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Spectral gap: difference between the first excited and ground 

energies of  𝐻𝑛.

A system is gapped if  its spectral gap is lower bounded by a 

positive constant as 𝑛 → ∞. Otherwise it is gapless.

Gapped vs. gapless has far-reaching consequences…
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Gapped versus gapless in 1D

𝐻𝑛 =  

𝑖=1

𝑛−1

ℎ𝑖,𝑖+1

1D chain of  n qudits

Hamiltonian 

Area law [Hastings 2007]

GaplessGapped

Exp. decay of  correlations [Hastings, Koma 2005]

Efficiently compute groundstates [Landau et al 2014]















Gapped versus gapless

In quantum many-body systems at zero temperature, distinct gapped phases 

are separated by quantum phase transition lines where the system is gapless.

Phase diagram of  the toric code, from [Vidal, Dusuel, Schmidt 2009]



Can we determine which translation-invariant systems are gapped?

Hopeless for qudits in two dimensions: the spectral gap problem 

is undecidable [Cubitt, Perez-Garcia, Wolf  2015]

Difficult for qudits in one dimension: A solution would resolve, e.g.,

the Haldane conjecture. [Haldane 1983] 



Can we determine which translation-invariant systems are gapped?

In this work we solve this problem for all frustration-free 1D qubit 

systems with nearest-neighbor interactions.

Hopeless for qudits in two dimensions: the spectral gap problem 

is undecidable [Cubitt, Perez-Garcia, Wolf  2015]

Difficult for qudits in one dimension: A solution would resolve, e.g.,

the Haldane conjecture. [Haldane 1983] 
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We consider all cases in which the Hamiltonian is frustration-free. 

This means that any ground state |𝜓〉 has minimal energy for each term ℎ𝑖,𝑖+1.

In each case we determine gapped/gapless. 

There are less interesting “exceptional” cases: If ℎ is rank 2 or 3 there are only 

a handful of  cases where the Hamiltonian is frustration-free. 

There is an  interesting “generic” case: If  ℎ is rank 1 the Hamiltonian is always 

frustration-free.  In the rest of  this talk we specialize to this case.

Frustration-free spin-1/2 chains

𝐻𝑛 =  

𝑖=1

𝑛−1

ℎ𝑖,𝑖+1n-qubit Hamiltonian:                                          WLOG assume ℎ is a projector.



1. Hamiltonian (rank-1 case) and its ground space

2. Our result and examples

3. Proof  sketch

4. Open questions
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Hilbert space: ℂ2 ⊗𝑛 (n qubits)

Hamiltonian:  Let |𝜓〉 ∈ ℂ2 ⊗2 be a normalized two-qubit state. Define

• 𝐻𝑛(𝜓) is frustration-free (has ground energy zero) and we can compute a non-

orthonormal basis for the ground space. 

• We are unable to construct an orthonormal basis for the ground space.

• The ground space dimension is 𝑛 + 1 for almost all 𝜓 .

𝐻𝑛 𝜓 =  

𝑖=1

𝑛−1

𝜓 𝜓 𝑖,𝑖+1

The Hamiltonian
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Consider the special case
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E.g., for 𝑛 = 3:   000 ,    100 + 010 + 001 , 110 + 101 + 011 , 111
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Ground space: general case for entangled |𝜓〉

𝑇𝜓 =
〈𝜓|0,1〉 〈𝜓|1,1〉
−〈𝜓|0,0〉 −〈𝜓|1,0〉

Define

Although this characterizes the ground space we are unable to construct an 

orthonormal basis.

For large 𝒏, this linear map behaves very differently if  both eigenvalues of  𝑻𝝍

have the same magnitude. 

Invertible iff |𝜓〉 is entangled

Lemma [follows from Bravyi 2006]

If  |𝜓〉 is entangled, the zero energy ground space of  𝐻𝑛 𝜓 is the image of  the 

n-qubit symmetric subspace under the linear map

1⊗ 𝑇𝜓 ⊗𝑇𝜓
2 ⊗𝑇𝜓

3 ⊗⋯⊗𝑇𝜓
𝑛−1
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Ground space: general case for unentangled |𝜓〉

• Case 1: Both eigenvalues of  𝑻𝝍 are zero.  Equivalently, 𝝍 = |𝒗⊗ 𝒗〉.

