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Foreword

We present a lower bound for complexity of entanglement detection which
(ultimately) relies on the 1961 Dvoretzky’s theorem, a fundamental result
from Asymptotic Geometric Analysis asserting that high-dimensional
convex sets typically look round when we observe only their section with a
randomly chosen subspaces of smaller dimension.

More on the interface between Asymptotic Geometric Analysis and
Quantum Information Theory can be found in the forthcoming book

G. Aubrun and S. Szarek, Alice and Bob meet Banach

of which a preliminary version is available via Aubrun’s web page.
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Before we proceed. . . an announcement

Fall 2017 (Sep. 4 - Dec. 15): Trimester on

ANALYSIS IN QUANTUM INFORMATION THEORY

at the Institut Henri Poincaré in Paris

Pre-school, September 4-8, Cargèse, Corsica

http://www.ihp.fr/en/activities/trimester-thematic/calendar

Organizers: G. Aubrun, B. Collins, I. Nechita, S. Szarek

Don’t be shy and let one of us know if you are interested!
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Entanglement

A quantum state on a finite-dimensional complex Hilbert space H is a
positive operator of trace 1. Denote by D = D(H) the set of states on H.
Note that

D(H) = conv{|ψ〉〈ψ| : ψ ∈ H, |ψ| = 1}.

When H = H1 ⊗H2 is a bipartite Hilbert space, the set of separable
states is the subset Sep(H) ⊂ D(H) defined as

Sep = Sep(H) := conv{|ψ1 ⊗ ψ2〉〈ψ1 ⊗ ψ2| : ψi ∈ Hi , |ψi | = 1}.

Elements of D \ Sep are called entangled states.

The dichotomy between entanglement vs. separability is fundamental in
quantum theory.
Entanglement is indispensable for most protocols of quantum information
theory/cryptography/computing/teleportation. . .
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Certifying/witnessing entanglement

Since entanglement is defined as non-membership in a (closed) convex set,
it follows from the Hahn–Banach separation theorem that for every
entangled state ρ, there is a linear form f such that f 6 a on Sep and
f (ρ) > a. Such f certifies, or witnesses, the entanglement of ρ.

Equivalently, Sep is the intersection of half-spaces, which leads to a
natural scheme for approximating Sep by polytopes.

A naive – but meaningful – way of measuring complexity of entanglement
detection would be determining how well Sep can be approximated by a
polytope with 6 N faces.

More generally, it is known (Gurvits 2003) that deciding whether a state is
entangled or separable is, in general, NP-hard. Later refinements have
been due to Ioannou (2007), Gharibian (2010) and others; in particular
some upper bounds were supplied by Brandão et al (2011).
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The Horodecki criterion

A more structured scheme of witnessing entanglement is given by the
following (Md stands for the space of n × n complex matrices).

Theorem (The Horodecki criterion 1996)

A state ρ ∈ Sep(Cd ⊗ Cd) is entangled if and only if there is a positive
map Φ : Md → Md such that the operator (Id⊗ Φ)ρ is not positive
semi-definite (one says that Φ witnesses the entanglement of ρ).

A linear map Φ is positive if Φ(PSD) ⊂ PSD where PSD denotes the
positive semi-definite cone, more naturally contained in Msa

d .

A map Md → Md is completely positive (CP) if it is a positive linear
combination of maps of the form ΦA : X 7→ AXA†. CP maps cannot be
witnesses since Id⊗ ΦA = ΦI⊗A is also positive.
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Størmer’s theorem

In dimension 2 the cone of positive maps has a rather simple structure.

Theorem (Størmer 1963)

Any positive map Φ : M2 → M2 can be written as Φ = Φ1 + Φ2 ◦ T ,
where Φ1,Φ2 are CP maps and T is the transposition on M2.

It follows that a state ρ on C2 ⊗ C2 is separable if and only if (Id⊗ T )(ρ)
is positive. The transposition is a universal witness.

This is specific to dimension 2.

