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Context

@ Search for quantum codes with fast decoding (linear-time
in #qbits n.

@ Codes with local structure (LDPC): low-weight generators.

@ Deal with degeneracy: decoder has several choices for
error output.

@ Constructions of quantum LDPC codes are difficult to find.
Random choice does not work well either. Can one find
guantum LDPC codes with minimum distance > /n ?

@ This contribution: decode in linear-time arbitrary
(adversarial) patterns of weight < (constant)\/n for codes
with non-zero rate.

@ Export expander code techniques.



Classical Expander Codes (Sipser-Spielman 1996)

Code: set of binary vectors (x, ..., Xn, ) satisfying set of linear
equations. Can be represented by a factor (Tanner) graph
relating A = {1, ... n} to the set of equations B. vertex a € Ais
incident to b if x, is involved in equation (b) xz + X; + x; = 0.
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Expansion
Bipartite graph (A, B) of left degree A is (v, ¢) (left)—expanding
if for all S C A, |S| < 7|A|, we have
#neighbours(S) > (1 — §)A|S|.
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If expansion large enough, many neighbours of S have
degree 1 (unique neighbours). If S is set of errors, this means
many equations contain exactly one symbol in error.



Expander decoding

Therefore there should exist a critical symbol such that flipping
its value decreases the syndrome weight (number of
unsatisfied equations).

Hence decoding algorithm: flip a symbol if it decreases the
syndrome weight: repeat until syndrome =0.

Algorithm may sporadically introduce new errors, but can’t
happen too often because syndrome weight is decreasing all
the time and

syndrome weight > (1 — 20) A#errors

(expansion).

Argument works when § < 1/4 (i.e. expansion coefficient is

> 3/4 of maximum. Guarantees correction of arbitrary pattern
of < Jynerrors.



CSS quantum codes

Two types of errors, X-errors and Z-errors. Can be modelled as
two binary error vectors ex and ez occurring simultaneously.

The CSS (Calderbank Shor Steane) stabilizer code structure:
o
L
So can be thought of as two classical codes, but

Important technicality 1: row space Vx of Hx and row space V,
of Hz must be orthogonal.

H=

It is possible to compute (measure) syndrome ox(ex) and
syndrome oz(€ez).



Quantum LDPC codes
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Important technicality 2: error vectors ex in Vx have zero sy
syndrome, but they don’t count: ex|y) = [¢).

H=

Problematic errors. Errors of zero syndrome not in Vy or V.

Decoding problem is purely classical: find most plausible ex
and ez from syndromes.

Why not decode both codes separately, from syndromes
ox(ex) and oz(ez), with each code ignoring the other one ? In
particular why not use classical expander decoding on the two
factor graphs of Hy and Hy ?



Quantum expander decoding ?

Answer: because expansion is incompatible with existence of
the other code.

Each of the two classical codes defined by the parity-check
matrices Hy and H; have constant minimum distances, when
they are LDPC. (Can individually correct only a constant
number of classical errors).

Worse: error vectors ex and ez are really defined modulo
row-spaces V7 and Vy of Hz and Hy. The value of an
individual bit is meaningless.

Must rely on expansion of some other object.



Quantum “product” codes (Tillich-Z 2009)

Code can be described by two factor graphs. Start with
ordinary bipartite graph A <+ B and create:




Quantum Parameters

Length: n = |A]2 + |BJ2.

Dimension: k > (|A| — |BJ)?

Minimum distance: equal to min(d, d”)

where d is minimum distance of “original” classical LDPC code
defined by factor graph A <+ B, and d is the minimum distance
of the transpose code i.e. the code defined by the factor graph
B + A. Typically minimum distance is exactly d.

Potential therefore for correcting (1/n) adversary errors.



Particular instance: the Kitaev code




Particular instance: the Kitaev code
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Particular instance: the Kitaev code
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Particular instance: the Kitaev code

111100 ---
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Dimension 2, minimum distance scales as /n.

Original graph A «+» B is just simple cycle. No expansion.




Decoding idea

Decode locally, but not individual bits.
Decode individual generators.

Find a pattern inside a generator that decreases the syndrome
weight.

Repeat until syndrome is zero.

Remark: we are not modifying the “received vector”. There is
no received vector, just the syndrome. We are constructing a
low-weight error pattern that has the given syndrome.



Details of a generator

Generator gp,. Set of coordinate positions. Consists of aa A?,
bs € B? for a, b fixed, o neighbour of b, 5 neighbour of a.
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Inside of rectangle consists of all a3: syndrome coordinates.
Shaded area: syndrome coordinates that are at “1”.



Critical generators

Classical expander codes: decoding relies on existence of bit
node with many unique neighbours.

Quantum case: rely on the existence of critical generator.
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When “flipping” error positions x5 and x, , only
coordinates can transition 0 — 1. Weight always decreases if
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small enough.
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Critical generators and expansion

Weight decreases if x5 < $Ag and xp < Aa.

Existence of a critical generator guaranteed if expansion of
component graphs A <+ B and B + A is large enough. We
need expansion of 5/6 of graph degree. Compare with 3/4 in
classical LDPC case.

Key: Consider projection of error set on first and second
coordinates.

Theorem: If expansion of 5/6degree in A<« Band B <+ A

guaranteed for subsets of vertices less than ~4|A| and 5| B,
then algorithm corrects every pattern of weight less than

]
——mi A Bl).
17305 min(yalAl +vg|B|)



Questions

@ Construct (rather than randomly choose) bipartite graphs
A < B that have strong expansion from both sides ?

@ Behaviour of algorithm for typical errors (rather than
adversarial): deal with #errors linearin n ?

@ Better codes ? Minimum distance linear in n ?