𝐻𝑛(𝜓) is diagonal in 𝑣 , |𝑣⊥〉 basis. The ground space dimension is > 𝑛 + 1.

• Case 2: 𝑻𝝍 has exactly one zero eigenvalue. Equivalently, 𝝍 = 𝒗⊗𝒘 .

Ground space spanned by 𝑛 + 1 orthonormal product states. E.g., for 𝑛 = 4:

𝑤⊥ 𝑤⊥ 𝑤⊥ 𝑤⊥

𝑤 𝑤⊥ 𝑤⊥ 𝑤⊥

𝑣⊥ 𝑤 𝑤⊥ 𝑤⊥

𝑣⊥ 𝑣⊥ 𝑤 𝑤⊥

𝑣⊥ 𝑣⊥ 𝑣⊥ 𝑤

|𝜓〉 is unentangled 𝑑𝑒𝑡 𝑇𝜓 = 0



So…the matrix 𝑇𝜓 can be used to construct the ground space of  𝐻𝑛(𝜓). The 

eigenvalues of  𝑇𝜓 are related to qualitative features of  the ground space. 

Are these eigenvalues related to the spectral gap? 
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𝑖=1

𝑛−1

𝜓 𝜓 𝑖,𝑖+1

𝑇𝜓 =
〈𝜓|0,1〉 〈𝜓|1,1〉
−〈𝜓|0,0〉 −〈𝜓|1,0〉

We prove that the system is gapless if  and only if  the eigenvalues of  𝑇𝜓 have equal 

non-zero absolute value.

Theorem:

Suppose the eigenvalues of  𝑇𝜓 have equal non-zero absolute value.  Then the 

spectral gap of  𝐻𝑛(𝜓) is at most 1/(𝑛 − 1). Otherwise the spectral gap is 

lower bounded by a positive constant independent of  𝑛, which depends only 

on the state 𝜓 .

Subsequently improved to 
6

𝑛(𝑛+1)
[G., Mozgunov 2015].

Main result



Consider the special case

In this case the Hamiltonian 𝐻𝑛(𝜓) is equal to the ferromagnetic Heisenberg chain.
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Consider the special case

In this case the Hamiltonian 𝐻𝑛(𝜓) is equal to the ferromagnetic Heisenberg chain.

The spectral gap is known:

Example 1  

𝜓 =
1
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Consider the special case

In this case the Hamiltonian 𝐻𝑛(𝜓) is equal to the ferromagnetic Heisenberg chain.

The spectral gap is known:

We can also deduce gaplessness using our theorem:

Example 1  

𝜓 =
1

√2
01 − |10〉

𝑇𝜓 =
〈𝜓|0,1〉 〈𝜓|1,1〉
−〈𝜓|0,0〉 −〈𝜓|1,0〉

=
1

√2

1 0
0 1

gap 𝜓, 𝑛 = 1 − cos
𝜋

𝑛

Eigenvalues have same

non-zero absolute value

Gapless



Consider the special case

𝜓 =
1

1 + 𝑞2
01 − 𝑞|10〉

Example 2  

𝑞 > 0



Consider the special case

Then 𝐻𝑛(𝜓) is the “ferromagnetic XXZ chain with kink boundary conditions”. 
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𝜓 =
1
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[Koma, Nachtergaele 1997]
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Consider the special case

Then 𝐻𝑛(𝜓) is the “ferromagnetic XXZ chain with kink boundary conditions”. 

The spectral gap is known:

We can also deduce this fact using our theorem:

𝜓 =
1

1 + 𝑞2
01 − 𝑞|10〉

gap 𝜓, 𝑛 = 1 −
2

𝑞+𝑞−1 cos
𝜋

𝑛

Example 2  

𝑞 > 0

[Koma, Nachtergaele 1997]
Gapped whenever

𝒒 ≠ 𝟏

𝑇𝜓 =
〈𝜓|0,1〉 〈𝜓|1,1〉
−〈𝜓|0,0〉 −〈𝜓|1,0〉

=
1

1 + 𝑞2
1 0
0 𝑞

Eigenvalues have distinct 

absolute values whenever

𝑞 ≠ 1



In examples 1-2 there is a symmetry which enables an exact computation of  

the spectral gap. This is not true in general…



Example 3  

𝜓 = 1 − 𝑝 0⊗ 𝜃 + 𝑝|1⊗ 𝜃⊥〉

Consider a two parameter family of  states:
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cos 𝜃
sin 𝜃

|𝜃⊥〉 =
− sin 𝜃
cos 𝜃



Example 3  

𝜓 = 1 − 𝑝 0⊗ 𝜃 + 𝑝|1⊗ 𝜃⊥〉

Consider a two parameter family of  states:

|𝜃〉 =
cos 𝜃
sin 𝜃

|𝜃⊥〉 =
− sin 𝜃
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Example 3  

𝜓 = 1 − 𝑝 0⊗ 𝜃 + 𝑝|1⊗ 𝜃⊥〉

sin2 𝜃 =
4

2 + 𝑝 1 − 𝑝
−
1
2

Phase boundary:

