Approximate degradable quantum channels

arXiv: 1412.0980

David Sutter

Institute for Theoretical Physics, ETH Zurich

QIP 2016, Banff

Joint work with Volkher Scholz, Andreas Winter and Renato Renner
Quantum capacity of a channel

- Quantum channel (TPCPM) \(\Phi : S(A) \rightarrow S(B) \)
 - By Stinespring \(\Phi : \rho_A \mapsto \text{tr}_E(V_{BE}\rho_A V_{BE}^\dagger) \)
 - Complementary channel \(\Phi^c : \rho_A \mapsto \text{tr}_B(V_{BE}\rho_A V_{BE}^\dagger) \)

How much (quantum) information can we reliably send over such a channel?

Quantum capacity \([\text{Lloyd-Shor-Devetak-97}]\)

\[Q(\Phi) = \lim_{k \to \infty} \frac{1}{k} Q(1)(\Phi^\otimes k) \]

Coherent information

\[Q(1)(\Phi) := \max_{\rho \in S(A)} H(\Phi(\rho)) - H(\Phi^c(\rho)) \]

with

\[H(\rho) := -\text{tr}(\rho \log \rho) \]

"Problems" with the LSD-formula

- Regularization makes it difficult to compute
- \(Q(1)(\Phi) \leq Q(\Phi) \) however \(Q(1)(\Phi) < Q(\Phi) \) possible \([\text{DiVincenzo-Shor-Smolin-98}]\)

Single letter upper bounds are difficult to find

Would like to have UBs that are efficiently computable
Quantum capacity of a channel

- Quantum channel (TPCPM) $\Phi : S(A) \rightarrow S(B)$
 - By Stinespring $\Phi : \rho_A \mapsto \operatorname{tr}_E(V_{BE}\rho_A V_{BE}^\dagger)$
 - Complementary channel $\Phi^c : \rho_A \mapsto \operatorname{tr}_B(V_{BE}\rho_A V_{BE}^\dagger)$

- How much (quantum) information can we reliably send over such a channel?
 - Quantum capacity [Lloyd-Shor-Devetak-97]

 $Q(\Phi) = \lim_{k \rightarrow \infty} \frac{1}{k} Q^{(1)}(\Phi \otimes k)$

 - Coherent information

 $Q^{(1)}(\Phi) := \max_{\rho \in S(A)} H(\Phi(\rho)) - H(\Phi^c(\rho))$ with

 $H(\rho) := -\operatorname{tr}(\rho \log \rho)$

$A \xrightarrow{\Phi} B$

E

Φ^c
Quantum capacity of a channel

- Quantum channel (TPCPM) $\Phi : S(A) \to S(B)$
 - By Stinespring $\Phi : \rho_A \mapsto \text{tr}_E (V_{BE} \rho_A V_{BE}^\dagger)$
 - Complementary channel $\Phi^c : \rho_A \mapsto \text{tr}_B (V_{BE} \rho_A V_{BE}^\dagger)$

- How much (quantum) information can we reliably send over such a channel?
 - Quantum capacity [Lloyd-Shor-Devetak-97]
 \[Q(\Phi) = \lim_{k \to \infty} \frac{1}{k} Q^{(1)}(\Phi \otimes k) \]
 - Coherent information
 \[Q^{(1)}(\Phi) := \max_{\rho \in S(A)} H(\Phi(\rho)) - H(\Phi^c(\rho)) \]
 with
 \[H(\rho) := -\text{tr}(\rho \log \rho) \]

- “Problems” with the LSD-formula
 - Regularization makes it difficult to compute
 - $Q^{(1)}(\Phi) \leq Q(\Phi)$ however $Q^{(1)}(\Phi) < Q(\Phi)$ possible [DiVincenzo-Shor-Smolin-98]
 - Single letter upper bounds are difficult to find
 - Would like to have UBs that are efficiently computable
Degradable channels

- A channel $\Phi : S(A) \rightarrow S(B)$ is *degradable* if \exists a channel $\Theta : S(B) \rightarrow S(E)$ such that $\Phi^c = \Theta \circ \Phi$.
- If Φ is degradable then $Q^{(1)}(\Phi) = Q(\Phi)$ [Devetak-Shor-05]

Diagram:

```
A ───Φ─── B
 |   \   |
 Φ^c \     / Θ
   \   /     E
     /     /
```

Examples of degradable channels:
- Dephasing channels, e.g. $\rho \mapsto (1-p)\rho + pX\rho X$
- Amplitude damping channels

