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Why transversal gates ?

Fault-tolerant logical gates
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• How do we implement a logical gate fault-tolerantly ?
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Ideally, by transversal 
implementationinput

Why transversal gates ?
• Given a quantum error-correcting code, how do we find transversal 

logical gates ?

• How do we design a quantum error-correcting code with useful 

transversal logical gates ?

The problem(s)



Bravyi-Koenig theorem (2012)





Quantum double model in d dimensions

• Given a d-dimensional directed graph and a finite group G, one 

can define the quantum double model.

• Quantum double model is a certain family of topological codes.
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A. Quantum double model

Let us begin by recalling construction of the quantum double model in d-spatial dimensions [46, 47]. Consider a

d-dimensional lattice ⇤ with directed edges. A Hilbert space with the orthogonal basis {|gi : g 2 G} is associated to

each edge where G is a finite group. The entire Hilbert space is denoted by H1. Operators Ag

v

and B
p

are defined

according to Fig. 1 where B
p

is a projector onto a subspace with no flux on a plaquette p. Define

A
v

=
1

|G|
X
g2G

Ag

v

. (1)

Operators A
v

and B
p

are projectors and pairwise commute. The Hamiltonian of the d-dimensional quantum double

model is given by

H
G

= �
X
v

A
v

�
X
p

B
p

(2)

where the summations run over all vertices v and plaquettes p. The ground state | 
gs

i satisfies

A
v

| 
gs

i = B
p

| 
gs

i = | 
gs

i (3)

for all v, p. For an arbitrary closed loop �, one can also define a projection operator B(�) onto fluxless subspaces. We

then have B(�)| 
gs

i = | 
gs

i for any contractible loop �.

FIG. 1: Definitions of operators Ag
v and Bp. Here I represents an identity element in G, Lg

+|hi = |ghi and L

g
�|hi = |hg�1i.

B. Gauging map

Next let us present a precise definition of gauging. By now, gauging has become a standard technique for studying

SPT phases. Yet it would be beneficial to formulate the procedure of gauging in a rigorous manner. Formally,

the gauging is an isometric bijective map (i.e. a duality map) between wavefunctions with global symmetry G to

wavefunctions with gauge symmetry G. Consider the same lattice ⇤ as before, but with the Hilbert space associated

to vertices instead of edges. The entire Hilbert space is denoted by H0. Here the subscript 0 indicates that spins live

on 0-dimensional objects. The gauging map � between computational basis states in H0 and H1 is defined according

does not depend on p, we retain this parameter to emphasize the duality between
Agðs; pÞ and Bhðs; pÞ.11 These operators generate an algebra D ¼ DðGÞ, Drinfield!s
quantum double [20] of the group algebra C½G%. It will play a very important role
below.Nowwe only need two symmetric combinations of Agðs; pÞ and Bhðs; pÞ, namely

AðsÞ ¼ N&1
X

g2G
Agðs; pÞ; BðpÞ ¼ B1ðs; pÞ; ð12Þ

where N ¼ jGj. Both AðsÞ and BðpÞ are projection operators. (AðsÞ projects out the
states which are gauge invariant at s, whereas BðpÞ projects out the states with
vanishing magnetic charge at p). The operators AðsÞ and BðpÞ commute with each
other.12 Also AðsÞ commutes with Aðs0Þ, and BðpÞ commutes with Bðp0Þ for different
vertices and faces. In the case G ¼ Z2, these operators are almost the same as the
operators (1), namely AðsÞ ¼ 1

2
ðAs þ 1Þ, BðpÞ ¼ 1

2
ðBp þ 1Þ.13

At this point, we have only defined the global Hilbert spaceN (the tensor product
of many copies of H) and some operators on it. Now let us define the Hamiltonian.

H0 ¼
X

s

ð1& AðsÞÞ þ
X

p

ð1& BðpÞÞ: ð13Þ

It is quite similar to the Hamiltonian (4). As in that case, the space of ground states is
given by the formula

L ¼ fjni 2 N : AðsÞjni ¼ jni;BðpÞjni ¼ jni for all s; pg: ð14Þ
The corresponding energy is 0; all excited states have energiesP 1.

It is easy to work out an explicit representation of ground states similar to Eq. (3).
The ground states correspond 1-to-1 to flat G-connections, defined up to conjuga-
tion, or super-positions of those. So, the ground state on a sphere is not degenerate.
However, particles (excitations) have quite interesting properties even on the sphere
or on the plane. (We treat the plane as an infinitely large sphere). The reader prob-
ably wants to know the answer first, and then follow formal calculations. So, I give a

Fig. 6. Generic lattice and the orientation rules for the operators Lg
( and T h

(.

11 In the Hopf algebra setting, Agðs; pÞ does depend on p.
12 This is not obvious. Use the commutation relations (10) to verify this statement.
13 Here As and Bp are the notations from Section 2; we will not use them any more.

14 A.Yu. Kitaev / Annals of Physics 303 (2003) 2–30

|G|-dimensional spin
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*One can also add “twists”, which leads to the Dijkgraaf-Witten model.



• We will consider d-cocycle functions over G by studying the group 

cohomology Hd(G,U(1)).