Consider a two parameter family of  states:

|𝜃〉 =
cos 𝜃
sin 𝜃

|𝜃⊥〉 =
− sin 𝜃
cos 𝜃

𝜃

𝑝
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ℝ
……

Each positive integer 𝑛 defines a grid. Grid marks are the rational numbers with 

denominator 𝑛.

Obvious: any number is approximated by nearest grid point to within  
1

𝑛
.

Less obvious (continued fractions): For any irrational 𝛼 there is a subsequence 

𝑛𝑗 such that 𝛼 is always within 
1

𝑛𝑗
2 of  the nearest grid point.

1
𝑛

Aside: Continued fractions



How do we prove the first part of  the theorem?

Theorem:

Suppose the eigenvalues of  𝑇𝜓 have equal non-zero absolute value.  Then the 

spectral gap of  𝐻𝑛(𝜓) is at most 1/(𝑛 − 1). Otherwise the spectral gap is 

lower bounded by a positive constant independent of  𝑛, which depends only 

on the state 𝜓 .
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𝑝
𝜓 = 𝐻𝑛 𝜓 + 𝜓 𝜓 𝑛,1

Open boundary conditions                           Periodic boundary conditions

The spectral gaps are related:

Fix 𝑛 and let 𝑚 → ∞ along a subsequence {𝑚𝑗} of  positive integers. 

If gapp 𝜓,𝑚𝑗 → 0 we are done, since then gap 𝜓, 𝑛 ≤  1 𝑛−1.

gap 𝜓, 𝑛 gap𝑝 𝜓, 𝑛

Periodic vs. open boundary conditions



gap𝑝 𝜓,𝑚 ≥
𝑛 − 1

𝑛 − 2
gap 𝜓, 𝑛 −

1

𝑛 − 1

Lemma (Knabe 88):   

For all 𝑚 ≥ 𝑛 > 2:

𝐻𝑛 𝜓 =  

𝑖=1

𝑛−1

𝜓 𝜓 𝑖,𝑖+1 𝐻𝑛
𝑝
𝜓 = 𝐻𝑛 𝜓 + 𝜓 𝜓 𝑛,1

Open boundary conditions                           Periodic boundary conditions

The spectral gaps are related:

Fix 𝑛 and let 𝑚 → ∞ along a subsequence {𝑚𝑗} of  positive integers. 

If gapp 𝜓,𝑚𝑗 → 0 we are done, since then gap 𝜓, 𝑛 ≤  1 𝑛−1.

To finish proof, show that the periodic chain is gapless if  the eigenvalues of  

𝑻𝝍 have equal nonzero magnitude.

gap 𝜓, 𝑛 gap𝑝 𝜓, 𝑛

Periodic vs. open boundary conditions
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Gaplessness of  the periodic chain

𝜆3 𝜓, 𝑛 =  
0, if 𝑇𝜓

𝑛 ∝ 𝐼

gap𝑝 𝜓, 𝑛 , otherwise



Each point in the plot represents a state |𝜓〉. We want to prove that the periodic chain is 

gapless in the blue region (where eigenvalues of  𝑇𝜓 have the same magnitude).

Black curves: 𝑇𝜓
𝑛 ∝ 𝐼

and  𝜆3 𝜓, 𝑛 = 0.

Everywhere else: 

𝜆3 𝜓, 𝑛 is equal to the 

spectral gap

Gaplessness of  the periodic chain

𝒏 = 𝟏𝟎



Each point in the plot represents a state |𝜓〉. We want to prove that the periodic chain is 

gapless in the blue region (where eigenvalues of  𝑇𝜓 have the same magnitude).

Black curves: 𝑇𝜓
𝑛 ∝ 𝐼

and  𝜆3 𝜓, 𝑛 = 0.

