
Quantum Interactive Proofs
and Semidefinite Programming

John Watrous
Institute for Quantum Computing

University of Waterloo

Talk overview

The main goal of the talk is to introduce the quantum interactive
proof system model and explain how semidefinite programming is
useful in its analysis.

There are 6 main sections of the talk:

1. Classical interactive proof systems overview.

2. Quantum interactive proof systems: definitions and basic facts.

3. Brief introduction to semidefinite programming.

4. A semidefinite programming formulation of quantum interactive
proof systems.

5. QIP = PSPACE.

6. A different semidefinite programming formulation of quantum
interactive proof systems (and other interactions).

Please feel free to ask questions at any time!

1 / 52

Background knowledge

I will assume that you are familiar with the basics of quantum
information and computation, including:

1. States (as density operators), measurements, and channels.

2. Quantum circuits and related notions (such as BQP).

3. Basic linear algebra and matrix theory.

For the purposes of this talk, a register is a collection of qubits to
which we assign a name and view as a single object.

Typical names for registers will be X, Y, Z, and W (often with
subscripts), and we use the same letter in a scripted font to denote its
associated Hilbert space (e.g., X , Y , Z , andW).

Assume quantum circuits are composed of gates from a finite universal
gate set, such as Toffoli, Hadamard, and (imaginary) phase gates.
We may include ancillary and erasure gates if we want to consider
circuits that implement general channels.

2 / 52

1. Classical interactive proof systems.

Proofs in theoretical computer science, definition of interactive proof
systems and complexity classes, and a few simple examples.

The notion of proofs in theoretical computer science

The general notion of a proof has central importance in the theory of
computation, both historically and mathematically speaking.

• Gottfried Leibniz (1646–1716) built a calculating machine and
developed an early form of symbolic logic. He wrote of extending his
machine to reason using this symbolic logic.

• Alonzo Church (1903–1995) and Alan Turing (1912–1954)
developed the first formal models of computation. They were both
influenced and motivated by work of David Hilbert (1862–1943) and
Kurt Gödel (1906–1978) on mathematical logic.

• The theory of NP-completeness, pioneered by Stephen Cook,
Leonid Levin, and Richard Karp in the early 1970s, is closely linked
to the efficient verification of proofs.

The connections are natural: classical notions of proofs and
computations may both be abstracted as manipulations of symbols
according to fixed sets of rules.

3 / 52

Interactive proofs and quantum computation

The 1980s saw the introduction of two fascinating ways of extending
the traditional notions of proofs and computations.

• The interactive proof system model was proposed by
Shafi Goldwasser, Silvio Micali, and Charles Rackoff, and
independently by László Babai in 1985.

• Quantum computation was proposed independently by
Yuri Manin and Richard Feynman in the early 1980s. David Deutsch
defined the quantum Turing machine model of computation in 1985.

The interactive proof system model has had a major impact on
complexity theory. The model is also important in theoretical
cryptography, and many variations on it have been studied.

Further comments on the history of quantum computation are
presumably not needed for this audience. . .

4 / 52

Interactive proof systems

Interactive proof systems have the following structure:

Verifier
computationally

bounded

Prover
computationally

unbounded

Input x Input x
Communication

Output: 0 or 1 (“reject” or “accept”).

To say that a computational decision problem has an interactive proof
system means that there exists a verifier meeting two conditions:

Completeness: For every yes-input, there must exist a prover strategy
causing the verifier to accept with high probability.

Soundness: For every no-input, all prover strategies must cause the
verifier to reject with high probability.

5 / 52

Informal example: the Pepsi challenge

Consider the following claim:

Coke and Pepsi taste different.

Suppose that you believe this claim, and that indeed you can taste the
difference. (Substitute “salt” and “sugar” for “Coke” and “Pepsi” if it
helps with the example.)

How would you convince a skeptic?

Non-interactive proof: hopeless.

Interactive proof: allow the skeptic to perform a randomized blind
taste test on you. . . When you correctly identify Coke or Pepsi 100
times in a row, the skeptic should be convinced.

6 / 52

A computational example: graph isomorphism

The graph isomorphism problem is as follows:

Input: Two simple, undirected graphs G0 and G1.

Yes: G0 and G1 are isomorphic (G0 ∼= G1).

No: G0 and G1 are not isomorphic (G0 6∼= G1).

This problem is in NP: it is easy to prove that two graphs are
isomorphic by simply exhibiting an isomorphism from G0 to G1.