Main result

• Using d-cocycle functions, we can provide a recipe of constructing a 

fault-tolerant logical gate for the d-dimensional quantum double model.
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A. Slant product

Here, we briefly review the notion of slant products (see [24] for instance). Given an n-cocycle func-

tion ⌫
n

(g0, g1, . . . , gn), there exists a U(1)-valued function !
n

(g1, . . . , gn) which is one-to-one correspondence to

⌫
n

(g0, g1, . . . , gn), defined as

!
n

(g1, . . . , gn) = ⌫
n

(I, g1, g1g2, . . . , g1 · · · gn). (41)

• The slant product i
g

with g 2 G is a map from an n-cocycle to an (n� 1)-cocycle defined as i
g

!
n

:= !(g)
n

where

!(g)
n

(g1, . . . , gn�1) = !
n

(g, g1, . . . , gn�1)

n�1Y
i=1

!
n

(g1, . . . , gi, g, gi+1, . . . , gn�1)
(�1)i .

(42)

Sequential applications of slant products can be also defined:

!
n

�!
ig1

!(g1)
n

�!
ig2

!(g1,g2)
n

�! · · · �! !(g1,g2,...,gn�1)
n

�!
ign

!(g1,g2,...,gn�1,gn)
n

(43)

where !(g1,g2,...,gn�1,gn)
n

2 U(1). Sequential slant products are anti-symmetric. For instance,

!(g1,g2)
n

= (!(g2,g1)
n

)(�1). (44)

One can rewrite the slant product by using ⌫
n

functions:

⌫(g)
n

(I, g1, . . . , gn�1) = ⌫
n

(I, g, gg1, . . . , ggn�1)

·
n�1Y
i=1

⌫
n

(I, g1, . . . , gi, gig, gigg
�1
i

g
i+1, . . . , gigg

�1
i

g
n�1)

(�1)i .
(45)

It is worth looking at an example. Consider the following n-cocycle for G = (Z2)⌦n:

!
n

(g1, . . . , gn) = exp(i⇡g(1)1 · · · g(n)
n

) (46)

where g
j

= (g(1)
j

, . . . , g(n)
j

) with g(i)
j

= 0, 1. Define e
j

= (0, . . . , 0| {z }
j�1

, 1, 0, . . .) 2 G. Taking a slant product i
e1 leads to

!(e1)
n

(g2, . . . , gn) = exp(i⇡g(2)2 g(3)3 · · · g(n)
n

). (47)

By taking slant products sequentially with respect to e1, . . . , en, one has

!(e1,e2,...,en)
n

= �1. (48)

B. Condensation of anyons in two dimensions

In this subsection, we study condensations of anyons in the two-dimensional quantum double model. Let us begin

by characterizing point-like magnetic fluxes. Magnetic fluxes are associated with violations of plaquette-like terms

B
p

, and can be created at endpoints of string-like operators consisting of Lg

+ and Lg

�. To construct such a world-line

• If the cocycle function has a non-trivial sequence of slant 

products, then the logical gate is a non-trivial d-th level gate.
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*Slant product : a map from n-cocycle to n-1 cocycle

U(1) phase

arXiv:1509.03626 BY

A systematic framework for constructing logical gates

n-cocyle (n-1)-cocyle

0-cocyle
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• The Toric code has two types of boundaries (Bravyi-Kitaev 98)

Classification of gapped boundaries

rough 
boundary

smooth 
boundary

electric 
charge

magnetic 
flux

Which anyons can *condense into 
a boundary ?

(i) rough boundary; electric charge

(ii) smooth boundary; magnetic flux

* can create and annihilate an anyon without involving others.



• [Levin 13] Condensing anyons are characterized by Lagrangian subgroup.

Lagrangian subgroup

topological phase
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This paper attempts to establish the connection among classifications of gapped boundaries

in topological phases of matter, bosonic symmetry-protected topological (SPT) phases and fault-

tolerantly implementable logical gates in quantum error-correcting codes. We begin by presenting

constructions of gapped boundaries for the d-dimensional quantum double model by using d-cocycles

functions (d � 2). We point out that the system supports m-dimensional excitations (m < d), which

we shall call fluctuating charges, that are superpositions of point-like electric charges characterized by

m-dimensional bosonic SPT wavefunctions. There exist gapped boundaries where electric charges

or magnetic fluxes may not condense by themselves, but may condense only when accompanied

by fluctuating charges. Magnetic fluxes and codimension-2 fluctuating charges exhibit non-trivial

multi-excitation braiding statistics, involving more than two excitations. The statistical angle can

be computed by taking slant products of underlying cocycle functions sequentially. We find that ex-

citations that may condense into a gapped boundary can be characterized by trivial multi-excitation

braiding statistics, generalizing the notion of the Lagrangian subgroup. As an application, we con-

struct fault-tolerantly implementable logical gates for the d-dimensional quantum double model by

using d-cocycle functions. Namely, corresponding logical gates belong to the dth level of the Cli↵ord

hierarchy, but are outside of the (d � 1)th level, if cocycle functions have non-trivial sequences of

slant products.

A

I. INTRODUCTION

In studies of theoretical physics, seemingly unrelated subjects of researches have been often found closely connected.

In reference [2], it has been suggested that classifications of the following three subjects are closely related:

• gapped boundaries and domain walls in topological phases of matter.

• bosonic symmetry-protected topological phases.

• fault-tolerant logical gates that can be implemented by finite-depth quantum circuits in topological quantum

codes.

This paper is an attempt to further establish the connection among them. The third subject, finding fault-tolerantly

implementable logical gates in a given quantum error-correcting code, or designing a quantum error-correcting code

with desired fault-tolerant logical gates, is a long-standing problem in quantum information science community. This

paper presents a constructive and systematic framework to address this problem in the context of topological quantum

error-correcting codes. Below, we illustrate the key ideas and summarize the main results of this paper.

⇤
This submission is mainly based on [1], but heavily relies on concepts developed in [2].

