Transversal logical gates

SPT phases

gapped boundaries

Beni Yoshida (Perimeter Institute)

*SPT = symmetry protected topological

Transversal logical gates

SPT phases

gapped boundaries

*SPT = symmetry protected topological

Transversal Logical Gates at QIP

•	arXiv:1206.1609	Sergey Bravyi, Robert Koenig 🔸		QIP13
•	arXiv:1304.3709	Adam Paetznick, Ben Reichardt 🛛 🔸		QIP14
•	arXiv:1311.0879	Hector Bombin -		QIP15
•	arXiv:1408.1720	Fernando Pastawski, Beni Yoshida 🔺		QIP15
•	arXiv:1503.02065	Alex Kubica, Beni Yoshida, Fernando) 	Later
	Pastawski			Lator
•	arXiv:1503.07208	Beni Yoshida		This talk
•	arXiv:1503.07208 arXiv:1508.03468	Beni Yoshida Beni Yoshida		This talk Merged
•	arXiv:1503.07208 arXiv:1508.03468 arXiv:1509.03239	Beni Yoshida Beni Yoshida Sergey Bravyi, Andrew Cross		This talk Merged Later
•	arXiv:1503.07208 arXiv:1508.03468 arXiv:1509.03239 arXiv:1509.03626	Beni Yoshida Beni Yoshida Sergey Bravyi, Andrew Cross Beni Yoshida		This talk Merged Later This talk

remark

arXiv:1508.03468 will not be covered in this talk.

Why transversal gates ?

The problem(s)

- Given a quantum error-correcting code, how do we find transversal logical gates ? Why transversal gates ?
- How do we design a quantum error-correcting code with useful transversal logical gates ?

encoding circuit

Bravyi-Koenig theorem (2012)

Logical gate U : low-depth unitary gate (i.e. Local unitary)

• For a stabilizer Hamiltonian in D dim, faulttolerantly implementable gates are restricted to the D-th level of the Clifford hierarchy.

D-dim lattice

Clifford hierarchy (Gottesman & Chuang)

Sets of unitary transformations on N qubits

Quantum double model in d dimensions

- Quantum double model is a certain family of topological codes.
- Given a d-dimensional directed graph and a finite group G, one can define the quantum double model.

Main result

A systematic framework for constructing logical gates

- We will consider d-cocycle functions over G by studying the group cohomology Hd(G,U(1)). $\omega_n(g_1,\ldots,g_n)$
- Using d-cocycle functions, we can provide a recipe of constructing a fault-tolerant logical gate for the d-dimensional quantum double model.
- If the cocycle function has a non-trivial sequence of slant products, then the logical gate is a non-trivial d-th level gate.

*Slant product : a map from n-cocycle to n-1 cocycle

$$\omega_n \xrightarrow[i_{g_1}]{} \omega_n^{(g_1)} \xrightarrow[i_{g_2}]{} \omega_n^{(g_1,g_2)} \longrightarrow \cdots \longrightarrow \omega_n^{(g_1,g_2,\dots,g_{n-1})} \xrightarrow[i_{g_n}]{} \omega_n^{(g_1,g_2,\dots,g_{n-1},g_n)} \xrightarrow[U(1)]{} \text{ phase}$$
n-cocyle (n-1)-cocyle
$$arXiv:1509.03626 \text{ BY}$$

Transversal logical gates

SPT phases

gapped boundaries

Classification of gapped boundaries

• The Toric code has two types of boundaries (Bravyi-Kitaev 98)

* can create and annihilate an anyon without involving others.

Lagrangian subgroup

• [Levin 13] Condensing anyons are characterized by Lagrangian subgroup.

• (Almost) complete classification of 2dim gapped boundaries

Cond-Mat High-Energy	Bais-Slingerland 09, Kapustin-Saulina 11, Levin-Gu 12, Levin 13, Wang-Wen 12, Barkeshli-Jian-Qi 13, Lan-Wang-Wen 15
Quant-Info	Bravyi-Kitaev 98, Bombin-MartinDelgado 08, Bombin 10, Beigi-Shor-Whalen 11
Math	Kitaev-Kong 12, Kong 13, Fuchs-Shweigert-Valentino 14

Gapped boundary and logical gate

• Fault-tolerant logical gates and gapped domain walls are closely related.

Hadamard logical gate is transversal.

Topological color code

arXiv:1503.07208 BY

Gapped boundary and logical gate

• Fault-tolerant logical gates and gapped domain walls are closely related.