4

7

2

6

1

3

5

1

2

3

4

5

6

7

X

X

X

X

X
X

X

1

2

3

4

5

6

7

Isomorphism: 1→ 5, 2→ 3, 3→ 6, 4→ 1, 5→ 7, 6→ 4, 7→ 2.

7 / 52

Another example: graph non-isomorphism

The completeness and soundness conditions are not symmetric. . .

Consider the graph non-isomorphism problem:

Input: Two simple, undirected graphs G0 and G1.

Yes: G0 and G1 are not isomorphic (G0 6∼= G1).
No: G0 and G1 are isomorphic (G0 ∼= G1).

Consider proving that these two graphs are non-isomorphic:

1

2

4

5

6

7

3

5

2

6

1

3

7

4

It is not known whether or not graph non-isomorphism is in NP.
8 / 52

Blind taste test for graphs

There is a simple (classical) interactive proof system for the graph
non-isomorphism problem requiring just one question and response:

1. The verifier randomly chooses a bit b ∈ {0, 1} and a permutation
σ ∈ Sn, sets H = σ(Gb), and sends H to the prover.

2. Implicitly, the prover is being challenged to identify whether b = 0
or b = 1. If the prover guesses correctly, the verifier accepts (or
outputs 1), otherwise he rejects (or outputs 0).

Intuitively speaking, we may think of isomorphism classes of graphs
as having different flavors. The prover, being computationally
unbounded, can taste the difference between the graphs (even after a
random permutation).

This protocol may be repeated many times (sequentially or in parallel)
to decrease the error probability.

9 / 52

Classical complexity classes from interactive proofs

Several variants of classical interactive proof systems have been
studied, and many results are known about these models.

Two fundamental complexity classes based on these models:

AM The class of decision problems having classical interactive
proof systems in which a constant number of messages are
exchanged between the prover and verifier.

IP The class of decision problems having classical interactive
proof systems in which a polynomial number of messages
are exchanged between the prover and verifier).

It is known that IP = PSPACE.
[LUND, FORTNOW, KARLOFF, & NISAN 1990; SHAMIR 1990]

Both classes are highly robust with respect to choices of error bounds.

10 / 52

2. Quantum interactive proof systems.

Definition of the model and complexity classes,
relationships to other classes.

Quantum interactive proof systems

The quantum interactive proof system model works exactly the
same as the classical model, except that the prover and verifier may
exchange and process quantum information.

General assumptions and notions of completeness and soundness are
unchanged. . .

The model may be formalized using quantum circuits. Here is an
illustration of an interaction (on a fixed input string):

V1 V2 V3

P0 P1 P2

Z1 Z2

X1 X2Y0 Y1 Y2

W0 W1

Z3

11 / 52

The class QIP

We define complexity classes based on quantum interactive proofs as
follows:

QIP The class of decision problems having quantum interactive
proof systems (allowing polynomially many messages to
be exchanged between the prover and verifier).

QIP(m) The class of decision problems having quantum interactive
proof systems, where at mostmmessages are exchanged
in total.

It holds that
QIP(3) = QIP = PSPACE;

quantum interactive proof systems are no more powerful than classical
ones, but offer a reduction in the number of required required.

12 / 52

Diagram of Classes

P

BPP

BQP

NP

MA

QMA = QIP(1)

PP

AM

QIP(2)

PSPACE = QIP

EXP

13 / 52

Upper bounds by classical simulations

To prove upper bounds (i.e., limitations) on the power of quantum
interactive proof systems, we consider classical simulations of
quantum interactive proofs.

General goal: Given that A is a decision problem having a quantum
interactive proof system (of some particular variety), find a classical
algorithm for A obeying one of more resource constraints of interest.

Several results of this type make use of semidefinite programming.

Examples:

QIP ⊆ EXP [KITAEV & W. 2000].

QIP = PSPACE [JAIN, JI, UPADHYAY, & W. 2009].

QRG = EXP [GUTOSKI & W. 2006].

QRG(2) = PSPACE [GUTOSKI & WU 2010].

QIPlog = BQP [BEIGI, SHOR, & W. 2010].

14 / 52

3. Semidefinite programming.

Definitions, a simple example, weak and strong duality,
summary of algorithms.

Some linear algebra notation

Let L(X ,Y) denote the set of all linear mappings (or operators) from a
vector space X to a vector space Y , and let L(X) denote L(X ,X).

