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Quantum capacity of a channel
I Quantum channel (TPCPM) Φ : S(A)→ S(B)

I By Stinespring Φ : ρA 7→ trE (VBEρAV
†
BE )

I Complementary channel Φc : ρA 7→ trB(VBEρAV
†
BE )

I How much (quantum) information can we reliably send over
such a channel?

I Quantum capacity [Lloyd-Shor-Devetak-97]
Q(Φ) = limk→∞

1
kQ

(1)(Φ⊗k)
I Coherent information

Q(1)(Φ) := maxρ∈S(A) H
(
Φ(ρ)

)
− H

(
Φc(ρ)

)
with

H(ρ) := −tr(ρ log ρ)

I “Problems” with the LSD-formula
I Regularization makes it difficult to compute
I Q(1)(Φ) ≤ Q(Φ) however Q(1)(Φ) < Q(Φ) possible

[DiVincenzo-Shor-Smolin-98]
I Single letter upper bounds are difficult to find
I Would like to have UBs that are efficiently computable
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Degradable channels

I A channel Φ : S(A)→ S(B) is degradable if ∃ a channel
Θ : S(B)→ S(E ) such that Φc = Θ ◦ Φ.

I If Φ is degradable then Q(1)(Φ) = Q(Φ) [Devetak-Shor-05]

I Examples of degradable channels

I Dephasing channels, e.g. ρ 7→ (1− p)ρ+ pXρX
I Amplitude damping channels

I Not all channels are degradable /
I Depolarizing channel, i.e., ρ 7→ (1− p)ρ+ p π.
I BB84 channel (independent bit and phase flip error)

I Concept of degradable channels is not robust
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Approximate degradable channels

I A channel Φ : S(A)→ S(B) is degradable if ∃ a channel
Θ : S(B)→ S(E ) such that Φc = Θ ◦ Φ

I A channel Φ : S(A)→ S(B) is ε-degradable if ∃ a channel
Θ : S(B)→ S(E ) such that ‖Φc −Θ ◦ Φ‖� ≤ ε

I Every channel is ε-degradable with some ε ∈ [0, 2]

TPCPM Ξ : S(A)→ S(B)

‖Ξ‖� := maxρ∈S(A⊗A′) ‖(Ξ⊗ IA′)(ρ)‖1

Theorem. Let Φ be ε-degradable, then

Q(1)(Φ) ≤ Q(Φ) ≤ Q(1)(Φ) +
ε

2
log(|E | − 1) + h

(ε
2

)
+ ε log |E |

+
(

1 +
ε

2

)
h
( ε

2 + ε

)
with |E | := dimE and h(x) := −x log x − (1− x) log(1− x)
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A few remarks about how to prove the theorem

I Strengthened Alicki-Fannes inequality [Winter-1507.07775]:
If ‖ρAB − σAB‖1 ≤ ε ≤ 2 then
|H(A|B)ρ − H(A|B)σ| ≤ ε log |A|+ (1 + ε

2 )h( ε
2+ε)

I Following the Devetak-Shor proof and applying Alicki-Fannes
a few times (similar technique as in [Leung-Smith-0810.4931])

I Degradability is used via the data processing inequality, i.e.,
I (A : B) ≥ I (A : E )

An important comment
Unclear if ε-degradable channels are close to a degradable channel.
Channels that are close to degradable ones are ε-degradable.

‖Φc −Θ ◦ Φ‖� ≤ ε ‖Φ− Ξ‖� ≤ ξ

Ξ degradable channel

ε = ξ + 2
√
ξ

X
unknown
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Approximate degradable channels (con’t)

I A channel Φ : S(A)→ S(B) is ε-degradable if ∃ a channel
Θ : S(B)→ S(E ) such that ‖Φc −Θ ◦ Φ‖� ≤ ε

I How to find the smallest ε such that Φ is ε-degradable?

εΦ :=

{
min

Θ
‖Φc −Θ ◦ Φ‖�

s. t. Θ : S(B)→ S(E ) is tpcp
(1)

Proposition. (1) can be expressed as a semidefinite program

Q(1)(Φ) ≤ Q(Φ) ≤ Q(1)(Φ) +
εΦ

2
log(|E | − 1) + h(

εΦ

2
)

+ εΦ log |E |+ (1 +
εΦ

2
)h(

εΦ

2 + εΦ
)

is efficiently computable if we know Q(1)(Φ)
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Proof sketch of the proposition

I The diamond norm of a difference of two channels can be
phrased as an SDP [Watrous-09]

‖Ξ1 − Ξ2‖� =


inf
Z

‖trB(Z )‖∞
s. t. Z ≥ J(Ξ1 − Ξ2)

Z ≥ 0

I The mapping J(Θ) 7→ J(Θ ◦ Φ) is linear, thus

εΦ =

{
inf
Θ

‖Φc −Θ ◦ Φ‖�
s. t. Θ : S(HB)→ S(HE ) is tpcp

=



inf
Z ,J(Θ)

‖trE (Z )‖∞
s. t. Z ≥ J(Φc)− J(Θ ◦ Φ)

Z ≥ 0
J(Θ) ≥ 0
trE (J(Θ)) = 1B

Choi state of
Ξ1 − Ξ2
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UB as a convex optimization problem

I Recall

Q(1)(Φ) ≤ Q(Φ) ≤ Q(1)(Φ) +
εΦ

2
log(|E | − 1) + h

(εΦ

2

)
+ εΦ log |E |+

(
1 +

εΦ

2

)
h
( εΦ

2 + εΦ

)
is efficiently computable if we know Q(1)(Φ).

