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Multi-player one-round 
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• Proof verification without seeing the whole proof

• The power of the second prover
• Query a variable in the clause randomly, 

check consistency (oracularization)
• NP-hardness of multi-player games

x1 x2 x3 x4 x5 x6 x7 x8 x9 …
- 0 0 - 1 - - - - … A

B

V
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strengthen the expressive power

• NP-hardness

• NEXP-hardness, at least as powerful as 
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• Entanglement-resistant techniques
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[Kempe et al. 08]

[Ito, Kobayashi, Matsumoto 09]

[Ito, Vidick 12]

[Cleve et al. 04]
“Quantum hardness” for 

entangled games?
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Multi-player games for QMA
• Fitzsimons-Vidick protocol
• Encode the proof using the 4-qubit 

quantum error detecting code and do 
the following with equal probability: 
• Perform the encoding check 
• Perform the energy check

• Quantum oracularization 
• Classical oracularization as an error 

detecting code
P4

P1

V

P3

P2

0 ↦ 00, 1 ↦ 11
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Fitzsimons-Vidick protocol
• Encode and distribute 

among the four provers
• Encoding check
• Energy check
• Questions: O(log n) bits

• Answers: O(1) qubits
• De-quantization of both 

the answer messages and 
verifier

Hj

…
…
…
…

P1

P2

P3

P4

n qubits

…
Encode[4,2,2]
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Questions: logarithmic number of bits, 
Answers: constant number of bits

• Entangled games are QMA-hard, an 
improvement of the known NP-hardness 
results

• Essential use the shared entanglement, 
quantum hardness of entangled games

• For exponentially small gapped c,s, 
MIP⊊MIP*(4,1,c,s) under assumptions
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P4

n qubits

…
Encode[4,2,2]

Overview of the protocol
• Follows Fitzsimons-Vidick 

protocol very closely
• Sends measurement 

specifications and asks for 
the outcome instead of 
asking for qubits from the 
provers

• How can we trust the 
provers? Hj

I
Z
I

Z
X
I
I

X
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Where are the qubits?
• The classical verifier can only collect 

information about Pr[answers a,b,c,…|
questions s,t,u,…]

• Alice and Bob want to prove that they have 
jointly prepared a quantum state

• Example I: EPR
• Use CHSH rigidity

• Example II: Werner states
• Impossible!

• Stabilizer games A

B

V

[Werner 89]

[Reichardt, Unger,   
Vazirani 13]
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CHSH game in terms of 
stabilizers

• The EPR state as a stabilizer

X

Z
X’

Z’
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X X
Z Z

hXX + ZZi = 2

X =
X 0 + Z 0

p
2

Z =
X 0 � Z 0

p
2

hXX 0 +XZ 0 + ZX 0 � ZZ 0i = 2
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2
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Stabilizer games with a 
special player

• Apply the 45-degree rotation trick to the stabilizers 
of the [4,2,2] code

• Special player: the 4-th player
• No full rigidity, but partial rigidity: the special player 

must measure honestly

X X X X
Z Z Z Z

+ X X X X’
+ X X X Z’
+ Z Z Z X’
- Z Z Z Z’

+ 0 0 0 2
+ 0 0 0 3
+ 1 1 1 2
- 1 1 1 3

QuestionsParity
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Partial rigidity of the special 
player stabilizer game

Lemma (Partial Rigidity). For any strategy                         
of the special player stabilizer game whose value is at 
least               there exists an isometry  
such that

Proof of the lemma uses the Jordan’s lemma and a 
proof technique for the CHSH rigidity from [Reichardt, 
Unger, Vazirani 13] 

S = (⇢, {R(i)
w })

!⇤
sps � " V : H4 ! C2 ⌦ Ĥ4

R(4)
3 = V †(Z 0 ⌦ I)V,

R(4)
2 ⇡p

" V
†(X 0 ⌦ I)V.
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Stabilizer games
• The stabilizer game is a 4-player game with 2-bit 

questions and single-bit answers
• With equal probability, the verifier performs

• Random special-player games
• Direct checking of encoding

• Optimal strategy:
• Share any state in the code space
• Measure honestly

• Full rigidity! Device independence
• Encoded Werner states are certifiable!

+ 0 0 2 0
+ 0 0 3 0
+ 1 1 2 1
- 1 1 3 1

+ 0 0 0 0
+ 1 1 1 1
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Rigidity of the stabilizer 
game

Lemma (Rigidity). For any strategy                          of 
the stabilizer game whose value is at least                  
there exist isometries                               for all i 
such that

The proof uses the consistency properties of the game 

S = (⇢, {R(i)
w })

!⇤
sg � "

Vi : Hi ! C2 ⌦ Ĥi

R(i)
3 = V †

i (Z
0 ⌦ I)Vi,
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2 ⇡p

" V
†
i (X
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R(i)
1 ⇡ 4p" V

†
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0 ⇡ 4p" V

†
i (X ⌦ I)Vi.
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n qubits

…
Encode[4,2,2]

Multi-qubit stabilizer game

• For both types of the 
encoding checks, the 
verifier plays the 
corresponding 
stabilizer game

• Full rigidity
• “Locates” the n qubits 

in a sequential way

X
X
X

X X
X
X
Z’
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Conclusion and open 
problems

• Approximation of the entangled game value to 
inverse polynomial precision is QMA-hard

• A connection between Bell inequalities and 
Hamiltonian complexity

• How about approximation to constant precision?

• Can we reduce the number of players down to 2?
• Beyond QMA-hardness?

[Anand, Vidick 15]
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