The adjoint (or conjugate transpose) of an operator A will be denoted
A∗ (as opposed to A†).

For a given finite-dimensional Hilbert space X , we will let Herm(X),
Pos(X), and D(X) denote the sets of Hermitian operators, positive
semidefinite operators, and density operators acting on X .

If A,B ∈ Herm(X), then the notations A ≤ B and B ≥ A mean that
B−A ∈ Pos(X).

When we refer to the inner product of two operators A,B ∈ L(X ,Y),
we mean the Hilbert–Schmidt inner product:

〈A,B〉 = Tr
(
A∗B

)
.

15 / 52

Linear maps on spaces of operators

Linear maps of the form

Φ : L(X)→ L(Y)

are important in quantum information theory. (E.g., quantum channels
are important examples of maps of this form.)

For such a map, we define the adjoint map Φ∗ : L(Y)→ L(X) to be
the unique map that satisfies

〈Y,Φ(X)〉 = 〈Φ∗(Y), X〉

for all X ∈ L(X) and Y ∈ L(Y).

A map Φ of the form above is said to be Hermiticity-preserving if
Φ(X) ∈ Herm(Y) for all X ∈ Herm(X).

16 / 52

Semidefinite programs

A semidefinite program (or SDP for short) is a pair of optimization
problems, specified by a triple (Φ,A,B), where:

1. Φ : L(X)→ L(Y) is a Hermiticity-preserving linear map,

2. A ∈ Herm(X), and

3. B ∈ Herm(Y).

The pair of optimization problems is as follows:

Primal problem

maximize: 〈A,X〉
subject to: Φ(X) = B

X ∈ Pos(X)

Dual problem

minimize: 〈B, Y〉
subject to: Φ∗(Y) ≥ A

Y ∈ Herm(Y)

(There are other equivalent formulations of these problems, including
the so-called standard form, that you might be familiar with.)

17 / 52

Optimal values

The optimal value of the primal problem

maximize: 〈A,X〉
subject to: Φ(X) = B

X ∈ Pos(X)
is defined as

α = sup
{
〈A,X〉 : X ∈ Pos(X), Φ(X) = B

}
.

Similarly, the optimal value of the dual problem

minimize: 〈B, Y〉
subject to: Φ∗(Y) ≥ A

Y ∈ Herm(Y)
is defined as

β = inf
{
〈B, Y〉 : Y ∈ Herm(Y), Φ∗(Y) ≥ A

}
.

18 / 52

Example

As a very simple example, we may take:

X = Cn (arbitrary n) and Y = C,

let A ∈ Herm(X) be arbitrary, and let Φ = Tr and B = 1.

The primal problem looks like this:

maximize: 〈A,X〉
subject to: Φ(X) = B

X ∈ Pos(X)

simplify maximize: 〈A, ρ〉
subject to: ρ ∈ D(X)

The optimal value of the primal problem is

α = λ1(A)

(the largest eigenvalue of A).

19 / 52

Example (continued)

The dual problem looks like this:

minimize: 〈B, Y〉
subject to: Φ∗(Y) ≥ A

Y ∈ Herm(Y)

simplify
minimize: λ

subject to: A ≤ λ1
λ ∈ R

Here we used the fact that the adjoint of the trace map is given by

Tr∗(λ) = λ1

for all λ ∈ C. This must be so, because 〈λ,Tr(X)〉 = 〈λ1, X〉.

The optimal value of the dual problem is

β = λ1(A).

It is not a surprise that α = β; this usually happens.

20 / 52

Duality

For a semidefinite program specified by (Φ,A,B), we have defined the
optimal primal value α and the optimal dual value β as

α = sup
{
〈A,X〉 : X ∈ Pos(X), Φ(X) = B

}
,

β = inf
{
〈B, Y〉 : Y ∈ Herm(Y), Φ∗(Y) ≥ A

}
.

Weak duality: it always holds that α ≤ β.

To see this, suppose X is primal feasible and Y is dual feasible:

X ∈ Pos(X) and Φ(X) = B,

Y ∈ Herm(Y) and Φ∗(Y) ≥ A.
It follows that

〈A,X〉 ≤ 〈Φ∗(Y), X〉 = 〈Y,Φ(X)〉 = 〈Y, B〉 = 〈B, Y〉.

(The inequality follows from 〈P,Q〉 ≥ 0 for P,Q ≥ 0.)