Not all channels are degradable:
- Depolarizing channel, i.e., $\rho \mapsto (1-p)\rho + p\pi$.
- BB84 channel (independent bit and phase flip error)

Concept of degradable channels is not robust
Degradable channels

- A channel $\Phi : S(A) \to S(B)$ is **degradable** if \exists a channel $\Theta : S(B) \to S(E)$ such that $\Phi^c = \Theta \circ \Phi$.
- If Φ is degradable then $Q^{(1)}(\Phi) = Q(\Phi)$ [Devetak-Shor-05]
- Examples of degradable channels
 - Dephasing channels, e.g. $\rho \mapsto (1 - p)\rho + pX\rho X$
 - Amplitude damping channels
- Not all channels are degradable 😞
 - Depolarizing channel, i.e., $\rho \mapsto (1 - p)\rho + p\pi$
 - BB84 channel (independent bit and phase flip error)
- Concept of degradable channels is not robust
Approximate degradable channels

TPCPM $\Xi : S(A) \rightarrow S(B)$

$$\|\Xi\|_\diamond := \max_{\rho \in S(A \otimes A')} \| (\Xi \otimes I_{A'})(\rho) \|_1$$

- A channel $\Phi : S(A) \rightarrow S(B)$ is degradable if \exists a channel $\Theta : S(B) \rightarrow S(E)$ such that $\Phi^c = \Theta \circ \Phi$
- A channel $\Phi : S(A) \rightarrow S(B)$ is ε-degradable if \exists a channel $\Theta : S(B) \rightarrow S(E)$ such that $\| \Phi^c - \Theta \circ \Phi \|_\diamond \leq \varepsilon$
- Every channel is ε-degradable with some $\varepsilon \in [0, 2]$
Approximate degradable channels

TPCPM $\Xi : S(A) \rightarrow S(B)$

$\|\Xi\| : = \max_{\rho \in S(A \otimes A')} \|(\Xi \otimes I_{A'}) (\rho)\|_1$

- A channel $\Phi : S(A) \rightarrow S(B)$ is **degradable** if \exists a channel $\Theta : S(B) \rightarrow S(E)$ such that $\Phi^c = \Theta \circ \Phi$

- A channel $\Phi : S(A) \rightarrow S(B)$ is ε-**degradable** if \exists a channel $\Theta : S(B) \rightarrow S(E)$ such that $\|\Phi^c - \Theta \circ \Phi\|_\diamond \leq \varepsilon$

- Every channel is ε-degradable with some $\varepsilon \in [0, 2]$

Theorem. Let Φ be ε-degradable, then

$$Q^{(1)}(\Phi) \leq Q(\Phi) \leq Q^{(1)}(\Phi) + \frac{\varepsilon}{2} \log(|E| - 1) + h\left(\frac{\varepsilon}{2}\right) + \varepsilon \log |E|$$

$$+ \left(1 + \frac{\varepsilon}{2}\right) h\left(\frac{\varepsilon}{2 + \varepsilon}\right)$$

with $|E| := \text{dim } E$ and $h(x) := -x \log x - (1 - x) \log(1 - x)$
A few remarks about how to prove the theorem

- Strengthened Alicki-Fannes inequality [Winter-1507.07775]:
 If $\|\rho_{AB} - \sigma_{AB}\|_1 \leq \varepsilon \leq 2$ then
 $|H(A|B)_\rho - H(A|B)_\sigma| \leq \varepsilon \log |A| + (1 + \frac{\varepsilon}{2})h\left(\frac{\varepsilon}{2+\varepsilon}\right)$
A few remarks about how to prove the theorem

- Strengthened Alicki-Fannes inequality [Winter-1507.07775]:

 If \(\| \rho_{AB} - \sigma_{AB} \|_1 \leq \varepsilon \leq 2 \) then

 \[
 |H(A|B)_\rho - H(A|B)_\sigma| \leq \varepsilon \log |A| + (1 + \frac{\varepsilon}{2})h(\frac{\varepsilon}{2+\varepsilon})
 \]

 strictly better than Alicki-Fannes

 \[
 |H(A|B)_\rho - H(A|B)_\sigma| \leq 4\varepsilon \log |A| + 2h(\varepsilon)
 \]
A few remarks about how to prove the theorem

- Strengthened Alicki-Fannes inequality [Winter-1507.07775]:
 If $\|\rho_{AB} - \sigma_{AB}\|_1 \leq \varepsilon \leq 2$ then
 $|H(A|B)_{\rho} - H(A|B)_{\sigma}| \leq \varepsilon \log |A| + (1 + \frac{\varepsilon}{2})h(\frac{\varepsilon}{2+\varepsilon})$