Everywhere else: 

𝜆3 𝜓, 𝑛 is equal to the 

spectral gap

𝒏 = 𝟓𝟎

Gaplessness of  the periodic chain



Each point in the plot represents a state |𝜓〉. We want to prove that the periodic chain is 

gapless in the blue region (where eigenvalues of  𝑇𝜓 have the same magnitude).

The black curves become dense in the blue region as 𝑛 → ∞.

Black curves: 𝑇𝜓
𝑛 ∝ 𝐼

and  𝜆3 𝜓, 𝑛 = 0.

Everywhere else: 

𝜆3 𝜓, 𝑛 is equal to the 

spectral gap

𝒏 = 𝟓𝟎

Gaplessness of  the periodic chain



Each point in the plot represents a state |𝜓〉. We want to prove that the periodic chain is 

gapless in the blue region (where eigenvalues of  𝑇𝜓 have the same magnitude).

The black curves become dense in the blue region as 𝑛 → ∞.

The function 𝜆3(𝜓, 𝑛) is continuous.  

Black curves: 𝑇𝜓
𝑛 ∝ 𝐼

and  𝜆3 𝜓, 𝑛 = 0.

Everywhere else: 

𝜆3 𝜓, 𝑛 is equal to the 

spectral gap

𝒏 = 𝟓𝟎

Gaplessness of  the periodic chain



Each point in the plot represents a state |𝜓〉. We want to prove that the periodic chain is 

gapless in the blue region (where eigenvalues of  𝑇𝜓 have the same magnitude).

The black curves become dense in the blue region as 𝑛 → ∞.

The function 𝜆3(𝜓, 𝑛) is continuous.  
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curve then 𝑔𝑎𝑝𝑝(𝜓𝑏𝑙𝑢𝑒 , 𝑛) must be small. How close does it need to be? 
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Each point in the plot represents a state |𝜓〉. We want to prove that the periodic chain is 

gapless in the blue region (where eigenvalues of  𝑇𝜓 have the same magnitude).

Good news: Using continued fractions and the functional form of  the curves one can 

show that there is a subsequence {𝑛𝑗} (depending on |𝜓blue〉) such that  

𝜓blue − |𝜙black〉 = 𝑂(1/𝑛𝑗
2) gap𝑝 𝜓blue, 𝑛𝑗 = 𝑂  1 𝑛𝑗 .
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gap𝑝 𝜓blue, 𝑛 = |𝜆3 𝜓blue, 𝑛 − 𝜆3(𝜙black, 𝑛)| ≤ 2𝑛 𝜓blue − |𝜙black〉



This technique has to be modified slightly to handle the states corresponding to points 

which lie directly on one of  the black curves. 

In our paper we give a general proof  which handles arbitrary states |𝜓〉 (not just the 

two-parameter family discussed above) using this proof  strategy.



How do we prove the second part of  the theorem?

Theorem:

Suppose the eigenvalues of  𝑇𝜓 have equal non-zero absolute value.  Then the 

spectral gap of  𝐻𝑛(𝜓) is at most 1/(𝑛 − 1). Otherwise the spectral gap is 

lower bounded by a positive constant independent of  𝑛, which depends only 

on the state 𝜓 .



How do we prove the second part of  the theorem?

Theorem:

Suppose the eigenvalues of  𝑇𝜓 have equal non-zero absolute value.  Then the 

spectral gap of  𝐻𝑛(𝜓) is at most 1/(𝑛 − 1). Otherwise the spectral gap is 

lower bounded by a positive constant independent of  𝑛, which depends only 

on the state 𝜓 .

If  both eigenvalues of  𝑇𝜓 are zero then 𝜓 = |𝑣 ⊗ 𝑣〉 and the terms in the 

Hamiltonian commute with one another (therefore spectral gap is an integer  ≥ 1).  

In the following we consider the case where eigenvalues have distinct magnitudes…
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Nachtergaele’s condition (“martingale method”)

Theorem [special case of  Nachtergaele 1996]

Suppose there exists an integer 𝑟 ≥ 1 and a positive number 𝜖 <
1

𝑟+1
such that 

for all sufficiently large 𝑛 we have

Then 𝐻𝑛(𝜓) is gapped.

𝐺𝐴𝐵𝐶 − 𝐺𝐴𝐵𝐺𝐵𝐶 ≤ 𝜖.