21 / 52

Duality (continued)

The relationship between the primal and dual optimal values is
represented by this figure:

duality gap
β

α

minimization
in the dual

maximization
in the primal

If we ever find a primal feasible X and a dual feasible Y such that

〈A,X〉 = 〈B, Y〉,

then we know we have found the optimal values; and moreover we
have α = β (a condition known as strong duality).

22 / 52

Duality (continued)

The relationship between the primal and dual optimal values is
represented by this figure:

duality gap
β

α

minimization
in the dual

maximization
in the primal

Also note:

Y dual feasible⇒ α ≤ 〈B, Y〉
X primal feasible⇒ β ≥ 〈A,X〉.

Every feasible point provides a bound on the complementary problem.

22 / 52

Strong duality

Strong duality refers to the situation in which the optimal primal and
dual values are equal: α = β. It is possible to construct SDPs for which
strong duality fails. (We could have α = 0 and β = 1, for instance.)

However, for most SDPs that arise naturally, strong duality will hold.

Slater conditions: strong duality holds under either of the following
conditions:

1. The primal is feasible (there exists X ∈ Pos(X) with Φ(X) = B)
and the dual is strictly feasible (there exists Y ∈ Herm(Y) with
Φ∗(Y) > A).

(Moreover, the optimal primal value is achieved in this case.)

2. The primal is strictly feasible (there exists X > 0 with Φ(X) = B)
and the dual is feasible (there exists Y ∈ Herm(Y) with
Φ∗(Y) ≥ A).

(Moreover, the optimal dual value is achieved in this case.)

23 / 52

More general forms of SDPs

It is common that one sees semidefinite programs having multiple
variables and both equality and inequality constraints, e.g.,

maximize: 〈A0, X0〉+ 〈A1, X1〉
subject to: X0 + X1 ≤ B, X0, X1 ∈ Pos(X).

We can convert such SDPs to ones of the form described before by
using block matrices and slack variables:

maximize:

〈A0 0 0

0 A1 0

0 0 0

 ,
X0 · ·
· X1 ·
· · Y

〉

subject to: Φ

X0 · ·
· X1 ·
· · Y

 def
= X0 + X1 + Y = B,

X0 · ·
· X1 ·
· · Y

 ≥ 0.
24 / 52

Algorithms for approximating semidefinite programs

There exist efficient algorithms for approximating optimal solutions of
semidefinite programs, provided that they meet certain conditions.

1. Ellipsoid method: Not useful in practice, but provides a provably
polynomial-time algorithm for a very general class of SDPs (having
“well-bounded” feasible sets).

2. Interior point algorithms: These algorithms are useful in practice.
(The CVX system for MATLAB provides a very nice, easy-to-use
implementation.)

3. Matrix multiplicative weights update method: this is a
“meta-algorithm” that describes certain highly-efficient algorithms
for special classes of semidefinite programs.

Not all semidefinite programs can be solved efficiently. Some have
exponential-size solutions, and others are related to the notorious sum
of square-roots problem.

25 / 52

4. An SDP for quantum interactive proofs.

One of two general ways to represent quantum interactive
proof systems by semidefinite programs, yields QIP ⊆ EXP

and perfect parallel repetition.

Optimization over compatible provers

Let us begin by considering the general problem at hand.

From any quantum interactive proof on a fixed input string, we obtain
a quantum verification process, taking inputs and producing outputs
over the course of multiple rounds:

V1 V2 V3

P0 P1 P2

Z1 Z2

X1 X2Y0 Y1 Y2

W0 W1

Z3

The goal is to optimize over all possible compatible provers to
determine the maximum probability with which a particular
measurement outcome will be produced.

26 / 52

States of the registers the verifier touches

To phrase the optimization problem as an SDP, we make the simplifying
assumption that the verifier’s transformations V1, . . . , Vn are unitary.

Consider an optimization over the possible states of the registers the
verifier touches (for each choice of co-existing registers).

V1 V2 V3

P0 P1 P2

Z0 Z1 Z2

X1 X2 X3Y0 Y1 Y2

W0 W1 W2

Z3

σ0 ρ1 σ1 ρ2 σ2 ρ3

Certain constraints must hold. For example, if ρ1 ∈ D(X1 ⊗Z1) and
σ1 ∈ D(Y1 ⊗Z1) represent states of (X1,Z1) and (Y1,Z1), then

TrX1
(ρ1) = TrY1(σ1).

27 / 52

States of the registers the verifier touches

Another type of constraint corresponds to a consistency between the
states before and after each verifier transformation.