- Following the Devetak-Shor proof and applying Alicki-Fannes a few times (similar technique as in [Leung-Smith-0810.4931])

- Degradability is used via the data processing inequality, i.e.,
 $I(A : B) \geq I(A : E)$
A few remarks about how to prove the theorem

- Strengthened Alicki-Fannes inequality [Winter-1507.07775]:

 If \(\|\rho_{AB} - \sigma_{AB}\|_1 \leq \varepsilon \leq 2 \) then
 \[
 |H(A|B)_\rho - H(A|B)_\sigma| \leq \varepsilon \log |A| + (1 + \frac{\varepsilon}{2})h\left(\frac{\varepsilon}{2+\varepsilon}\right)
 \]

- Following the Devetak-Shor proof and applying Alicki-Fannes a few times (similar technique as in [Leung-Smith-0810.4931])

- Degradability is used via the data processing inequality, i.e.,
 \[
 I(A : B) \geq I(A : E)
 \]

An important comment

Unclear if \(\varepsilon \)-degradable channels are close to a degradable channel. Channels that are close to degradable ones are \(\varepsilon \)-degradable.

\[
\|\Phi^c - \Theta \circ \Phi\|_\diamond \leq \varepsilon \quad \|\Phi - \Xi\|_\diamond \leq \xi
\]

\[
\varepsilon = \xi + 2\sqrt{\xi}
\]
Approximate degradable channels (con’t)

- A channel \(\Phi : S(A) \rightarrow S(B) \) is \(\varepsilon \)-degradable if \(\exists \) a channel \(\Theta : S(B) \rightarrow S(E) \) such that \(\| \Phi^c - \Theta \circ \Phi \|_\diamond \leq \varepsilon \)

- How to find the smallest \(\varepsilon \) such that \(\Phi \) is \(\varepsilon \)-degradable?

\[
\varepsilon_\Phi := \left\{ \begin{array}{l}
\min_{\Theta} \| \Phi^c - \Theta \circ \Phi \|_\diamond \\
\text{s.t. } \Theta : S(B) \rightarrow S(E) \text{ is tpcp}
\end{array} \right.
\] (1)
Approximate degradable channels (con’t)

- A channel $\Phi : S(A) \to S(B)$ is ε-degradable if \exists a channel $\Theta : S(B) \to S(E)$ such that $\|\Phi^c - \Theta \circ \Phi\|_\diamond \leq \varepsilon$

- How to find the smallest ε such that Φ is ε-degradable?

\[
\varepsilon_{\Phi} := \left\{ \begin{array}{c}
\min_{\Theta} \|\Phi^c - \Theta \circ \Phi\|_\diamond \\
\text{s.t. } \Theta : S(B) \to S(E) \text{ is tpcp}
\end{array} \right. \tag{1}
\]

Proposition. (1) can be expressed as a semidefinite program

\[
Q^{(1)}(\Phi) \leq Q(\Phi) \leq Q^{(1)}(\Phi) + \frac{\varepsilon_{\Phi}}{2} \log(|E| - 1) + h\left(\frac{\varepsilon_{\Phi}}{2}\right) + \varepsilon_{\Phi} \log |E| + (1 + \frac{\varepsilon_{\Phi}}{2}) h\left(\frac{\varepsilon_{\Phi}}{2 + \varepsilon_{\Phi}}\right)
\]

is efficiently computable if we know $Q^{(1)}(\Phi)$
Proof sketch of the proposition

- The diamond norm of a difference of two channels can be phrased as an SDP [Watrous-09]

\[
\|\Xi_1 - \Xi_2\|_\diamond = \begin{cases}
\inf \| \text{tr}_B(Z) \|_\infty \\
s.\ t. \ Z \geq J(\Xi_1 - \Xi_2) \\
Z \geq 0
\end{cases}
\]

- The mapping \(J(\Theta) \mapsto J(\Theta \circ \Phi) \) is linear, thus

\[
\varepsilon_{\Phi} = \begin{cases}
\inf \| \Phi^c - \Theta \circ \Phi \|_\diamond \\
s.\ t. \ \Theta : S(\mathcal{H}_B) \to S(\mathcal{H}_E) \text{ is tpcp}
\end{cases}
\]

\[
= \begin{cases}
\inf \| \text{tr}_E(Z) \|_\infty \\
s.\ t. \ Z \geq J(\Phi^c) - J(\Theta \circ \Phi) \\
Z \geq 0 \\
J(\Theta) \geq 0 \\
\text{tr}_E(J(\Theta)) = 1_B
\end{cases}
\]

