
Quantum Expander Codes

Anthony Leverrier1, Jean-Pierre Tillich1, Gilles Zémor2

1INRIA, 2Bordeaux Mathematics Institute

January 2016, Banff

Context

Search for quantum codes with fast decoding (linear-time
in #qbits n.
Codes with local structure (LDPC): low-weight generators.
Deal with degeneracy: decoder has several choices for
error output.
Constructions of quantum LDPC codes are difficult to find.
Random choice does not work well either. Can one find
quantum LDPC codes with minimum distance >

√
n ?

This contribution: decode in linear-time arbitrary
(adversarial) patterns of weight ≤ (constant)

√
n for codes

with non-zero rate.
Export expander code techniques.

Classical Expander Codes (Sipser-Spielman 1996)

Code: set of binary vectors (x1, . . . , xn,) satisfying set of linear
equations. Can be represented by a factor (Tanner) graph
relating A = {1, . . .n} to the set of equations B. vertex a ∈ A is
incident to b if xa is involved in equation (b) xa + xi + xj = 0.

E

A
B

0
0
...
1
...
1

syndrome

errors

Expansion
Bipartite graph (A,B) of left degree ∆ is (γ, δ) (left)–expanding
if for all S ⊂ A, |S| ≤ γ|A|, we have

#neighbours(S) ≥ (1− δ)∆|S|.

S

A B

If expansion large enough, many neighbours of S have
degree 1 (unique neighbours). If S is set of errors, this means
many equations contain exactly one symbol in error.

Expander decoding

Therefore there should exist a critical symbol such that flipping
its value decreases the syndrome weight (number of
unsatisfied equations).

Hence decoding algorithm: flip a symbol if it decreases the
syndrome weight: repeat until syndrome =0.

Algorithm may sporadically introduce new errors, but can’t
happen too often because syndrome weight is decreasing all
the time and

syndrome weight ≥ (1− 2δ)∆#errors

(expansion).
Argument works when δ < 1/4 (i.e. expansion coefficient is
> 3/4 of maximum. Guarantees correction of arbitrary pattern
of < 1

2γn errors.

CSS quantum codes

Two types of errors, X -errors and Z -errors. Can be modelled as
two binary error vectors eX and eZ occurring simultaneously.

The CSS (Calderbank Shor Steane) stabilizer code structure:

H =

HZ

HX

So can be thought of as two classical codes, but
Important technicality 1: row space VX of HX and row space VZ
of HZ must be orthogonal.

It is possible to compute (measure) syndrome σX (eX) and
syndrome σZ (eZ).

Quantum LDPC codes

H =
HZ

HX

Important technicality 2: error vectors eX in VX have zero sZ
syndrome, but they don’t count: eX |ψ〉 = |ψ〉.

Problematic errors. Errors of zero syndrome not in VX or VZ .

Decoding problem is purely classical: find most plausible eX
and eZ from syndromes.

Why not decode both codes separately, from syndromes
σX (eX) and σZ (eZ), with each code ignoring the other one ? In
particular why not use classical expander decoding on the two
factor graphs of HX and HZ ?

Quantum expander decoding ?

Answer: because expansion is incompatible with existence of
the other code.

Each of the two classical codes defined by the parity-check
matrices HX and HZ have constant minimum distances, when
they are LDPC. (Can individually correct only a constant
number of classical errors).

Worse: error vectors eX and eZ are really defined modulo
row-spaces VZ and VX of HZ and HX . The value of an
individual bit is meaningless.

Must rely on expansion of some other object.

Quantum “product” codes (Tillich-Z 2009)

Code can be described by two factor graphs. Start with
ordinary bipartite graph A↔ B and create:

α

a

β

b

A

A

B

B

×
A2

B2

BA

AB

αa

bβ

ba

αβ

X

X

Z

Z

Quantum Parameters

Length: n = |A|2 + |B|2.
Dimension: k ≥ (|A| − |B|)2

Minimum distance: equal to min(d ,dT)

where d is minimum distance of “original” classical LDPC code
defined by factor graph A↔ B, and dT is the minimum distance
of the transpose code i.e. the code defined by the factor graph
B ↔ A. Typically minimum distance is exactly d .

Potential therefore for correcting Ω(
√

n) adversary errors.

Particular instance: the Kitaev code

HX =

HZ =

Particular instance: the Kitaev code

HX =

HZ =

111100 · · ·

Particular instance: the Kitaev code

HX =

HZ =

111100 · · ·

001111 · · ·

Particular instance: the Kitaev code

HX =

HZ =

111100 · · ·

001111 · · ·

Dimension 2, minimum distance scales as
√

n.

Original graph A↔ B is just simple cycle. No expansion.

Decoding idea

Decode locally, but not individual bits.

Decode individual generators.

Find a pattern inside a generator that decreases the syndrome
weight.

Repeat until syndrome is zero.

Remark: we are not modifying the “received vector”. There is
no received vector, just the syndrome. We are constructing a
low-weight error pattern that has the given syndrome.

Details of a generator

Generator gba. Set of coordinate positions. Consists of αa A2,
bβ ∈ B2 for a,b fixed, α neighbour of b, β neighbour of a.

αβαa

bβ

1

0

0 1

Inside of rectangle consists of all αβ: syndrome coordinates.
Shaded area: syndrome coordinates that are at “1”.

Critical generators
Classical expander codes: decoding relies on existence of bit
node with many unique neighbours.
Quantum case: rely on the existence of critical generator.

xa

xa

xb xb

χa

χb

degree 1

degree 2

degree ?

degree ?

When “flipping” error positions xa and xb , only syndrome
coordinates can transition 0→ 1. Weight always decreases if

small enough.

Critical generators and expansion

Weight decreases if χa ≤ 1
3∆B and χb ≤ 1

3∆A.

Existence of a critical generator guaranteed if expansion of
component graphs A↔ B and B ↔ A is large enough. We
need expansion of 5/6 of graph degree. Compare with 3/4 in
classical LDPC case.

Key: Consider projection of error set on first and second
coordinates.

Theorem: If expansion of 5/6degree in A↔ B and B ↔ A
guaranteed for subsets of vertices less than γA|A| and γB|B|,
then algorithm corrects every pattern of weight less than

1
1 + 3∆B

min(γA|A|+ γB|B|).

Questions

Construct (rather than randomly choose) bipartite graphs
A↔ B that have strong expansion from both sides ?
Behaviour of algorithm for typical errors (rather than
adversarial): deal with #errors linear in n ?
Better codes ? Minimum distance linear in n ?