V1 V2 V3

P0 P1 P2

Z0 Z1 Z2

X1 X2 X3Y0 Y1 Y2

W0 W1 W2

Z3

σ1 ρ2σ0

For each k = 1, . . . , n (for n the number of verifier operations) we must
have

Vkσk−1V
∗
k = ρk.

Finally, σ0 must be a valid starting state of (Y0,Z0). (In other words, Z0
must be initialized to its starting state.)

28 / 52

Quantum prover optimization as an SDP

Now, if we optimize over all states obeying these constraints (where the
objective function is the probability of acceptance), we get an SDP:

maximize:
〈
V∗nΠVn, σn−1

〉
subject to: TrY0(σ0) = |0 · · · 0〉 〈0 · · · 0| ,

TrY1(σ1) = TrX1

(
V1σ0V

∗
1

)
,

...

TrYn−1
(σn−1) = TrXn−1

(
Vn−1σn−2V

∗
n−1

)
,

σ0 ∈ D(Y0 ⊗Z0)
...

σn−1 ∈ D(Zn−1 ⊗ Yn−1).

(Π is a measurement operator corresponding to acceptance. Because
ρk = Vkσk−1V

∗
k , we don’t really need ρ1, . . . , ρn as variables.)

29 / 52

All feasible points represent valid provers

One important question: does every feasible point represent a valid
strategy for the prover?

Remarkably, the answer is yes—this fact follows from the unitary
equivalence of purifications (and this is why we have assumed the
verifier applies unitary operations).

Suppose the prover wishes to perform a transformation like this:

P

σρ

X Y

Z

|φ〉|ψ〉
V W

If the prover holds a purification |ψ〉 of ρ, then the transformation is
possible, provided that TrX (ρ) = TrY(σ).

30 / 52

Consequence: QIP ⊆ EXP

As a consequence of the SDP formulation just described, we obtain
QIP ⊆ EXP. In more detail:

• We are given a decision problem A ∈ QIP, and we wish to prove
A ∈ EXP (i.e., there exists an exponential-time algorithm, for a
classical deterministic Turing machine, that decides A).

• On any given input string x, we compute a description of the SDP
in deterministic exponential time. (The description of the SDP will
be exponentially large in x, and the matrices required to specify it
can be obtained from the circuit description of the verifier.)

• Finally, we run a polynomial-time SDP algorithm (such as the
ellipsoid algorithm), and accept or reject x depending on the
approximate optimal value obtained.

(One must prove that the SDP possesses the properties required for
the chosen algorithm to run in polynomial time, but this is not difficult.)

31 / 52

Dual form of the SDP

If we compute (and simplify) the dual form of the SDP for optimizing
over states of a quantum interactive proof, we obtain this problem:

minimize: λ

subject to: λ1 ≥ (〈0 · · · 0|⊗ 1)V∗1 (Z1 ⊗ 1)V1(|0 · · · 0〉 ⊗ 1),
Z1 ⊗ 1 ≥ V∗2 (Z2 ⊗ 1)V2,

...

Zn−2 ⊗ 1 ≥ V∗n−1(Zn−1 ⊗ 1)Vn−1,
Zn−1 ⊗ 1 ≥ V∗nΠVn,
λ ∈ R
Z1 ∈ Herm(Z1), . . . , Zn−1 ∈ Herm(Zn−1).

Strong duality can be verified through the Slater conditions.

32 / 52

Application: analysis of parallel repetition

Consider the problem of parallel repetition: we run two (or more)
quantum verifiers simultaneously (i.e., in parallel).

V1
1 V1

2 V1
3

V2
1 V2

2 V2
3

P0 P1 P2

Z1
1 Z1

2

X1
1 X1

2Y1
0 Y1

1 Y1
2

Z1
3

Z2
1 Z2

2

X2
1 X2

2Y2
0 Y2

1 Y2
2

Z2
3

W0 W1

Nothing forces a prover to treat the proof systems independently. What
is the optimal probability with which both (or all) of the verifiers can be
made to accept?

33 / 52

Proving parallel repetition

Let ω(V) denote the maximum acceptance probability of a verifier V
(for a prover interacting with V in isolation).

It is reasonable to conjecture that

ω(V1 ⊗ · · · ⊗ Vm) = ω(V1) · · ·ω(Vm). (1)

(An analogous fact holds for classical single-prover interactive proofs,
but fails for multi-prover interactive proofs.)

