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Establishing Quantum Advantage

 Decision Problems

— Shor’s algorithm
* Sampling Problems
— Boson Sampling [Aaronson Arkhipov]

— |QP [Bremner Jozsa Montanaro Shepherd]

— Many others [Knill LaFlamme]

[Morimae Fuji Fitzsimons][Fefferman Umans]...

This work: Classify when you get
quantum supremacy for sampling



Model
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Goal: Classify which H l
give you advantage over Measure in
classical computation standard basis



Universality

We don’t even know which 2-qubit H are
universal for quantum computing!
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We classify the power of
commuting 2-qubit Hamiltonians
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Main Result:
Dichotomy + Classification

For any 2-qubit commuting H:

* |If H generates entanglement, then it
allows to you perform hard sampling
problems

* Otherwise, H is efficiently classically
simulable
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Hard Sampling Task
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Hard to sample from
classically



Hard to Sample

There does not exist a randomized classical
algorithm M satisfying

1
7 Pr[M outputs y] < D(y) < vV2Pr[M outputs 9]

Assumption: The polynomlal hierarchy doesn’t
collapse 4 2




Why this matters

Lower fault-tolerance thresholds
[Aliferis et al. ‘09]



Relation to prior work

Previously: Knew some commuting H allow you
to perform difficult sampling tasks

This work: All commuting H (other than non-
entangling ones) allow you to perform difficult
sampling tasks



Proof QOutline

Techniqgue: Show postselected circuits
with H are universal for Quantum
Computing

hardness of sampling b
‘ | p g y
known techniques



Proof QOutline

* Postselected commuting circuits = BQP
-> Postselected commuting circuits = PostBQP

* |f you can simulate

— Postselected simulation can solve PostBQP

— BUT PostBPP = PostBQP
[Stockmeyer ‘83, Toda ‘91, Aaronson ‘05,
Bremner Jozsa Shepherd '11, Aaronson & Arkhipov ‘13]

Not possible to simulate




Goal: Postselected Universality

e 1-qubit gates + any entangling Hamiltonian is
universal [Dodd et al. ‘02, Bremner et al. ‘02]

To complete proof: Get all 1-qubit gates
under postselection



Goal: 1 qubit gates

If H is commuting, then
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Goal: 1 qubit gates

Postselection gadget:
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Goal: 1 qubit gates

Suffices to show can perform all 1-qubit
operations using products of L(t)’s
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Goal: 1 qubit gates

Suffices to show can perform all 1-qubit
operations using products of L(t)’s
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Representations

Inverses?



Goal: 1 qubit gates
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How do you invert
postselection?



Goal: 1 qubit gates

London Mathematical Society
Lecture Note Series - <




Goal: 1 qubit gates




Goal: 1 qubit gates

L(t)’s (and their inverses)
form a group

James E. Humphreys & d e n S e I y

Introduction to
Lie Algebras and

Saprseriaor generate SL(2,C)




Last case

This works for all entangling H except
a=d=-1, b=c=1, |a|=|B]
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Prior work: Hard because can embed
permanents in output distribution




Open problems

 Complete the classification!
* Extend hardness to L1 error
* Classify commuting gate sets

Open: Classify subgroups of SU(8)
Open: Classify subgroups of SL(2,C)



Thanks!

Questions?



