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THERMALIZATION TIME BOUND 
 For a variety of models (commuting Pauli 

stabilizers and Abelian quantum doubles): 

2 
K. Temme. arXiv:1412.2858 
A. Kómár, O. Landon-Cardinal, K. Temme. arXiv: 1601.01324 



OUTLINE 
 Motivation 

 
 Framework 

 
 Thermalization time bounds 

 
 Evaluation of the energy barrier 

 
 Sketch of the proof 
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 Quantum memory: physical system that encodes 
quantum information 
 Degenerate ground space 
 Robust to perturbations 
 Long memory time (even in a thermal environment) 

 Active error correction: 
 
 
 

 Self-correction: 

(syndrome) 
measurements 
& operations 

QUANTUM MEMORIES Q- 
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PHENOMENOLOGICAL PICTURE OF 
MEMORY TIME 
 Arrhenius law: 
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no. of 
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Energy 

non- 
SC 

Scaling Energy barrier Constant Energy barrier 

4D Toric code entropic codes* (?) SC 

welded code 2D Toric code 
Arrhenius law 

Arrhenius bound 

 
* Brown et al., PRL (2014) 



THERMALIZATION IN 2D TORIC CODE 

 Thermalization represented by Liouvillian; with 
Gibbs state as a fixed point 

 Liouvillian: detailed balanced, with gap λ 
 Mixing time: 

 State is close to Gibbs state 

 Bounded by N/λ 
 

 Spectral gap bound: 
 

 Implies mixing time bound: 
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QUESTIONS 
 
 

 Can we have a more rigorous connection between 
the energy barrier and thermalization? 
 
 

 Is entropic protection possible? 
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FRAMEWORK 
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STABILIZER CODES 
 Hamiltonian: 

 
 With commuting Paulis: 

 
 

 Stabilizer group: 
with codespace              such that:           

 
                   for 

 
 Logical operators: 
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ABELIAN QUANTUM DOUBLES 

 Generalization of Toric Code to        qudits 
 Generalized Paulis: 

 
 
 
 
 

 Hamiltonian: 
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NOISE MODEL 
 
 
 
 
 
 

 Evolution: 
 

 Markovian & Weak-Coupling limit: 
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DAVIES GENERATOR 

 Jump operators: 
 

 KMS condition: 
 

 Fixed point: Gibbs state: 
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THERMALIZATION BOUNDS AND 
ENERGY BARRIER 
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MIXING TIME BOUND 
 Mixing time: state is close to Gibbs state (trace-norm) 

 
 
 

 
 

 Largest (generalized) Pauli path: 
 Smallest transition rate: 

 
 Generalized energy barrier: 
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GENERALIZED ENERGY BARRIER – 
EXAMPLE ON TORIC CODE 
 Choose any error       (doesn’t have to be a logical 

operator) 

15 

Z 
Z 

Z 

Z 
Z 

Z 



GENERALIZED ENERGY BARRIER – 
EXAMPLE ON TORIC CODE 
 Choose any error       (doesn’t have to be a logical 

operator) 
 Throw out violated plaquettes (vertices) 
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GENERALIZED ENERGY BARRIER – 
EXAMPLE ON TORIC CODE 
 Choose any error       (doesn’t have to be a logical 

operator) 
 Throw out violated plaquettes (vertices) 

 
 Construct      by applying local errors 
 Count number of violated plaquettes  

at each step 
 

 Take maximum of these for given ordering; 
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GENERALIZED ENERGY BARRIER – 
EXAMPLE ON TORIC CODE 
 Choose any error       (doesn’t have to be a logical 

operator) 
 Throw out violated plaquettes (vertices) 

 
 Construct      by applying local errors 
 Count number of violated plaquettes  

at each step 
 

 Take maximum of these for given ordering; 
 But: choose an optimal ordering: 
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EVALUATING THE ENERGY BARRIER FOR 
QUANTUM DOUBLES 
 (d-1) electric (magnetic) excitations + vacuum 
 Break errors down to simple structures 
 Generalized Pauli       = string-net of excitations 