It is evident that

ω(V1 ⊗ · · · ⊗ Vm) ≥ ω(V1) · · ·ω(Vm);

one of the prover’s options is to play optimally against each verifier
independently. To prove (1), it therefore suffices to prove

ω(V1 ⊗ · · · ⊗ Vm) ≤ ω(V1) · · ·ω(Vm).

34 / 52

Proving parallel repetition

The inequality

ω(V1 ⊗ · · · ⊗ Vm) ≤ ω(V1) · · ·ω(Vm)

can be proved using the dual form of our SDP. (Let us focus on the
case m = 2 for simplicity.)

Consider the dual form of the SDP for V1, V2, and V1 ⊗ V2. Strong
duality holds for all three SDPs (and in particular for V1 and V2).

Take optimal dual solutions for the first two SDPs:

1. λ1 = ω(V1), Z11, . . . , Z
1
n−1 optimal dual solution for the V1 SDP.

2. λ2 = ω(V2), Z21, . . . , Z
2
n−1 optimal dual solution for the V2 SDP.

One can prove (using a simple and well-known operator inequality) that

λ = λ1λ2, Z1 = Z
1
1 ⊗ Z21, . . . , Zn−1 = Z

1
n−1 ⊗ Z2n−1

is feasible for the V1 ⊗ V2 SDP, and thus ω(V1 ⊗ V2) ≤ ω(V1)ω(V2).

35 / 52

5. QIP = PSPACE.

A high-level overview of the idea behind the proof.

PSPACE and bounded-depth Boolean circuits

To prove QIP = PSPACE, we just need to prove QIP ⊆ PSPACE.
(The other containment is easy: PSPACE = IP ⊆ QIP.)

Working directly with space-bounded algorithms is often not very
natural or amenable to our “usual” intuition about algorithms. . .

To get around this, we make use of an alternative characterization of
PSPACE in terms of bounded-depth Boolean circuits:

PSPACE = NC(poly).

NC(poly) refers to the class of problems solvable by exponentially
large Boolean circuits with polynomial depth.

C

x

output

polynomial
depth

36 / 52

A natural approach

Suppose that A is a decision problem having a quantum interactive
proof system. Our goal is to prove A ∈ NC(poly).

We might hope to obtain an NC(poly) circuit for A by solving an SDP
along simular lines to before, splitting the computation as so:

C1

x

(SDP description)

C2

output

polynomial
depth

In fact it is not difficult to perform C1 as suggested, using well-known
parallel algorithms for matrix operations. The difficult part is C2. . .

37 / 52

Parallel algorithms for SDPs

To perform the second part of the computation, represented by the
circuit C2 in the picture, in such a way that the overall circuit depth is
polynomial in x, we need a parallel algorithm for solving SDPs.

Unfortunately, general SDPs cannot be approximated well in parallel,
unless something unexpected happens in complexity theory (NC = P).

We will therefore need a special purpose parallel SDP algorithm for
the task at hand. Our first step will be to obtain the simplest SDP
formulation we can for the problem at hand.

There are multiple ways that are known to work:

• The original proof used a so-called public-coin quantum
interactive proof system (requiring just a single coin-flip).

• In this talk we will consider an alternative formulation (due to
Xiaodi Wu) based on a min-max formulation of the problem.

38 / 52

QIP and maximum output fidelity

A ∈ QIP, so there is a 3 message quantum interactive proof system for
A with perfect completenes and small soundness error probability.

V1 V2

P0 P1

Z1Z0

X1 X2Y0 Y1

W1 W2

Z2
Φ1 Φ2

Define channels Φ1 and Φ2 as

Φ1(ρ1) = TrX1

(
V1(|0 · · · 0〉 〈0 · · · 0|⊗ ρ1)V∗1

)
Φ2(ρ2) = TrY1

(
V∗2 (|1〉 〈1|⊗ ρ2)V2

)
for every ρ1 ∈ D(Y0) and ρ2 ∈ D(X2).

39 / 52

QIP and maximum output fidelity

A ∈ QIP, so there is a 3 message quantum interactive proof system for
A with perfect completenes and small soundness error probability.

V1 V2

P0 P1

Z1Z0

X1 X2Y0 Y1

W1 W2

Z2
Φ1 Φ2

A convenient fact:

ω(V) = max
ρ1,ρ2

F(Φ1(ρ1), Φ2(ρ2))2

where F(σ1, σ2) =
∥∥√σ1√σ2∥∥1 is the fidelity function.