Theorem (Skowronek, unpublished)

Let d > 3. Let F be a family of positive maps Md → Md such that any
entangled state ρ on Cd ⊗Cd is witnessed by an element of F . Then F is
infinite.

In fact, any closed universal family of witnesses must be uncountable.
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Our main result

Denote by • homotheties with respect to ρ∗ := IH
dimH :

t • ρ := tρ+ (1− t)ρ∗.

Say that a state ρ is robustly entangled if 1
2 • ρ is entangled. Robustly

entangled states remain entangled in the presence of randomizing noise.

Theorem (Aubrun–Szarek)

Suppose that Φ1, . . . ,ΦN are positive maps on Md such that, for any
robustly entangled state ρ on Cd ⊗ Cd , there is an index i such that
(Id⊗ Φi )(ρ) is not positive semi-definite. Then N > exp(cd3/ log d) for
some universal constant c > 0.

This shows that the set of separable states is complex, and not because of
some fine features of its boundary. Results about NP-hardness of
entanglement detection have usually focused on boundary effects.
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Verticial and facial dimensions of convex bodies

Let K ⊂ Rn be a convex compact set with 0 in the interior. Define the
verticial and facial dimensions of K as

dimV (K ) := log inf{#vertices(P) : K ⊂ P ⊂ 4K}
dimF (K ) := log inf{#facets(P) : K ⊂ P ⊂ 4K}

where the infima run over all polytopes P ⊂ Rn.
The affine invariants dimF and dimV are measures of complexity.

These are dual concepts since dimF (K ) = dimV (K ◦), where
K ◦ := {x ∈ Rn : 〈x , y〉 6 1,∀y ∈ K} is the polar of K .

One has dimF (K ) = O(n) and dimV (K ) = O(n) if (say) the origin is the
center of mass of K .

If E ⊂ Rn is a linear subspace, then dimF (K ∩ E ) 6 dimF (K ).

We have dimF (Bn
2 ) = dimV (Bn

2 ) = Θ(n) (Bn
2 is the Euclidean ball).

Another parameter is the asphericity of K defined as

a(K ) := inf {R/r : rBn
2 ⊂ K ⊂ RBn

2 } .
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The Figiel–Lindenstrauss–Milman bound

A fundamental property (“complexity must lie somewhere”) of convex sets
is the following.

Theorem (Figiel–Lindenstrauss–Milman 1977)

For any convex body K ⊂ Rn containing the origin in the interior we have

dimF (K ) · dimV (K ) · a(K )2 = Ω(n2).

This result is a consequence of the tangible version of Dvoretzky’s theorem
due to Milman, which gives a sharp formula for the dimension of almost
Euclidean sections of convex bodies.

If K ⊂ Rn is a convex body such that rBn
2 ⊂ K and M = M(K ) denotes

the average of the “norm”‖ · ‖K over the sphere, then K has lots of
almost Euclidean sections of dimension k = Ω(nr 2M2).

Thus the facial dimension of K exceeds ck. Applying the same argument
to K ◦ and using the inequality M(K )M(K ◦) > 1 yields the FLM bound.
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The FLM bound – examples

We illustrate the FLM bound on some examples where it is sharp up to
polylog factors

dimV (K ) · dimF (K ) > c
( n

a(K )

)2

K dimension a(K ) dimV (K ) dimF (K )

Bn
2 n 1 Θ(n) Θ(n)

[−1, 1]n n
√

n Θ(n) Θ(log n)

∆n n n Θ(log n) Θ(log n)

Recall that Bn
2 is the n-dimensional Euclidean ball, while ∆n is the

n-dimensional simplex.
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Quantum-related examples

And here are some more examples related to entanglement detection.

K dimension a(K ) dimV (K ) dimF (K )

D(Cm) m2 − 1 m − 1

Sep(Cd ⊗ Cd) d4 − 1 d2 − 1

The value of a(D) is elementary to compute; the value of a(Sep) is due to
Gurvits–Barnum (2002).
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sets are defined by convex hulls. However, there are some surprises.

• There are ε-nets in the sphere of Cd with (2/ε)2d = eΘ(d log(2/ε) elements.