: set of anyons

boundary
Lagrangian subgroup
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(2) Maximal subset.
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• (Almost) complete classification of 2dim gapped boundaries



Gapped boundary and logical gate
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• Fault-tolerant logical gates and gapped domain walls are closely 

related.



Gapped boundary and logical gate
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• Fault-tolerant logical gates and gapped domain walls are closely 

related.



• Fault-tolerant logical gates and gapped domain walls are closely 

related.

Gapped boundary and logical gate
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Domain walls vs logical gates

• For Z2*Z2, there are 72 different domain walls. All of them have 

corresponding logical operations.

Conjecture

• There is a one-to-one correspondence between transparent domain 

walls and fault-tolerant logical gates in topological quantum field 

theory (TQFT).

Fact

• Given a fault-tolerant logical gate, one can construct a transparent 

domain wall in topological quantum code.



Another result

• We construct a gapped boundary / gapped domain wall in the d-

dimensional quantum double model by using d-cocycle functions.

• In d>2, we can construct a gapped boundary where none of 

anyonic excitations can condense. (No electric charge/magnetic flux can 

condense)

• Anyons can condense into a boundary only if they are accompanied 

by superpositions of anyonic excitations. 

“Lagrangian subgroup” needs to be modified.



Transversal logical gates

SPT phases gapped boundaries



Topological color code (Bombin)

• The Hamiltonian is given by
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them are pierced through a magnetic flux, the resulting
statistical phase is non-trivial. The non-trivial three-loop
braiding statistics results from the fact that the three-
dimensional color code admits a fault-tolerantly imple-
mentable logical gate from the third-level of the Cli↵ord
hierarchy. We also find that excitations, which may con-
dense on the domain wall, exhibit trivial three-loop braid-
ing statistics, implying that domain walls and boundaries
in three-dimensional TQFTs may be classified by three-
loop braiding statistics of magnetic fluxes and loop-like
SPT excitations.

While the discussion in this paper is limited to a
very specific model of topological quantum codes, we
believe that our basic characterization is more general.
Namely, we anticipate that in a large class of topo-
logically ordered systems, pseudo-excitations resulting
from fault-tolerantly implementable logical gates can be
characterized by SPT wavefunctions. We further ex-
pect that these SPT excitations possess non-trivial multi-
excitation braiding statistics and provide useful insight
into classification of gapped boundaries. We thus view
results in this paper as a stepping stone toward establish-
ing the connection between characterizations of gapped
domain walls, fault-tolerant logical gates and braiding
statistics of SPT excitations.

This paper is organized as follows. In section II,
we describe string and membrane operators in the two-
dimensional color code. In section III, we show that a
loop-like excitation in the two-dimensional color code can
be characterized by an SPT wavefunction with Z

2

⌦ Z
2

symmetry. In section IV, we argue that SPT excitations
can be physically realized as transparent domain walls
in the Heisenberg picture. In section V. we describe
string, membrane and volume operators in the three-
dimensional color code. In section VI, we show that a
membrane-like excitation in the three-dimensional color
code can be characterized by an SPT wavefunction with
Z
2

⌦ Z
2

⌦ Z
2

symmetry. In section VII, we study the
transparent domain wall in the three-dimensional color
code. We also study the three-loop braiding statistics of
magnetic fluxes and loop-like SPT excitations.

II. MEMBRANE-LIKE OPERATORS IN
TWO-DIMENSIONAL COLOR CODE

We begin by considering the two-dimensional color
code defined on a three-valent and three-colorable lat-
tice ⇤ where qubits live on vertices. Colors are denoted
by A,B,C. An example of such a lattice is a hexago-
nal lattice shown in Fig. 1 where plaquettes are colored
in A,B,C such that neighboring plaquettes do not have
the same color. The Hamiltonian is given by

H = �
X
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S
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where P represents a plaquette, and S
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, S
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are ten-
sor products of Pauli-X,Z operators acting on all qubits

on a plaquette P . Interaction terms S(X)

P

, S
(Z)

P

0 commute
with each other for all P, P 0, and thus the system is a
stabilizer Hamiltonian. Namely, a ground state | i sat-

isfies stabilizer conditions S(X)
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all P .
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FIG. 1: The two-dimensional topological color code. The
Hamiltonian H is a sum of X-type and Z-type plaquette
terms on every plaquette. An open line �AB , consisting of
thick edges of color AB, defines a string-like operator which
creates a pair of anyonic excitations on shaded plaquettes of
color C.

Anyonic excitations in two-dimensional topologically
ordered spin systems are characterized by string opera-
tors. To construct them in the color code, we assign color
labels AB,BC,CA to edges of the lattice ⇤ depending
on color labels of two adjacent plaquettes. Consider a set
of edges of color AB which form a one-dimensional line
�AB (Fig. 1). We define

XAB |
�

AB :=
O

j2�

AB

X
j

, ZAB |
�

AB :=
O

j2�

AB

Z
j

. (2)

If �AB is an open line, they commute with all the inter-
action terms except stabilizers on plaquettes of color C

at the endpoints of �
AB

. Thus, applications of XAB |
�

AB

and ZAB |
�

AB create electric charges e
C

and magnetic
fluxes m

C

respectively. The correspondence between
anyon labels and string operators may be represented as
follows:

XAB |
�

AB  m
C

, ZAB |
�

AB  e
C

. (3)

Similarly string operators can be constructed from open
lines �BC , �CA, consisting of edges of color BC,CA,
which lead to

XBC |
�BC  m

A

, ZBC |
�BC  e

A

,

XCA|
�CA  m

B

, ZCA|
�CA  e

B

.
(4)