Choi state of \(\Xi_1 - \Xi_2 \)
UB as a convex optimization problem

Recall

\[Q^{(1)}(\Phi) \leq Q(\Phi) \leq Q^{(1)}(\Phi) + \frac{\varepsilon}{2} \log(|E| - 1) + h\left(\frac{\varepsilon}{2}\right) \]

\[+ \varepsilon \Phi \log |E| + \left(1 + \frac{\varepsilon}{2}\right) h\left(\frac{\varepsilon}{2 + \varepsilon}\right) \]

is efficiently computable if we know \(Q^{(1)}(\Phi) \).

\(Q^{(1)}(\Phi) := \max_{\rho \in S(A)} H(\Phi(\rho)) - H(\Phi^c(\rho)) \)

- Single letter formula 😊
- Sometimes closed form solution (e.g. depolarizing channel) 😊
- In general difficult — non-convex optimization problem 😞

Question: How to efficiently compute \(Q^{(1)}(\Phi) \)?
UB as a convex optimization problem (con’t)

Channel Φ from A to B and a degrading channel Ξ from B to $\tilde{E} \simeq E$. Choose Stinespring isometric dilations $V : A \leftrightarrow B \otimes E$ and $W : B \leftrightarrow \tilde{E} \otimes F$. Define

$$U_\Xi(\Phi) := \max_{\rho \in S(A)} \left\{ H(F|\tilde{E})_\omega : \omega^{E\tilde{E}F} = (W \otimes 1)V\rho V^\dagger(W \otimes 1)^\dagger \right\}$$

Proposition. If $\Phi : S(A) \rightarrow S(B)$ is an ε-degradable channel with a degrading map $\Xi : S(B) \rightarrow S(E)$, then

$$|Q^{(1)}(\Phi) - U_\Xi(\Phi)| \leq \frac{\varepsilon}{2} \log(|E| - 1) + h\left(\frac{\varepsilon}{2}\right)$$

- $U_\Xi(\Phi)$ is given via a convex optimization problem
- $Q(\Phi) \leq U_\Xi(\Phi) + \varepsilon \log |E| + \left(1 + \frac{\varepsilon}{2}\right) h\left(\frac{\varepsilon}{2+\varepsilon}\right)$
First application: depolarizing channel

\[\mathcal{D}_p : \rho \mapsto (1 - p)\rho + p \mathbb{1}, \text{ for } p \in [0, 1] \]

Universal hashing bound

\[Q^{(1)}(\mathcal{D}_p) = 1 + (1 - p) \log(1 - p) + p \log \left(\frac{p}{3} \right) \]
Second application: BB84 channel

Independent bit and phase error $\mathcal{B}_{p_X,p_Z} : \rho \mapsto (1 - p_X - p_Z + p_X p_Z) \rho + (p_X - p_X p_Z) X \rho X + (p_Z - p_Z p_X) Z \rho Z + p_X p_Z Y \rho Y$

$$Q^{(1)}(\mathcal{B}_{p_X,p_Z}) = 1 - h(p_X) - h(p_Z)$$
Comments to existing upper bounds

- Convex decomposition into degradable channels [Smith-Smolin-Winter-08]
 - $\Phi = \sum_i p_i \Theta_i$, where $\{\Theta_i\}_i$ are degradable
 - $Q(\sum_i p_i \Theta_i) \leq \sum_i p_i Q(\Theta_i) = \sum_i p_i Q^{(1)}(\Theta_i)$
 - Channel specific 😞
 - Decomposition into degradable channels may not exist!

- The quantum capacity with symmetric side channels [Smith-Smolin-Winter-08]

- No cloning argument [Cerf & Bruss et al.-98]
 - Only good at very high noise levels

- New approach offers
 - universal upper bound (method works for any channel)
 - UB is efficiently computable (via an SDP)
 - UB is good at low noise levels (ideal channel is degradable)
What about high noise levels?

- A channel $\Phi : S(A) \to S(B)$ is \textit{anti-degradable} if \exists a channel $\Theta : S(E) \to S(B)$ such that $\Phi = \Theta \circ \Phi^c$

- Anti-degradable channels cannot have positive quantum capacity (no-cloning)

- A channel $\Phi : S(A) \to S(B)$ is ε-\textit{anti-degradable} if \exists a channel $\Theta : S(E) \to S(B)$ such that $\|\Phi - \Theta \circ \Phi^c\|_\diamond \leq \varepsilon$
What about high noise levels?