Partition 𝑛 qubits into three regions 𝐴, 𝐵, 𝐶

𝐶 = 1𝐵 = 𝑟𝐴 = 𝑛 − 𝑟 − 1

Define

𝐺𝐴𝐵𝐶 =projector onto groundspace of  the full chain

𝐺𝐴𝐵 = proj. onto groundspace of  𝐴𝐵 (acts trivially on 𝐶)

𝐺𝐵𝐶 = proj. onto groundspace of  𝐵𝐶 (acts trivially on 𝐴)
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Let 𝜆 be the ratio of  the eigenvalues of  𝑇𝜓 and let 𝑐 be the inner product between 

the eigenvectors.

1 < 𝜆 ≤ ∞ and     𝑐 < 1

Applying Nachtergaele’s theorem establishes that 𝐻𝑛(𝜓) is gapped when the 

eigenvalues of  𝑇𝜓 have distinct magnitudes.

Proving this bound is the main technical work of  our paper. The challenge is 

that we do not have explicit expressions for 𝑮𝑨𝑩, 𝑮𝑩𝑪 or 𝑮𝑨𝑩𝑪…

Satisfying Nachtergaele’s condition

Theorem

For any partition of  𝑛 qubits into consecutive regions 𝐴𝐵𝐶 with 𝐵 = 𝑟 we have

𝐺𝐴𝐵𝐶 − 𝐺𝐴𝐵𝐺𝐵𝐶 ≤ 𝑂( 𝑟 𝜆
−  𝑟 8)+ 𝑂 𝑐  𝑟 8 .
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Monotonicity under the partial trace

The key ingredient in the proof  is a new operator inequality for the ground 

space projector: 

Aside: It is an open question how general this monotonicity is. Our proof  applies 

to all 1D qubit chains composed of  rank-1 projectors (translation invariance not 

required).
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Monotonicity under the partial trace

The key ingredient in the proof  is a new operator inequality for the ground 

space projector: 

This inequality implies that certain expectation values 𝒇𝒏 = 𝐓𝐫[𝟏,…,𝒏] 𝑸𝑮𝒏

form non-decreasing sequences.

Tr𝑛 𝐺𝑛 ≥ 𝐺𝑛−1

Partial trace of  ground space projector 

with respect to last qubit in the chain
Ground space projector for the 

chain with 𝑛 − 1 spins



Manipulating the ground space projector

Using monotonicity under the partial trace we establish other inequalities involving 

the ground space projector. Let 𝛼 , |𝛽〉 be the eigenvectors of  𝑇𝜓.
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the ground space projector. Let 𝛼 , |𝛽〉 be the eigenvectors of  𝑇𝜓.

Correlation functions

𝜏 𝑛 = Tr 𝐺𝑛|𝛽
⊥〉〈𝛽⊥|𝑛

We prove that 𝜏(𝑖, 𝑗, 𝑛) decays exponentially in 𝑗 − 𝑖, and that 𝜏(𝑛) approaches a 

finite limit as 𝑛 → ∞.
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𝜏 𝑖, 𝑗, 𝑛 = Tr 𝐺𝑛 𝛼⊥ 〈𝛼⊥|𝑖 ⊗ |𝛽〉〈𝛽|𝑗

Using monotonicity under the partial trace we establish other inequalities involving 

the ground space projector. Let 𝛼 , |𝛽〉 be the eigenvectors of  𝑇𝜓.

Correlation functions

Region Exclusion Identities

𝜏 𝑛 = Tr 𝐺𝑛|𝛽
⊥〉〈𝛽⊥|𝑛

We prove that 𝜏(𝑖, 𝑗, 𝑛) decays exponentially in 𝑗 − 𝑖, and that 𝜏(𝑛) approaches a 

finite limit as 𝑛 → ∞.

We prove 3 identities which involve excluding a region from some partition of  the 

chain. E.g., for any partition 𝐴𝐵𝐶 with 𝐵 = 𝑟:

𝐺𝐴𝐵𝐶 − 𝐺𝐴𝐵 ⊗ 𝐼𝐶 𝐼𝐴 ⊗ 𝛽 〈𝛽|⊗|𝐵𝐶| 2
≤ 𝑂 𝑐 𝑟 + 𝑂 𝑟 𝜆 −𝑟
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𝜏 𝑖, 𝑗, 𝑛 = Tr 𝐺𝑛 𝛼⊥ 〈𝛼⊥|𝑖 ⊗ |𝛽〉〈𝛽|𝑗

Using monotonicity under the partial trace we establish other inequalities involving 

the ground space projector. Let 𝛼 , |𝛽〉 be the eigenvectors of  𝑇𝜓.