There are important subtleties in the above character-
ization of anyonic excitations. First, anyonic excita-
tions with three di↵erent color labels are not indepen-
dent from each other since applications of Pauli X,Z
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tors. To construct them in the color code, we assign color
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follows:
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them are pierced through a magnetic flux, the resulting
statistical phase is non-trivial. The non-trivial three-loop
braiding statistics results from the fact that the three-
dimensional color code admits a fault-tolerantly imple-
mentable logical gate from the third-level of the Cli↵ord
hierarchy. We also find that excitations, which may con-
dense on the domain wall, exhibit trivial three-loop braid-
ing statistics, implying that domain walls and boundaries
in three-dimensional TQFTs may be classified by three-
loop braiding statistics of magnetic fluxes and loop-like
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While the discussion in this paper is limited to a
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believe that our basic characterization is more general.
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from fault-tolerantly implementable logical gates can be
characterized by SPT wavefunctions. We further ex-
pect that these SPT excitations possess non-trivial multi-
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into classification of gapped boundaries. We thus view
results in this paper as a stepping stone toward establish-
ing the connection between characterizations of gapped
domain walls, fault-tolerant logical gates and braiding
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This paper is organized as follows. In section II,
we describe string and membrane operators in the two-
dimensional color code. In section III, we show that a
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be characterized by an SPT wavefunction with Z
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symmetry. In section IV, we argue that SPT excitations
can be physically realized as transparent domain walls
in the Heisenberg picture. In section V. we describe
string, membrane and volume operators in the three-
dimensional color code. In section VI, we show that a
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transparent domain wall in the three-dimensional color
code. We also study the three-loop braiding statistics of
magnetic fluxes and loop-like SPT excitations.

II. MEMBRANE-LIKE OPERATORS IN
TWO-DIMENSIONAL COLOR CODE

We begin by considering the two-dimensional color
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tice ⇤ where qubits live on vertices. Colors are denoted
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in A,B,C such that neighboring plaquettes do not have
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terms on every plaquette. An open line �AB , consisting of
thick edges of color AB, defines a string-like operator which
creates a pair of anyonic excitations on shaded plaquettes of
color C.
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tors. To construct them in the color code, we assign color
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of edges of color AB which form a one-dimensional line
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follows:
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operator on a single qubit create composites of anyons
m

A

m
B

m
C

, e
A

e
B

e
C

respectively. In other words, the fol-
lowing fusion channels exist:

m
A

⇥m
B

⇥m
C

= 1, e
A

⇥ e
B

⇥ e
C

= 1. (5)

Second, an electric charge e
A

exhibits the non-trivial
braiding statistics with m

B

, but not with m
A

. This is
because XBC |

�BC and ZBC |
�

0
BC

always commute with
each other for any choice of �

BC

and �0
BC

. To fully cap-
ture the braiding statistics in the two-dimensional color
code, it is convenient to construct an isomorphism be-
tween anyons of the color code and those of the toric
code. Let e

1

,m
1

and e
2

,m
2

be anyons in two decoupled
(i.e. non-interacting) copies of the toric code. Then the
following correspondence is an isomorphism which pre-
serves braiding and fusion rules:

m
A

$ m
1

, m
B

$ m
2

, e
A

$ e
2

, e
B

$ e
1

. (6)

In fact, it is known that, on a closed manifold, the two-
dimensional color code is equivalent to two decoupled
copies of the toric code under a local unitary transfor-
mation [19–21]. In other words, they belong to the same
topological phase [22].

The two-dimensional color code possesses not only
string-like operators, but also transversal membrane
(two-dimensional) operators. Let H be a Hadamard op-
erator which exchanges Pauli X and Z operators:

HXH† = Z, HZH† = X. (7)

The Hamiltonian H is symmetric under transversal con-
jugation by Hadamard operators

HHH†
= H, H :=

O
j

H
j

. (8)

Since H transforms X-type string operators into Z-type
string operators and vise versa, it exchanges electric
charges e and magnetic fluxes m:

e
A

! m
A

, e
B

! m
B

, m
A

! e
A

, m
B

! e
B

. (9)

The color code admits another interesting transversal
menbrane operator. Let us define phase operators, act-
ing on a qubit, by R(✓) := diag(1, ei✓). Of particular
importance is the so-called R

m

phase operator

R
m

:= diag(1, exp(i⇡/2m�1)). (10)

The R
2

operator exchanges Pauli X and Y operators:

R
2

XR†
2

= Y, R
2

Y R†
2

= �X. (11)

Let ⇧ be a projector onto the ground state space of the
color code Hamiltonian. Recall that the lattice ⇤ is bi-
partite and qubits can be split into two complementary
sets T and T c. Let us define the following transversal

(two-dimensional) phase operator

R
2

:=
O
j2T

R
2

|
j

O
j2T c

(R
2

|
j

)�1. (12)

Then the ground state space is invariant under transver-
sal application of R

2

operators: R
2

⇧ = ⇧R
2

⇧. This
two-dimensional membrane operator implements the fol-
lowing exchanges of anyon labels (an automorphism):

e
A

! e
A

, e
B

! e
B

, m
A

! m
A

e
A

, m
B

! m
B

e
B

.
(13)