 
 
 
 
 

 String-net               =    (charge) flow of excitations 
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EVALUATING THE ENERGY BARRIER FOR 
QUANTUM DOUBLES 
 Helmholtz-Hodge decomposition: 

 
 
 
 

 In general:       configuration = loops + trees 
 

 Energy barrier: 
 Of loops: 2 
 Of trees (simple union of strings): 2 
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SKETCH OF PROOF 
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SPECTRAL GAP AND THERMALIZATION 
TIME 
 Convergence to unique fixed point     : 

 
 
 
 

 For thermal     :  

25 



POINCARÉ INEQUALITY 
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POINCARÉ INEQUALITY 
 
 
 
 

 Any μ > 0 such that                       for all f is a 
lower bound to λ        maximize μ 
 
 

 Equivalently: minimize       subject to 
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(QUANTUM) CANONICAL PATHS 
 With defining a quantum canonical path we can 

factorize:                 and                 and define 
 

 Then the spectral gap bound:   
 

 For classical Markov processes: 
 M. Jerrum, A. Sinclair. "Approximating the permanent.” SIAM journal on 

computing 18.6 (1989): 1149-1178. 

 Geometric picture: graph of states 
 

 Generalized to Quantum setting: 
 K. Temme. "Thermalization time bounds for Pauli stabilizer Hamiltonians." 

arXiv preprint arXiv:1412.2858 (2014). 
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CONCLUSION & OPEN QUESTIONS 
 Commuting Pauli stabilizer Hamiltonians and 

Abelian quantum doubles follow the Arrhenius law 
 Even with defect lines of Brown et al., PRL (2014) 

 
 No self-correction without a scaling energy barrier 

 
 Not excluded of entropic protection: 

 Different type of defects (Bombin, PRL (2010) ) 
 Different noise model 
 Non-Abelian quantum doubles 
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GENERALIZED ENERGY BARRIER – 
COMMUTING PAULI STABILIZERS 
 Path on the Pauli group: 

 
 Reduced set     : 

 Removing stabilizer generators violated 
in the final error configuration, we only 
consider the other stabilizer generators 

 Energy barrier of a Pauli: 
 
 

 Generalized energy barrier: 
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For 2D Toric Code: 

Defined for 
any operator, 

not only logical ops. 



GENERALIZED ENERGY BARRIER – 
ABELIAN QUANTUM DOUBLES 
 Path on the generalized Pauli group: 

 

 Set of projectors: 
 

 Reduced set     : 
 Removing operators violated in the final error 

configuration, we only consider the other elements of 
 

 Energy barrier of a Pauli: 
 

 Generalized energy barrier: 
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Defined for 
any operator, 

not only logical ops. 


	An Energy Barrier is Necessary for the Thermal Stability of Stabilizer Quantum Memories
	Thermalization Time Bound
	Outline
	Quantum Memories
	Phenomenological Picture of Memory Time
	Thermalization in 2D Toric Code
	Questions
	Framework
	Stabilizer Codes
	Abelian Quantum Doubles
	Noise Model
	Davies Generator
	Thermalization Bounds and�Energy Barrier
	Mixing Time Bound
	Generalized Energy Barrier – Example on Toric Code
	Generalized Energy Barrier – Example on Toric Code
	Generalized Energy Barrier – Example on Toric Code
	Generalized Energy Barrier – Example on Toric Code
	Generalized Energy Barrier – Example on Toric Code
	Generalized Energy Barrier – Example on Toric Code
	Generalized Energy Barrier – Example on Toric Code
	Evaluating the Energy Barrier for Quantum Doubles
	Evaluating the Energy Barrier for Quantum Doubles
	Sketch of Proof
	Spectral Gap and Thermalization Time
	Poincaré Inequality
	Poincaré Inequality
	(Quantum) Canonical Paths
	Conclusion & Open Questions
	Slide Number 30
	Generalized Energy Barrier – Commuting Pauli Stabilizers
	Generalized Energy Barrier – Abelian Quantum Doubles