We show that the claimed bound on 𝐺𝐴𝐵𝐶 − 𝐺𝐴𝐵𝐺𝐵𝐶 follows from the 

region exclusion identities. 

Correlation functions

Region Exclusion Identities

𝜏 𝑛 = Tr 𝐺𝑛|𝛽
⊥〉〈𝛽⊥|𝑛

We prove that 𝜏(𝑖, 𝑗, 𝑛) decays exponentially in 𝑗 − 𝑖, and that 𝜏(𝑛) approaches a 

finite limit as 𝑛 → ∞.

We prove 3 identities which involve excluding a region from some partition of  the 

chain. E.g., for any partition 𝐴𝐵𝐶 with 𝐵 = 𝑟:

𝐺𝐴𝐵𝐶 − 𝐺𝐴𝐵 ⊗ 𝐼𝐶 𝐼𝐴 ⊗ 𝛽 〈𝛽|⊗|𝐵𝐶| 2
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There is an infinite family of  1D frustration-free models, of  which ours is the 

simplest case:

Hilbert space: ℂ𝑑 ⊗𝑛
(n qudits)

Hamiltonian: Let Π be a two-qudit projector of  rank 𝑟

Open questions

𝐻𝑛 Π =  

𝑖=1

𝑛−1

Π𝑖,𝑖+1
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There is an infinite family of  1D frustration-free models, of  which ours is the 

simplest case:

Can we generalize our results to the qudit models with 𝒅 > 𝟐?

Hilbert space: ℂ𝑑 ⊗𝑛
(n qudits)

Hamiltonian: Let Π be a two-qudit projector of  rank 𝑟

Open questions

𝐻𝑛 Π =  

𝑖=1

𝑛−1

Π𝑖,𝑖+1

Always frustration-free if

𝒓 ≤
𝒅𝟐

𝟒
[Movassagh et al. 2010]
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• How general is monotonicity under the partial trace? 

• Can our results be extended to frustrated 1D qubit chains?

• Is it possible to certify that a frustrated 1D chain is gapped in the 

thermodynamic limit using data from finite-size numerics? 

Open questions



Extra slides



Exceptional cases

Rank 3 case: If  ℎ is a rank-3 projector and 𝐻𝑛 is frustration-free then

So 𝐻𝑛 is a sum of  commuting projectors and has spectral gap 1.

ℎ = 𝐼 − |𝜃 ⊗ 𝜃〉〈𝜃 ⊗ 𝜃|

𝐻𝑛 =  

𝑖=1

𝑛−1

ℎ𝑖,𝑖+1
h is a two-qubit projector with 

rank 2 or 3.



Exceptional cases

𝐻𝑛 =  

𝑖=1

𝑛−1

ℎ𝑖,𝑖+1
h is a two-qubit projector with 

rank 2 or 3.

Theorem (rank-2 case)

Suppose ℎ is a rank-2 projector which cannot be written as 1⊗ 𝑃 or 𝑃 ⊗ 1. Then

exactly one of  the following holds for the null space 𝐺4 of  the 4-spin chain:

1. 𝐺4 = 𝑠𝑝𝑎𝑛{|𝜃𝜃𝜃𝜃〉}
2. 𝐺4 = 𝑠𝑝𝑎𝑛{|𝜃𝜃𝜃𝜃〉, |𝜙𝜙𝜙𝜙〉}
3. 𝐺4 = 𝑠𝑝𝑎𝑛{|𝜃𝜙𝜃𝜙〉, |𝜙𝜃𝜙𝜃〉}
4. 𝐺4 = 𝑠𝑝𝑎𝑛{ 𝜃𝜃𝜃𝜃 , 𝜃⊥𝜃𝜃𝜃 + 𝑧 𝜃𝜃⊥𝜃𝜃 + 𝑧2 𝜃𝜃𝜃⊥𝜃 + 𝑧3 𝜃𝜃𝜃𝜃⊥ }
5. 𝐺4 is empty.

In cases 1,2,3,4 the system is frustration-free and in case 5 it is frustrated. The system

is gapless in case 4 iff 𝑧 = 1 and gapped in all other cases.