In general, in two-dimensional topologically ordered spin
systems described by TQFTs, transversal membrane-
like (two-dimensional) operators may induce an automor-
phism of anyon labels which preserves braiding and fusion
rules (i.e. monoidal centers of categories which define
(2 + 1)-dimensional TQFTs) [23, 24].
We conclude this section by recalling quantum in-

formation theoretical motivations to study transversal
membrane-like operators in two-dimensional topologi-
cally ordered spin systems. In quantum information sci-
ence, one hopes to perform quantum information process-
ing tasks in a protected codeword space of some quantum
error-correcting code. The gapped ground state space of
topologically ordered systems is an idealistic platform for
such purposes. But how do we perform quantum compu-
tations inside the protected subspace? Ideally one hopes
to perform logical operations in a way which does not
make local errors propagate to other spins. Namely,
one hopes to perform logical operations by transver-
sal unitary gates acting on each spin as a tensor prod-
uct. Thus, it is important to classify transversally im-
plementable logical gates in quantum error-correcting
codes [2–4, 24]. Transversal membrane operators, such as
H and R

2

in the topological color code, are examples of
fault-tolerantly implementable logical gates as they may
have non-trivial action on the ground state space (if it
is degenerate). Our goal is to characterize excitations
arising from fault-tolerantly implementable logical oper-
ators, and the present paper is dedicated to studies of
those in the topological color code.

III. SPT EXCITATIONS IN
TWO-DIMENSIONAL TOPOLOGICAL COLOR

CODE

In this section, we study loop-like excitations created
by parts of a membrane phase operator R

2

in the two-
dimensional color code and show that they are character-
ized by a wavefunction of a one-dimensional bosonic SPT
phase with Z

2

⌦ Z
2

symmetry. Our finding reveals that
these loop-like excitations in the color code can be viewed
as a path integral formulation of an SPT wavefunction,
leading to a physically insightful proof that such a wave-
function cannot be prepared by symmetry-protected lo-
cal unitary transformations. We note that the circuit
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Why SPT phases ?

• Parity constraints of electric charges

• 2dim color code = 2 copies of the toric code

Electric charges from copy A and copy B get entangled to form a loop-

like object.

• Origin of symmetries

• Origin of non-triviality

• Non-triviality of the gapped domain wall.

SPT excitations



Toward classification of logical gates
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Key idea: sweeping SPT excitations

quantum 

double model

SPT excitations

quantum 

double model

gapped domain wall

Sweep the domain wall over the entire system.

SPT phases are characterized by cocycle functions.

Logical actions are characterized by cocycle functions.



Topological color code ?
* The d-dimensional topological color code has a transversal Rd phase 

gate which belongs to the d-th level (outside of d-1 th level). (Bombin07)

* d-dimensional color code is equivalent to d copies of the d-dimensional 

toric code. (Kubica-BY-Pastawski 15)

i.e. the d-dimensional quantum double model with

2

G = (Z2)
⌦d (6)

I. INTRODUCTION

In studies of theoretical physics, seemingly unrelated subjects of researches have been often found closely connected.

In reference [2], it has been suggested that classifications of the following three subjects are closely related:

• gapped boundaries and domain walls in topological phases of matter.

• bosonic symmetry-protected topological phases.

• fault-tolerant logical gates that can be implemented by finite-depth quantum circuits in topological quantum

codes.

This paper is an attempt to further establish the connection among them. The third subject, finding fault-tolerantly

implementable logical gates in a given quantum error-correcting code, or designing a quantum error-correcting code

with desired fault-tolerant logical gates, is a long-standing problem in quantum information science community. This

paper presents a constructive and systematic framework to address this problem in the context of topological quantum

error-correcting codes. Below, we illustrate the key ideas and summarize the main results of this paper.

Relations between the bulk and the boundary have been important for the understanding of quantum many-body

systems. It is known that gapped boundaries in two-dimensional topological phases can be classified by sets of anyons

that may condense into gapped boundaries [3–17]. By “an anyon condenses into a gapped boundary”, we mean that

an anyonic excitation can be created and absorbed at the gapped boundary without involving any other excitations.

The guiding principle for finding such sets of condensing anyons is to look for the so-called Lagrangian subgroup of

anyons which possess (a) mutually-trivial braiding statistics, (b) trivial self-statistics and (c) anyons outside the set

have non-trivial mutual statistics with at least one anyon in the set [11]. While there have been significant progresses

toward classification of gapped boundaries supported in two-dimensional topological phases, gapped boundaries in

three and higher dimensions are poorly understood except for a certain special family of models [18, 19]. Based

on the success in two dimensions, one might naively conclude that gapped boundaries in higher dimensions can be

also classified by the Lagrangian subgroup. It is, however, known that the boundary properties are much richer in

higher dimensions; namely, there exist gapped boundaries where excitations may condense only when superpositions of

anyonic excitations are involved. The simplest realization of this exotic phenomenon is a certain gapped boundary in

a three-dimensional Z2 ⌦Z2 ⌦Z2 topological order (i.e. three decoupled copies of the toric code, which is also known

as the topological color code in quantum information community [20–22]) where only the composites of loop-like

magnetic fluxes and loop-like superpositions of electric charges may condense [2, 23].

Currently a generic theoretical framework to classify gapped boundaries in higher-dimensional topological phases of

matter is missing, and the necessary step would be to explore more examples. We will begin by presenting construction

of gapped boundaries for the d-dimensional quantum double model with arbitrary finite group G by using d-cocycle

functions. This generalizes construction of gapped boundaries for the two-dimensional quantum double model by

Beigi et al to higher dimensions [7]. Our construction borrows ideas from recent developments on studies of bosonic

symmetry-protected topological (SPT) phases [10, 24–33]. Formally, the system with SPT order has certain global

on-site symmetry G and its non-degenerate ground state does not break any of the symmetries. A particularly

interesting property is the duality between bosonic SPT phases (in the absence of time-reversal symmetry) and

intrinsic topological phases via gauging, a process of minimally coupling a system with global symmetry G to gauge

fields with gauge symmetry G [10, 30, 34, 35]. Under this duality map, a d-dimensional bosonic SPT wavefunction,

