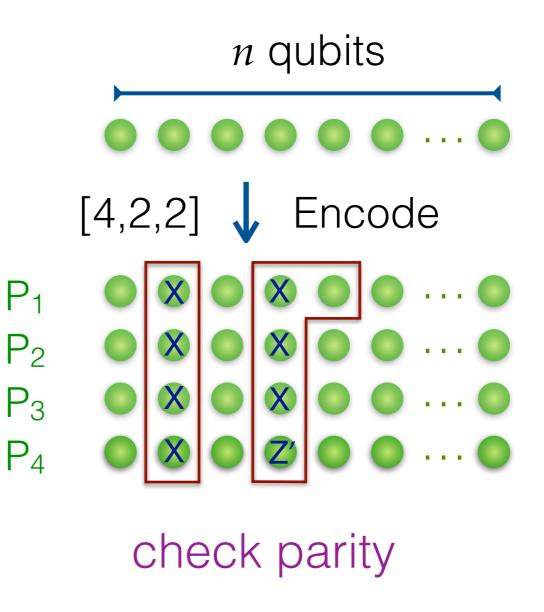
The proof uses the consistency properties of the game



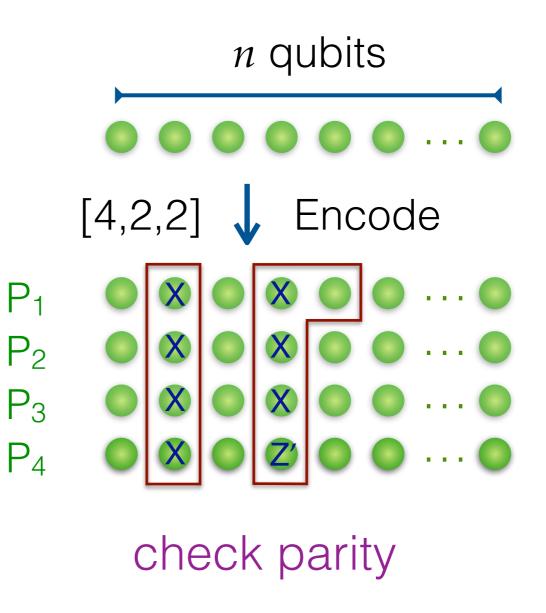




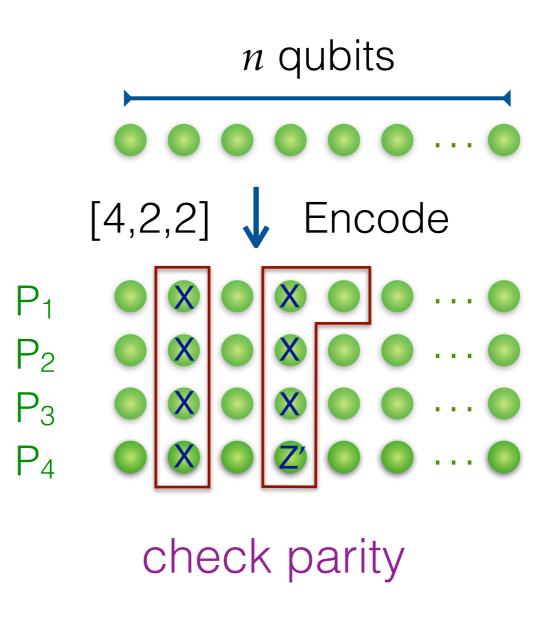


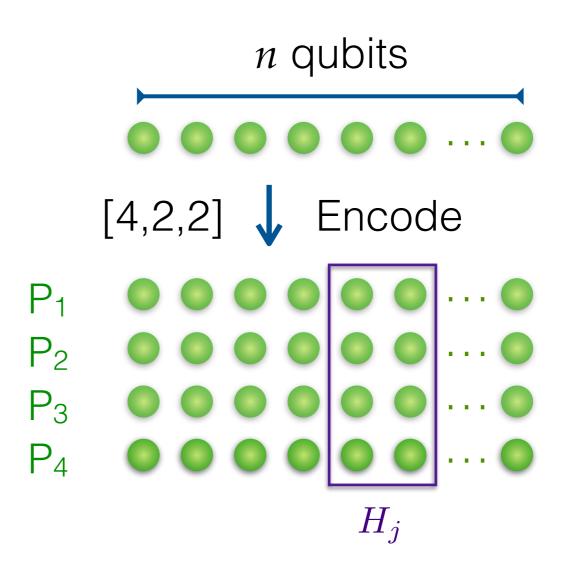


- For both types of the encoding checks, the verifier plays the corresponding stabilizer game
- Full rigidity