39 / 52

QIP as a min-max quantity

We can now use our expression

ω(V) = max
ρ1,ρ2

F(Φ1(ρ1), Φ2(ρ2))2

to represent the problem as a min-max approximation.

Define a map Ξ so that

Ξ(ρ1 ⊗ ρ2) = Φ1(ρ1) −Φ2(ρ2)

and define
η = min

σ
max
P

〈
P, Ξ(σ)

〉
(where the minimum is over density operators σ and the maximum is
over operators with 0 ≤ P ≤ 1). Key fact:

x is a yes input ⇒ η = 0

x is a no input ⇒ η ≥ 1/2

40 / 52

Parallel algorithm for approximating min-max value

The following algorithm approximates the min-max quantity

η = min
σ

max
P

〈
P, Ξ(σ)

〉
.

1. Set X1 = 1 and T sufficiently large (polynomial in x).

2. For each t = 1, . . . , T , let

σt =
Xt

Tr(Xt)
,

let Πt be the projection operator corresponding to the positive
eigenspace of Ξ(σt), and let

Xt+1 = exp
(
−ε Ξ∗

(
Π1 + · · ·+ Πt

))
.

3. Output
1

T

T∑
t=1

〈
Πt, Ξ(σt)

〉
.

41 / 52

Analogy to the probabilistic experts algorithm

The specific way that the algorithm improves its guesses σ1, σ2, σ3, . . .
is analogous to the probabilistic experts algorithm. . .

We represent confidence in a collection of n experts with a probability
vector (p1, . . . , pn), initially set to (1/n, . . . , 1/n).

For a sequence of games or investments, we base our own predictions
on the weighted majority prediction of the experts (in accordance
with our confidence vector).

After each prediction, we penalize each expert that was wrong:

pk → (1− ε)pk

and then renormalize (p1, . . . , pn).

The algorithm very quickly approximates the expected performance of
the leading expert.

42 / 52

Noncommutative updates

The update rule in the min-max algorithm is more complicated than the
simple experts update rule. . . this is because of the noncommutative
nature of the problem.

Intuitively speaking, the operator Ξ∗
(
Π1 + · · ·+ Πt

)
in the update rule

Xt+1 = exp
(
−ε Ξ∗

(
Π1 + · · ·+ Πt

))
represents a penalty function of sorts. . . we may think of it as an
observable whose value is large for bad choices of σ, small for good
choices of σ. Setting Xt+1 in this way and normalizing is similar in spirit
to repeatedly penalizing experts and renormalizing the probability
vector representing confidence.

Similar to the experts algorithm, the min-max algorithm converges very
quickly to an approximation of the min-max value. Parallelizing every
step (using known methods) gives a parallel algorithm to approximate
the min-max value η, due to this very fast convergence.

43 / 52

6. A different SDP formulation of QIP.

An alternative SDP formulation based on Choi operators,
generalization to other interactions, applications to

quantum complexity and coin-flipping.

Quantum process optimization as an SDP

A second way to represent prover optimization as an SDP is based
on Choi operators associated with linear maps of the form
Φ : L(X)→ L(Y).

Given such a map, its Choi operator is defined as

J(Φ) =
∑
a,b

Φ(|a〉 〈b|)⊗ |a〉 〈b| .

For a quantum channel Φ, one may view this operator as being the
unnormalized state obtained by applying Φ to half of the unnormalized
maximally entangled state |ψ〉 =

∑
a |a〉 |a〉:

Φ

X
|ψ〉〈ψ| J(Φ)

X Y

44 / 52

Quantum process optimization as an SDP

It is well-known that a linear map Φ : L(X)→ L(Y) is a channel if and
only if

(1) J(Φ) is positive semidefinite, and

(2) TrY(J(Φ)) = 1X .

Consider a single-round proof system on a fixed input string:

V1 V2

P

Z

X Y

For Q determined in a simple way by V1, V2, and the measurement, the
optimal acceptance probability is given by this SDP:

maximize: 〈Q,X〉
subject to: TrY(X) = 1X , X ∈ Pos(Y ⊗ X).

45 / 52

Generalization to multiple rounds

Now consider a multiple-round prover strategy, like this one:

P1 P2 P3

X1 X2 X3Y1 Y2 Y3

W1 W2

One may (momentarily) ignore the time-ordering, regarding it as a map
of the form Φ : L(X1 ⊗X2 ⊗X3)→ L(Y1 ⊗ Y2 ⊗ Y3).