* There is a non-trivial d-cocycle:

27

a non-trivial dth-level Cli↵ord gate. By using Eq. (74) to |Ii ⌦ |Ii ⌦ . . .⌦ |Ii, one finds

U
⌫d |g1i ⌦ |g2i ⌦ . . .⌦ |g

d

i = ⌫(g1,g2,...,gd)
d

|g1i ⌦ |g2i ⌦ . . .⌦ |g
d

i. (75)

It is worth looking at an example. For G = Z⌦d

2 , consider a non-trivial d-cocycle !
d

(g1, . . . , gd) = (�1)g
(1)
1 ...g

(d)
d which

has a non-trivial sequence of slant products. The corresponding logical gate has the following action:

U
⌫d |g1i ⌦ |g2i ⌦ . . .⌦ |g

d

i =
Y

(a1,...,ad)

(�1)g
(a1)
1 ...g

(ad)
d |g1i ⌦ |g2i ⌦ . . .⌦ |g

d

i (76)

where (a1, . . . , ad) is a permutation of (1, 2, . . . , d). This logical operator corresponds to a transversal application

of R
d

phase operators in the d-dimensional topological color code. The logical action resembles that of the d-qubit

control-Z gate.

Finally, we extend the discussion to arbitrary abelian G and generalize the Cli↵ord hierarchy. For a single |G|-
dimensional spin, Pauli operators are defined as

Lg

+ =
X
h2G

|ghihh| T
⌫1 =

X
h2G

⌫1(1, h)|hihh|. (77)

For a system of n spins, one can define the generalized Cli↵ord hierarchy by taking C1 to be the Pauli operator

group generated by Lg

+ and T
⌫1 . Then one can recursively define the generalized hierarchy C

m

. A straightforward

generalization of Bravyi-König argument implies that logical gates which can be implemented by a finite depth circuit

are restricted to C
d

in the d-dimensional quantum double model. By labeling ground states as | i = |g1i⌦|g2i⌦. . .⌦|g
d

i
where g

j

2 G as before, Eq. (75) holds for any abelian G. If the sequential slant product is non-trivial, then the

corresponding logical gate belongs to the generalized C
d

, but is outside of C
d�1.

VI. OPEN QUESTIONS

There remain a number of interesting open problems and future questions. Some of them are listed below:

(a) Recently there have been discussions on SPT phases protected by q-form symmetry operators where charged

excitations have q spatial dimensions [22, 53–55]. It is an interesting future problem to consider their implications

to gapped boundaries and fault-tolerant logical gates.

(b) This paper provides a number of interesting gapped domain walls and boundaries for higher-dimensional systems.

Developing a mathematical framework (which perhaps utilizes higher-category) to classify higher-dimensional

gapped boundaries is an important project.

(c) In this paper, we considered excitations made of bosonic particles. Can we create excitations characterized by

other types of particles such as fermions?

(d) Spatial dimension of symmetry operators can be non-integer values [56–58]. Namely, one may construct an SPT

Hamiltonian protected by fractal-like symmetry operators.

(e) Fault-tolerant logical operators can be viewed as global symmetries of the Hamiltonian. By imposing them on

the system, one may be able to explore novel symmetry-enriched topological phases of matter.

(f) One can consider a unitary operator corresponding to a non-trivial d-cocycle function whose slant products are

trivial. While, on a torus, such an operator is trivial, whether it is trivial or not on other geometries is an

interesting question.

* The corresponding gate is the d-qubit control-Z gate.

FIG. 1: (a) A quantum circuit representation of the three-qubit control-Z gate C⌦2Z. (b) Conju-
gation by the three-qubit control-Z gate. Note that (C⌦2Z)† = C⌦2Z.

multi-qubit control-Z operators. For a two-qubit control-Z gate, one has

CZ(X1)CZ = (X1)Z2 CZ(X2)CZ = Z1(X2). (5)

For a multi-qubit control-Z gate, one has

C⌦n�1Z(X1)C
⌦n�1Z = (X1)C

⌦n�2Z2...n. (6)

Here C⌦n�2Z2...n acts on the jth qubits (2  j  n). So, conjugation by C⌦n�1Z adds

“decoration” of C⌦n�2Z on Pauli X operators (Fig. 1(b)).

Multi-qubit control-Z gates have particularly useful applications in quantum coding the-

ory since C⌦n�1Z belongs to the n-th level of the so-called Cli↵ord hierarchy [27, 29, 32, 34–

37] which is an important concept in classifying fault-tolerantly implementable logical gates

in topological stabilizer codes. Readers who are familiar with topological gauge theories

may recognize the similarity between C⌦n�1Z operators and a non-trivial n-cocycle func-

tion for G = Z2
⌦n: !n(g(1), . . . , g(n)) = (�1)g

(1)
1 ...g

(n)
n where g(i) = (g(i)

1 , g(i)
2 , . . . , g(i)

n ) and

g(i)
j = 0, 1 [2, 38–40]. The connection between group cohomology and the Cli↵ord hierarchy

has been established in [33].
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Domain wall in three-dimensions

• magnetic flux becomes a composite of magnetic flux and 
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where 1  i < j < `  3. Note A = (a(1), a(2), a(3)), B =
(b(1), b(2), b(3)), C = (c(1), c(2), c(3)), and a(j), b(j), c(j) =
0, 1. Here brackets represent modulo 2 calculus. By
gauging on-site symmetries, these three types of SPT
phases are mapped to the twisted quantum double mod-
els which are spin systems with intrinsic topological or-
der (without symmetries). The topological model as-
sociated with type-III is known to be dual to the (un-
twisted) quantum double model based on the dihedral
group D