- A channel $\Phi : S(A) \rightarrow S(B)$ is **anti-degradable** if \exists a channel $\Theta : S(E) \rightarrow S(B)$ such that $\Phi = \Theta \circ \Phi^c$

- Anti-degradable channels cannot have positive quantum capacity (no-cloning)

- A channel $\Phi : S(A) \rightarrow S(B)$ is ε-anti-degradable if \exists a channel $\Theta : S(E) \rightarrow S(B)$ such that $\|\Phi - \Theta \circ \Phi^c\|_{\diamond} \leq \varepsilon$

Proposition. If Φ is ε-anti-degradable, then

$$Q(\Phi) \leq \frac{\varepsilon}{2} \log(|B| - 1) + \varepsilon \log |B| + h\left(\frac{\varepsilon}{2}\right) + \left(1 + \frac{\varepsilon}{2}\right) h\left(\frac{\varepsilon}{2 + \varepsilon}\right)$$

- Proof works similar as for the ε-degradable case
Upper bound via convex decompositions of channels

Symmetric side-channel assisted quantum capacity [Smith-Smolin-Winter-08]

\[Q_{ss}(\Phi) := \sup_{\Theta} Q(\Phi \otimes \Theta) = \sup_{\Theta} Q^{(1)}(\Phi \otimes \Theta) \]

- Single letter formula
- Clearly \(Q(\Phi) \leq Q_{ss}(\Phi) \)
- \(\Phi \mapsto Q_{ss}(\Phi) \) is convex \(\Rightarrow \) we can combine different UBs

If \(\Phi \) is an \(\varepsilon \)-degradable channel, with a degrading map \(\Xi \), then

\[Q_{ss}(\Phi) \leq U_{\Xi}(\Phi) + \varepsilon \log |E| + \left(1 + \frac{\varepsilon}{2}\right) h\left(\frac{\varepsilon}{2 + \varepsilon}\right) \]
Private classical capacity of a quantum channel

Private classical capacity of Φ

$$P(\Phi) = \lim_{k \to \infty} \frac{1}{k} P^{(1)}(\Phi \otimes^k),$$

with

$$P^{(1)}(\Phi) := \max_{\{\rho_i, p_i\}} H \left(\sum_i p_i \Phi(\rho_i) \right) - \sum_i p_i H(\Phi(\rho_i))$$

$$- H \left(\sum_i p_i \Phi^c(\rho_i) \right) + \sum_i p_i H(\Phi^c(\rho_i))$$

- $P^{(1)}(\Phi) \leq P(\Phi)$ and $P^{(1)}(\Phi) < P(\Phi)$ possible [Smith-Renes-Smolin-08]
- For degradable channels $P^{(1)}(\Phi) = P(\Phi) = Q^{(1)}(\Phi) = Q(\Phi)$ [Smith-08]
Private classical capacity of a quantum channel (con’t)

For degradable channels $P^{(1)}(\Phi) = P(\Phi) = Q^{(1)}(\Phi) = Q(\Phi)$

Theorem. Let Φ be ε-degradable, then

$$P^{(1)}(\Phi) \leq P(\Phi) \leq P^{(1)}(\Phi) + \frac{\varepsilon}{2} \log(|E| - 1) + h\left(\frac{\varepsilon}{2}\right) + 3\varepsilon \log |E|$$

$$+ 3\left(1 + \frac{\varepsilon}{2}\right) h\left(\frac{\varepsilon}{2 + \varepsilon}\right)$$

$$Q^{(1)}(\Phi) \leq P^{(1)}(\Phi) \leq Q^{(1)}(\Phi) + \frac{\varepsilon}{2} \log(|E| - 1) + h\left(\frac{\varepsilon}{2}\right) + \varepsilon \log |E|$$

$$+ \left(1 + \frac{\varepsilon}{2}\right) h\left(\frac{\varepsilon}{2 + \varepsilon}\right)$$

Efficient computable upper bounds for $P(\Phi)$
Summary & outlook

- Robust definition of degradable channels
- Approximately preserve properties of degradable channels
 - additivity of coherent information
- Useful for upper bounds to the quantum capacity
 - computable via SDP
- Same for private classical capacity of a quantum channel
- Useful to prove upper bounds for the quantum capacity of bosonic channels?