Hadamard logical gate is transversal.

arXiv:1503.07208 BY

Gapped boundary and logical gate

• Fault-tolerant logical gates and gapped domain walls are closely related.

Hadamard logical gate is transversal.

arXiv:1503.07208 BY

Domain walls vs logical gates

Fact

 Given a <u>fault-tolerant logical gate</u>, one can construct a <u>transparent</u> <u>domain wall</u> in topological quantum code.

Conjecture

• There is a one-to-one correspondence between transparent domain walls and fault-tolerant logical gates in topological quantum field theory (TQFT).

• For Z2*Z2, there are 72 different domain walls. All of them have corresponding logical operations.

Another result

- We construct a gapped boundary / gapped domain wall in the ddimensional quantum double model by using d-cocycle functions.
- In d>2, we can construct a gapped boundary where none of anyonic excitations can condense. (No electric charge/magnetic flux can condense)
- Anyons can condense into a boundary only if they are accompanied by superpositions of anyonic excitations.

"Lagrangian subgroup" needs to be modified.

Transversal logical gates

SPT phases

gapped boundaries

Topological color code (Bombin)

• The Hamiltonian is given by

$$H = -\sum_{P} S_{P}^{(X)} - \sum_{P} S_{P}^{(Z)}$$

defined on a three-colorable lattice

string operators

anyons in the color code

(equivalent to two copies of the toric code, BY2010)

Membrane operators in the color code

(1) Hadamard operator

$$\mathcal{H} : X \to Z \quad Z \to X$$

(2) R2 Phase operator

 $R_2 = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/2} \end{bmatrix}$

 $R_2 : X \to Y \quad Y \to -X$

• Comment: Rm operators are transversal in m-dimensional color code... $R_m := \operatorname{diag}(1, \exp(i\pi/2^{m-1})).$

String-like excitations ?

String logical operators — Point-like anyonic excitations

Membrane logical operators \longrightarrow String-like anyonic excitations(?)

Answer

Answer

+

R2 operators

applied

can be viewed as a one-dimensional wavefunction

Why SPT phases ?

- Origin of symmetries
 - Parity constraints of electric charges
 - 2dim color code = 2 copies of the toric code

Electric charges from copy A and copy B get entangled to form a looplike object.

- Origin of non-triviality
 - Non-triviality of the gapped domain wall.

Toward classification of logical gates

Key idea: sweeping SPT excitations

Sweep the domain wall over the entire system.

SPT phases are characterized by cocycle functions.

Logical actions are characterized by cocycle functions.

Topological color code ?

* The d-dimensional topological color code has a transversal Rd phase gate which belongs to the d-th level (outside of d-1 th level). (Bombin07)

* d-dimensional color code is equivalent to d copies of the d-dimensional toric code. (Kubica-BY-Pastawski 15)

i.e. the d-dimensional quantum double model with $G = (\mathbb{Z}_2)^{\otimes d}$

* There is a non-trivial d-cocycle: $\omega_d(g_1, \ldots, g_d) = (-1)^{g_1^{(1)} \ldots g_d^{(d)}}$

* The corresponding gate is the d-qubit control-Z gate.

Overview of the results

Domain wall in three-dimensions

 magnetic flux becomes a composite of magnetic flux and superposition of electric charges (3dim color code)

Three-loop braiding statistics

• The three-dimensional color code exhibits non-trivial braiding statistics.

The statistical angle can be computed by taking slant products of cocycle functions.

Multi-excitation braiding

• Two-particle braiding statistics can be studied by a group commutator

$$K(U_{\alpha}, U_{\beta}) = U_{\alpha}^{\dagger} U_{\beta}^{\dagger} U_{\alpha} U_{\beta}$$

 Three-loop braiding statistics can be studied by a sequential group commutator

$$K(K(U_{\alpha}, U_{\beta}), U_{\gamma}) = (U_{\alpha}^{\dagger} U_{\beta}^{\dagger} U_{\alpha} U_{\beta})^{\dagger} U_{\gamma}^{\dagger} (U_{\alpha}^{\dagger} U_{\beta}^{\dagger} U_{\alpha} U_{\beta}) U_{\gamma}.$$

Clifford hierarchy (Gottesman & Chuang)

Sets of unitary transformations on N qubits

Overview of the results

• arXiv:1503.07208 • arXiv:1509.03626

Overview of the results

