Quantum Expander Codes

Anthony Leverrier¹, Jean-Pierre Tillich¹, Gilles Zémor²

¹INRIA, ²Bordeaux Mathematics Institute

January 2016, Banff

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Context

- Search for quantum codes with fast decoding (linear-time in #qbits *n*.
- Codes with local structure (LDPC): low-weight generators.
- Deal with degeneracy: decoder has several choices for error output.
- Constructions of quantum LDPC codes are difficult to find. Random choice does not work well either. Can one find quantum LDPC codes with minimum distance $> \sqrt{n}$?
- This contribution: decode in linear-time arbitrary (adversarial) patterns of weight ≤ (constant)√n for codes with non-zero rate.
- Export expander code techniques.

Classical Expander Codes (Sipser-Spielman 1996)

Code: set of binary vectors $(x_1, ..., x_n)$ satisfying set of linear equations. Can be represented by a *factor* (Tanner) graph relating $A = \{1, ..., n\}$ to the set of equations *B*. vertex $a \in A$ is incident to *b* if x_a is involved in equation (*b*) $x_a + x_i + x_j = 0$.

(日) (日) (日) (日) (日) (日) (日)

Expansion

Bipartite graph (*A*, *B*) of left degree Δ is (γ , δ) (left)–expanding if for all $S \subset A$, $|S| \leq \gamma |A|$, we have

#neighbours(S) $\geq (1 - \delta)\Delta |S|$.

If expansion large enough, many neighbours of *S* have degree 1 (*unique neighbours*). If *S* is set of errors, this means many equations contain exactly one symbol in error.

Expander decoding

Therefore there should exist a critical symbol such that flipping its value decreases the syndrome weight (number of unsatisfied equations).

Hence decoding algorithm: flip a symbol if it decreases the syndrome weight: repeat until syndrome =0.

Algorithm may sporadically introduce new errors, but can't happen too often because syndrome weight is decreasing all the time and

```
syndrome weight \geq (1 - 2\delta)\Delta \# errors
```

(expansion).

Argument works when $\delta < 1/4$ (i.e. expansion coefficient is > 3/4 of maximum. Guarantees correction of arbitrary pattern of $< \frac{1}{2}\gamma n$ errors.

CSS quantum codes

Two types of errors, *X*-errors and *Z*-errors. Can be modelled as two binary error vectors e_X and e_Z occurring simultaneously.

The CSS (Calderbank Shor Steane) stabilizer code structure:

So can be thought of as two classical codes, but Important technicality 1: row space V_X of H_X and row space V_Z of H_Z must be orthogonal.

It is possible to compute (measure) syndrome $\sigma_X(e_X)$ and syndrome $\sigma_Z(e_Z)$.

Quantum LDPC codes

Important technicality 2: error vectors e_X in V_X have zero s_Z syndrome, but they don't count: $e_X |\psi\rangle = |\psi\rangle$.

Problematic errors. Errors of zero syndrome not in V_X or V_Z .

Decoding problem is purely classical: find most plausible e_X and e_Z from syndromes.

Why not decode both codes separately, from syndromes $\sigma_X(e_X)$ and $\sigma_Z(e_Z)$, with each code ignoring the other one ? In particular why not use classical expander decoding on the two factor graphs of H_X and H_Z ?

Quantum expander decoding ?

Answer: because expansion is incompatible with existence of the other code.

Each of the two classical codes defined by the parity-check matrices H_X and H_Z have *constant* minimum distances, when they are LDPC. (Can individually correct only a constant number of classical errors).

Worse: error vectors e_X and e_Z are really defined modulo row-spaces V_Z and V_X of \mathbf{H}_Z and \mathbf{H}_X . The value of an individual bit is meaningless.

(ロ) (同) (三) (三) (三) (○) (○)

Must rely on expansion of some other object.

Quantum "product" codes (Tillich-Z 2009)

Code can be described by two factor graphs. Start with ordinary bipartite graph $A \leftrightarrow B$ and create:

Quantum Parameters

Length: $n = |A|^2 + |B|^2$. Dimension: $k \ge (|A| - |B|)^2$ Minimum distance: equal to min(d, d^T)

where *d* is minimum distance of "original" classical LDPC code defined by factor graph $A \leftrightarrow B$, and d^T is the minimum distance of the *transpose code* i.e. the code defined by the factor graph $B \leftrightarrow A$. Typically minimum distance is exactly *d*.

Potential therefore for correcting $\Omega(\sqrt{n})$ adversary errors.

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dimension 2, minimum distance scales as \sqrt{n} .

Original graph $A \leftrightarrow B$ is just simple cycle. No expansion.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Decoding idea

Decode locally, but not individual bits.

Decode individual generators.

Find a pattern inside a generator that decreases the syndrome weight.

Repeat until syndrome is zero.

Remark: we are not modifying the "received vector". There is no received vector, just the syndrome. We are constructing a low-weight error pattern that has the given syndrome.

(ロ) (同) (三) (三) (三) (○) (○)

Details of a generator

Generator g_{ba} . Set of coordinate positions. Consists of $\alpha a A^2$, $b\beta \in B^2$ for a, b fixed, α neighbour of b, β neighbour of a.

Inside of rectangle consists of all $\alpha\beta$: syndrome coordinates. Shaded area: syndrome coordinates that are at "1". **Critical generators**

Classical expander codes: decoding relies on existence of bit node with many unique neighbours.

Quantum case: rely on the existence of *critical generator*.

When "flipping" error positions x_a and x_b , only syndrome coordinates can transition $0 \rightarrow 1$. Weight always decreases if small enough.

Critical generators and expansion

Weight decreases if $\chi_a \leq \frac{1}{3}\Delta_B$ and $\chi_b \leq \frac{1}{3}\Delta_A$.

Existence of a critical generator guaranteed if expansion of component graphs $A \leftrightarrow B$ and $B \leftrightarrow A$ is large enough. We need expansion of 5/6 of graph degree. Compare with 3/4 in classical LDPC case.

Key: Consider projection of error set on first and second coordinates.

Theorem: If expansion of 5/6degree in $A \leftrightarrow B$ and $B \leftrightarrow A$ guaranteed for subsets of vertices less than $\gamma_A|A|$ and $\gamma_B|B|$, then algorithm corrects every pattern of weight less than

$$\frac{1}{1+3\Delta_B}\min(\gamma_A|A|+\gamma_B|B|).$$

Questions

Construct (rather than randomly choose) bipartite graphs
A ↔ B that have strong expansion from both sides ?

(ロ) (同) (三) (三) (三) (○) (○)

- Behaviour of algorithm for typical errors (rather than adversarial): deal with #errors linear in n?
- Better codes ? Minimum distance linear in n?