4

with non-abelian topological order. We con-
jecture that the above Hamiltonian with S

A

⌦ S
B

⌦ S
C

symmetry corresponds to the type-III class since the
wavefunction mixes three di↵erent modes A,B,C and
possesses three-party entanglement among A,B,C. An-
other argument supporting this conjecture relies on the
consideration of boundaries. As discussed in a forth-
coming paper [38], in the d-dimensional quantum dou-
ble model based on a finite group G, gapped boundaries
can be constructed by considering d-cocycles with respect
to H ✓ G. For three decoupled copies of the three-
dimensional toric code (i.e. the three-dimensional quan-
tum double model with Z

2

⌦Z
2

⌦Z
2

symmetry), one can
construct a transparent domain wall by using 3-cocyle of
Z
2

⌦Z
2

⌦Z
2

✓ (Z
2

⌦Z
2

⌦Z
2

)⌦2 which corresponds to the
type-III class. One can verify that such a transparent do-
main wall transforms excitations as described in Eq. (77)
and Eq. (78). It is also worth noticing that operators
X and R

2

form a projective representation of D
4

. We
note that one may also identify the corresponding SPT
phase by considering symmetry twist or flux insertion as
proposed in [39–41].

To conclude this section, we briefly mention excitations
in the higher-dimensional color code. There exists a d-
dimensional generalization of the topological color code
with point-like electric charge and codimension-1 mag-
netic flux. The code admits the transversal R

k

phase
operators (for 1 < k  d) which are supported on k-
dimensional regions and preserve the ground state space.
One can then study codimension-1 excitations created by
d-dimensional R

d

-type operators, which lead to a (d�1)-
dimensional boundary wavefunction with (Z

2

)⌦d sym-
metry. The emerging model is supported on a (d � 1)-
dimensional lattice where qubits are associated with ver-
tices which are d-colorable. The Hamiltonian for this
wavefunction involves a PauliX operator and generalized
(d� 1)-qubit control-Z operators [21], and the colorabil-
ity of the lattice is essential to ensure that the system
has (Z

2

)⌦d symmetry.

VII. TWO-DIMENSIONAL BOUNDARY AND
THREE-LOOP BRAIDING

A. The R
3

boundary

In (2+1)-dimensional TQFTs, transparent gapped do-
main walls are classified by automorphisms of anyonic ex-
citations. The most important distinction between two-

dimensional and three-dimensional systems is that trans-
parent domain walls in (3+1)-dimensional TQFTs cannot
be classified by transpositions of eigenstate excitations
such as electric charges and magnetic fluxes. In this sub-
section, we demonstrate that in the three-dimensional
color code a transparent domain wall may transform a
loop-like magnetic flux into a composite of a magnetic
flux and a loop-like SPT excitation.
As in the two-dimensional case, we split the entire sys-

tem into two parts, left L and right R. We then apply
R

3

operators only on qubits in R. This creates a gapped
domain wall on the boundary between L and R (Fig. 9).
Since the R

3

phase operator commutes with Pauli-Z op-
erators, electric charges cross the domain wall without
being a↵ected:

(e
A

|e
A

), (e
B

|e
B

), (e
C

|e
C

). (77)

Yet, magnetic fluxes get transformed in an interesting
way. Recall that R

3

XR†
3

/ XR
2

. Then, one finds that a
magnetic flux becomes a composite of a magnetic flux and

a one-dimensional SPT excitation with Z
2

⌦Z
2

symmetry.
Namely, one has

(m
AB
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AB
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Thus, in order to characterize gapped domain walls in
the three-dimensional color code, SPT excitations need
to be considered.

FIG. 9: (a) A transparent domain wall created by R
3

phase
operators applied to the right part R of the system. (b) Two-
loop braiding process. (c) Three-loop braiding process.

B. Braiding statistics between two excitations

In (2+1)-dimensional TQFTs, anyons which may con-
dense on the boundary can be classified by considering
maximal sets of mutually bosonic anyons as discussed
by Levin and Gu [14]. Their argument can be gen-
eralized to higher-dimensional systems too, leading to
a conclusion that excitations which may condense on
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note that one may also identify the corresponding SPT
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d-dimensional R
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-type operators, which lead to a (d�1)-
dimensional boundary wavefunction with (Z
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metry. The emerging model is supported on a (d � 1)-
dimensional lattice where qubits are associated with ver-
tices which are d-colorable. The Hamiltonian for this
wavefunction involves a PauliX operator and generalized
(d� 1)-qubit control-Z operators [21], and the colorabil-
ity of the lattice is essential to ensure that the system
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main walls are classified by automorphisms of anyonic ex-
citations. The most important distinction between two-

dimensional and three-dimensional systems is that trans-
parent domain walls in (3+1)-dimensional TQFTs cannot
be classified by transpositions of eigenstate excitations
such as electric charges and magnetic fluxes. In this sub-
section, we demonstrate that in the three-dimensional
color code a transparent domain wall may transform a
loop-like magnetic flux into a composite of a magnetic
flux and a loop-like SPT excitation.
As in the two-dimensional case, we split the entire sys-

tem into two parts, left L and right R. We then apply
R

3

operators only on qubits in R. This creates a gapped
domain wall on the boundary between L and R (Fig. 9).
Since the R
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phase operator commutes with Pauli-Z op-
erators, electric charges cross the domain wall without
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Thus, in order to characterize gapped domain walls in
the three-dimensional color code, SPT excitations need
to be considered.