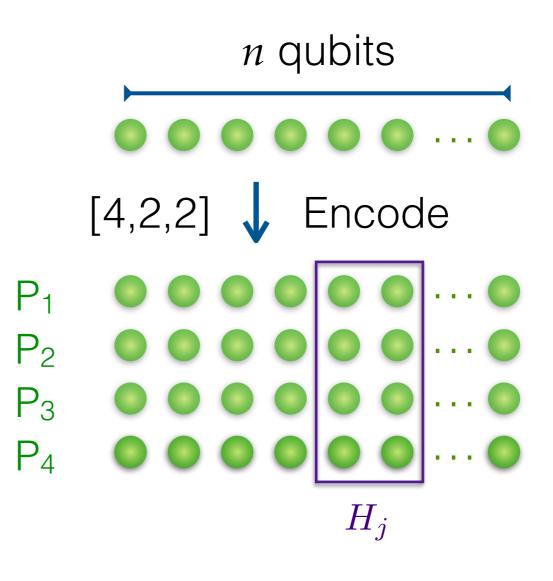
- For both types of the encoding checks, the verifier plays the corresponding stabilizer game
- Full rigidity
- "Locates" the n qubits in a sequential way





 Hamiltonians with XZ interactions remain QMAcomplete

[Cubitt, Montanaro 14]



 Hamiltonians with XZ interactions remain QMAcomplete

[Cubitt, Montanaro 14]

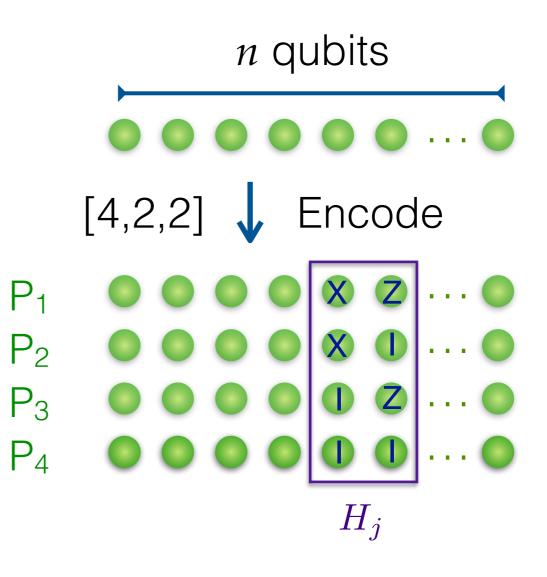
 Send measurement specifications of the logical X and logical Z operators



 Hamiltonians with XZ interactions remain QMAcomplete

[Cubitt, Montanaro 14]

 Send measurement specifications of the logical X and logical Z operators



 Approximation of the entangled game value to inverse polynomial precision is QMA-hard

- Approximation of the entangled game value to inverse polynomial precision is QMA-hard
- A connection between Bell inequalities and Hamiltonian complexity

- Approximation of the entangled game value to inverse polynomial precision is **QMA**-hard
- A connection between Bell inequalities and Hamiltonian complexity
- How about approximation to constant precision?

- Approximation of the entangled game value to inverse polynomial precision is QMA-hard
- A connection between Bell inequalities and Hamiltonian complexity
- How about approximation to constant precision?

[Anand, Vidick 15]

- Approximation of the entangled game value to inverse polynomial precision is **QMA**-hard
- A connection between Bell inequalities and Hamiltonian complexity
- How about approximation to constant precision? [Anand, Vidick 15]
- Can we reduce the number of players down to 2?

- Approximation of the entangled game value to inverse polynomial precision is QMA-hard
- A connection between Bell inequalities and Hamiltonian complexity
- How about approximation to constant precision? [Anand, Vidick 15]
- Can we reduce the number of players down to 2?
- Beyond **QMA**-hardness?