A perfect characterization of the possible Choi operators X3 = J(Φ)
that may be obtained in this way:

TrY3(X3) = X2 ⊗ 1X3
, X3 ∈ Pos(Y1 ⊗ Y2 ⊗ Y3 ⊗X1 ⊗X2 ⊗X3),

TrY2(X2) = X1 ⊗ 1X2
, X2 ∈ Pos(Y1 ⊗ Y2 ⊗X1 ⊗X2),

TrY1(X1) = 1X1
, X1 ∈ Pos(Y1 ⊗X1).

[GUTOSKI & W. 2006; CHIRIBELLA, D’ARIANO, & PERINOTTI 2007]

46 / 52

SDPs from the second method

Returning to the sort of optimization problem discussed before. . .

V1 V2 V3 V4
Z1 Z2 Z3

P1 P2 P3

X1 X2 X3Y1 Y2 Y3

W1 W2

For Q determined from V1, . . . , V4 and the measurement, the optimal
acceptance probability is represented by this SDP:

maximize: 〈Q,X3〉
subject to:

TrY3(X3) = X2 ⊗ 1X3
, X3 ∈ Pos(Y1 ⊗ Y2 ⊗ Y3 ⊗X1 ⊗X2 ⊗X3),

TrY2(X2) = X1 ⊗ 1X2
, X2 ∈ Pos(Y1 ⊗ Y2 ⊗X1 ⊗X2),

TrY1(X1) = 1X1
, X1 ∈ Pos(Y1 ⊗X1).

47 / 52

Complexity applications of the second SDP method

Using the second SDP formulation, we obtain an alternative proof that

QIP ⊆ EXP.

The second SDP method may be used to obtain an exponential-time
simulation even the verifier interacts with two competing provers:

QRG = EXP.

When combined with quantum tomography, a quantum simulation is
obtained when only a logarithmic number of qubits are exchanged:

QIPlog = BQP.

The second SDP formulation is also useful for proving other facts about
quantum interactions in different settings.

48 / 52

Dual form of maximum output probability SDP

The dual form of the SDP described a couple of slides ago is
remarkably simple:

minimize: λ

subject to: Q ≤ λR

for R ranging over all operators R ∈ Pos(Y1 ⊗Y2 ⊗Y3 ⊗X1 ⊗X2 ⊗X3)
that arise from a similar representation to Q, for processes of this form:

ρ Ψ1 Ψ2 Tr
Z1 Z2 Z3

Φ1 Φ2 Φ3

X1 X2 X3Y1 Y2 Y3

From this fact, we may obtain a very simple proof of Kitaev’s bound on
strong quantum coin-flipping. . .

49 / 52

Strong quantum coin-flipping

A strong quantum coin-flipping protocol with bias ε is an interaction
between two (honest) players Alice and Bob, both having output sets
{0, 1, abort}.

Required properties:

1. The interaction between the honest players Alice and Bob
produces the same outcome b ∈ {0, 1} for both players, with
probability 1/2 for each outcome.

2. If one of the players does not follow the protocol but the other
does, neither of the outcomes b ∈ {0, 1} is output by the honest
player with probability greater than 1/2+ ε.

Theorem (Kitaev): All strong quantum coin-flipping protocols have
bias at least

1√
2
−
1

2
≈ 0.207.

50 / 52

Simple proof of Kitaev’s coin-flipping bound

Consider any quantum coin-flipping protocol (any number of rounds).
Let the honest strategies for Alice and Bob be represented by
operators

{A0, A1, Aabort} and {B0, B1, Babort}.

Let p be the maximum probability a cheating Bob can force outcome 0
for Alice. This implies that there must be a (cheating) strategy R for
Alice such that A0 ≤ pR.

The strategy R would cause Bob to output 0 with probability

〈R, B0〉 ≥
1

p
〈A0, B0〉 =

1

2p
.

For p > 0 we have

max
{
p,

1

2p

}
≥ 1√

2
;

one of the players can force outcome 0 with probability at least 1√
2
. 2

51 / 52

Conclusion

Semidefinite programming is an indispensable tool in the study of
quantum interactive proof systems (and in quantum information and
computation more generally).

The next frontier in the study of quantum interactive proof systems is
the multi-prover quantum interactive proof system model.

|ψ〉

Verifier

Prover 1 Prover 2no communication
between provers

Combined actions of entanged provers are not likely to be represented
succinctly by semidefinite programs. . .

52 / 52