FIG. 9: (a) A transparent domain wall created by R
3

phase
operators applied to the right part R of the system. (b) Two-
loop braiding process. (c) Three-loop braiding process.

B. Braiding statistics between two excitations

In (2+1)-dimensional TQFTs, anyons which may con-
dense on the boundary can be classified by considering
maximal sets of mutually bosonic anyons as discussed
by Levin and Gu [14]. Their argument can be gen-
eralized to higher-dimensional systems too, leading to
a conclusion that excitations which may condense on
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where 1  i < j < `  3. Note A = (a(1), a(2), a(3)), B =
(b(1), b(2), b(3)), C = (c(1), c(2), c(3)), and a(j), b(j), c(j) =
0, 1. Here brackets represent modulo 2 calculus. By
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phases are mapped to the twisted quantum double mod-
els which are spin systems with intrinsic topological or-
der (without symmetries). The topological model as-
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be classified by transpositions of eigenstate excitations
such as electric charges and magnetic fluxes. In this sub-
section, we demonstrate that in the three-dimensional
color code a transparent domain wall may transform a
loop-like magnetic flux into a composite of a magnetic
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As in the two-dimensional case, we split the entire sys-

tem into two parts, left L and right R. We then apply
R

3

operators only on qubits in R. This creates a gapped
domain wall on the boundary between L and R (Fig. 9).
Since the R
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phase operator commutes with Pauli-Z op-
erators, electric charges cross the domain wall without
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Thus, in order to characterize gapped domain walls in
the three-dimensional color code, SPT excitations need
to be considered.

FIG. 9: (a) A transparent domain wall created by R
3

phase
operators applied to the right part R of the system. (b) Two-
loop braiding process. (c) Three-loop braiding process.

B. Braiding statistics between two excitations

In (2+1)-dimensional TQFTs, anyons which may con-
dense on the boundary can be classified by considering
maximal sets of mutually bosonic anyons as discussed
by Levin and Gu [14]. Their argument can be gen-
eralized to higher-dimensional systems too, leading to
a conclusion that excitations which may condense on
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transformations implements the three-loop braiding:
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As such, the three-loop braiding statistics corresponds to the vacuum expectation value of the sequential group

commutator.

FIG. 16: Three-loop braiding process as a sequential group commutator K(K(U↵, U�), U�).

Directly calculating the three-loop braiding statistics is rather challenging. Yet, the statistical angle can be found

from the following observation. In the three-dimensional quantum double model, consider a two-dimensional plane

that contains � = ⌫2 loop-like fluctuating charge. One can view this plane as a gapped domain wall containing a ⌫2

defect line. Let us think of creating ↵ = g magnetic flux from the vacuum and send it through the domain wall such

that ↵ intersects with � (Fig. 17(a)). Upon crossing the defect line, ↵ picks up a pair of electric charges characterized

by ⌫(g)2 and ⌫2
(g). It is convenient to consider the world-sheet operator for the entire process as shown in Fig. 17(b)

where the membrane-like operator for g-flux picks up a world-line operator for ⌫(g)-charges which starts and ends at

the intersection points with the defect line.

FIG. 17: (a) Sending a loop-like magnetic flux through a fluctuating charge. At intersection points, a pair of electric charges
are created. (b) The world-sheet operator characterizing the entire process. The world-line operator, shown in blue, for electric
charges are attached from the defect line, shown in red.

Let us now consider a two-loop braiding process between a magnetic flux ↵ = g and a fluctuating charge � = ⌫2 in

the presence of the third loop � where one sends a g-flux from the exterior of ⌫2 and then retrieve the g-flux from the

Contents

1 Some additional writings 1

1 Some additional writings

Bounding out-of-time correlation functions by Renyi-2 entropies may have practical advan-

tages. In reality, it will be challenging to experimentally measure an out-of-time correlation

function since it requires the ability to precisely reverse the Hamiltonian: H ! �H, and

perform entangled measurements on four-body operators at di↵erent time slices. In con-

trast, Renyi-2 entropies of an isomorphic state can be (in principle) found by destructive

measurements of spins by reporting the experiments multiple times. Although this method

will work only for a small system size due to the cost of state tomography, this provides

an indirect way of measuring out-of-time correlation functions.

⌫3(1, g0, g1, g2) 2 U(1)

↵ �

1

Contents

1 Some additional writings 1

1 Some additional writings

Bounding out-of-time correlation functions by Renyi-2 entropies may have practical advan-

tages. In reality, it will be challenging to experimentally measure an out-of-time correlation

function since it requires the ability to precisely reverse the Hamiltonian: H ! �H, and

perform entangled measurements on four-body operators at di↵erent time slices. In con-

trast, Renyi-2 entropies of an isomorphic state can be (in principle) found by destructive

measurements of spins by reporting the experiments multiple times. Although this method

will work only for a small system size due to the cost of state tomography, this provides

an indirect way of measuring out-of-time correlation functions.

⌫3(1, g0, g1, g2) 2 U(1)

↵ �

1

Contents

1 Some additional writings 1

1 Some additional writings

Bounding out-of-time correlation functions by Renyi-2 entropies may have practical advan-

tages. In reality, it will be challenging to experimentally measure an out-of-time correlation

function since it requires the ability to precisely reverse the Hamiltonian: H ! �H, and

perform entangled measurements on four-body operators at di↵erent time slices. In con-

trast, Renyi-2 entropies of an isomorphic state can be (in principle) found by destructive

measurements of spins by reporting the experiments multiple times. Although this method

will work only for a small system size due to the cost of state tomography, this provides

an indirect way of measuring out-of-time correlation functions.
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