• For a well chosen (e.g., random) 1
10 -net N in the unit sphere of Cm and

P = conv{|ψ〉〈ψ| : ψ ∈ N }, we have 1
4 •D ⊂ P ⊂ D.

• Similarly, for any 1
10d -net N ′ in the unit sphere of Cd and

P ′ = conv{|ψ ⊗ ϕ〉〈ψ ⊗ ϕ| : ψ,ϕ ∈ N ′}, we have 1
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Quantum-related examples, II

We now complete the table.

K dimension a(K ) dimV (K ) dimF (K )

D(Cm) m2 − 1 m − 1 Θ(m) Θ(m)

Sep(Cd ⊗ Cd) d4 − 1 d2 − 1 Θ(d log d) Ω(d3/ log d)

The set D is self-dual (or, more precisely, D◦ = (−m) •D), so its facial
dimension equals its verticial dimension.

The lower bound on the facial dimension of Sep follows from the
Figiel–Lindenstrauss–Milman inequality

dimV (Sep) · dimF (Sep) > c
(d4 − 1

d2 − 1

)2
> cd4

However, it is conceivable that we actually have dimF (Sep) = Θ(d4).
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Sketch of the proof of the theorem

Let Φ1, . . . ,ΦN be N positive maps on Md with the property that for every
robustly entangled state ρ, there exists an index i such that (Φi ⊗ Id)(ρ) is
not positive. This hypothesis is equivalent to the following inclusion

N⋂
i=1

{
ρ ∈ D(Cd ⊗ Cd) : (Id⊗ Φi )(ρ) is PSD

}
⊂ 2 • Sep.

By considering X 7→ Φi (I)
−1/2Φi (X )Φi (I)

−1/2, we may assume that
Φi (I) = I for all i = 1, . . . ,N.

Next, for simplicity, let us assume first that each Φi is trace-preserving,
i.e., Φi (ρ∗) = ρ∗. Consider the convex body

K = D ∩
N⋂
i=1

(Id⊗ Φi )
−1(D)

which satisfies Sep ⊂ K ⊂ 2 • Sep. Note the trace-preserving condition
assures that for all i ’s we are •-dilating with respect to the same point.
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Sketch of the proof of the theorem, II

Since the facial dimension of D(Cd ⊗ Cd) is of order d2, there exists a
polytope P with at most exp(Cd2) facets such that 1

2 •D ⊂ P ⊂ D. Then
the polytope

Q = P ∩
N⋂
i=1

(Id⊗ Φi )
−1(P)

satisfies 1
2 • Sep ⊂

1
2 • K ⊂ Q ⊂ K ⊂ 2 • Sep. Since

#facets(P1 ∩ P2) 6 #facets(P1) + #facets(P2),

the polytope Q has at most (N + 1) exp(Cd2) facets .

Since the facial dimension of Sep is Ω(d3/ log d), it follows that

log((N + 1) exp(Cd2)) > cd3/ log d

so that N > exp(cd3/ log d) as claimed.

The general situation (without the trace-preserving restriction) is handled
similarly starting with the assumption that (1− 1

2d ) •D ⊂ P ⊂ D.
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Conclusion

We illustrated the complexity of robust entanglement by showing that
super-exponentially many positive maps are needed to detect it – at least
if used non-adaptively/without reflection.

The proof is via a facet-counting argument (even if the set of separable
states is not a polytope itself) and ultimately relies on the bound due to
Figiel–Lindenstrauss–Milman which asserts that – between (i) the number
of vertices, (ii) the number of facets, and (iii) asphericity – complexity
must lie somewhere.

Can this approach be used to handle other problems in complexity theory?

Some other directions in which this work can be continued are:

• Upper bounds; in particular, what is the order of dF (Sep)?
• Less/more robust entanglement, i.e., replacing 1

2 with ε ∈ (0, 1)
• What if we use witnesses Φ : Md → Mm, where m = poly(d)?
• The multipartite or “unbalanced” (H = Cd ⊗ Cm) setting
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