I Q(1)(Φ) := maxρ∈S(A) H
(
Φ(ρ)

)
− H

(
Φc(ρ)

)
I Single letter formula ,
I Sometimes closed form solution (e.g. depolarizing channel) ,
I In general difficult — non-convex optimization problem /

I Question: How to efficiently compute Q(1)(Φ)?
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UB as a convex optimization problem (con’t)

Channel Φ from A to B and a degrading channel Ξ from B to
Ẽ ' E . Choose Stinespring isometric dilations V : A ↪→ B ⊗ E and
W : B ↪→ Ẽ ⊗ F . Define

UΞ(Φ) := max
ρ∈S(A)

{H(F |Ẽ )ω : ωEẼF= (W ⊗ 1)V ρV †(W ⊗ 1)†}

Proposition. If Φ : S(A)→ S(B) is an ε-degradable channel with
a degrading map Ξ : S(B)→ S(E ), then∣∣Q(1)(Φ)− UΞ(Φ)

∣∣ ≤ ε

2
log(|E | − 1) + h

(ε
2

)
I UΞ(Φ) is given via a convex optimization problem

I Q(Φ) ≤ UΞ(Φ) + ε log |E |+
(
1 + ε

2

)
h
(

ε
2+ε

)
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First application: depolarizing channel
Dp : ρ 7→ (1− p)ρ+ p 1, for p ∈ [0, 1]

Universal hashing bound

Q(1)(Dp) = 1 + (1− p) log(1− p) + p log
(p

3

)
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Second application: BB84 channel
Independent bit and phase error BpX ,pZ : ρ 7→ (1− pX − pZ +
pXpZ )ρ+ (pX − pXpZ )XρX + (pZ − pZpX )ZρZ + pXpZY ρY

Q(1)(BpX ,pZ ) = 1− h(pX )− h(pZ )

0 0.005 0.01 0.015 0.02

·10−2

1

0.9

0.8

0.7

p

Q(1)(Bp,p)

best old upper bound

new upper bound
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Comments to existing upper bounds

I Convex decomposition into degradable channels
[Smith-Smolin-Winter-08]

I Φ =
∑

i piΘi , where {Θi}i are degradable

I Q(
∑

i piΘi ) ≤
∑

i piQ(Θi ) =
∑

i piQ
(1)(Θi )

I Channel specific /
I Decomposition into degradable channels may not exist!

I The quantum capacity with symmetric side channels
[Smith-Smolin-Winter-08]

I No cloning argument [Cerf & Bruss et al.-98]
I Only good at very high noise levels

I New approach offers
I universal upper bound (method works for any channel)

I UB is efficiently computable (via an SDP)

I UB is good at low noise levels (ideal channel is degradable)
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What about high noise levels?

I A channel Φ : S(A)→ S(B) is anti-degradable if ∃ a channel
Θ : S(E )→ S(B) such that Φ = Θ ◦ Φc

I Anti-degradable channels cannot have positive quantum
capacity (no-cloning)

I A channel Φ : S(A)→ S(B) is ε-anti-degradable if ∃ a
channel Θ : S(E )→ S(B) such that ‖Φ−Θ ◦ Φc‖� ≤ ε

Proposition. If Φ is ε-anti-degradable, then

Q(Φ) ≤ ε

2
log(|B| − 1) + ε log |B|+ h

(ε
2

)
+
(

1 +
ε

2

)
h
( ε

2 + ε

)

I Proof works similar as for the ε-degradable case
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Upper bound via convex decompositions of channels

Symmetric side-channel assisted quantum
capacity [Smith-Smolin-Winter-08]

Qss(Φ) := sup
Θ

Q(Φ⊗Θ) = sup
Θ

Q(1)(Φ⊗Θ)

I Single letter formula

I Clearly Q(Φ) ≤ Qss(Φ)

I Φ 7→ Qss(Φ) is convex ⇒ we can combine different UBs

If Φ is an ε-degradable channel, with a degrading map Ξ, then

Qss(Φ) ≤ UΞ(Φ) + ε log |E |+
(

1 +
ε

2

)
h

(
ε

2 + ε

)
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Private classical capacity of a quantum channel
Private classical capacity of Φ

P(Φ) = lim
k→∞

1

k
P(1)(Φ⊗k),

with

P(1)(Φ) := max
{ρi ,pi}

H

(∑
i

piΦ(ρi )

)
−
∑
i

piH
(
Φ(ρi )

)
− H

(∑
i

piΦ
c(ρi )

)
+
∑
i

piH
(
Φc(ρi )

)
I P(1)(Φ) ≤ P(Φ) and P(1)(Φ) < P(Φ) possible

[Smith-Renes-Smolin-08]

I For degradable channels P(1)(Φ) = P(Φ) = Q(1)(Φ) = Q(Φ)
[Smith-08]
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Private classical capacity of a quantum channel (con’t)

For degradable channels P(1)(Φ) = P(Φ) = Q(1)(Φ) = Q(Φ)

Theorem. Let Φ be ε-degradable, then

P(1)(Φ) ≤ P(Φ) ≤ P(1)(Φ) +
ε

2
log(|E | − 1) + h

(ε
2

)
+ 3ε log |E |

+ 3
(

1 +
ε

2

)
h
( ε

2 + ε

)
Q(1)(Φ) ≤ P(1)(Φ) ≤ Q(1)(Φ) +

ε

2
log(|E | − 1) + h(

ε

2
) + ε log |E |

+
(
1 +

ε

2

)
h
( ε

2 + ε

)
Efficient computable upper bounds for P(Φ)

16 / 17



Summary & outlook

I Robust definition of degradable channels

I Approximately preserve properties of degradable channels
I additivity of coherent information

I Useful for upper bounds to the quantum capacity
I computable via SDP

I Same for private classical capacity of a quantum channel

I Useful to prove upper bounds for the quantum capacity of
bosonic channels?

arXiv:1412.0980
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