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Classical Computers

Classical computers are advanced



Quantum Computers

Quantum computers are hard to build



Quantum computers are hard to
simulate

* Naive simulation of a quantum circuit of L
gates:

* “Just” keep track of a 2" length vector
* Elementary gates are one-qubit or CNOT'S

* Each gate is sparse, so do 2 x 2"
multiplications per gate

* L gates, so L x 2 x 2" total multiplications
* Note: 10° = 23% and 105 = 250



Hybrid Classical-Quantum computation

50+50 = 1007
50+50 = 507



Adding Virtual Qubits

* Given a small quantum computer and a
large classical computer, can we emulate

having a slightly bigger quantum
computer?



Adding Virtual Qubits

* Given a small quantum computer and a
large classical computer, can we emulate
having a slightly bigger quantum
computer?

* Yes, sometimes we can!



Suppose I want to run an algorithm that requires 101 qubits

If I have a 101-qubit quantum computer, fantastic!
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Suppose I want to run an algorithm that requires 101 qubits

If I have a 100-qubit quantum computer, disaster?!
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Suppose I want to run an algorithm that requires 101 qubits

If I have a 100-qubit quantum computer, disaster?!

oooooooooo
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Can I use classical computation to save the day?




d-sparse circuit

T
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A circuit is d-sparse if each qubit participates in at most d 2-qubit gates



d-sparse circuits are nontrivial

* Includes depth-d circuits and more

* Classically hard unless BQP is contained In
AM. Depth d=3 easy, d=4 hard [Terhal-
Divincenzo 2002].

* Instantaneous Quantum Computation
[Bremner-Jozsa-Sheppard 2010]
commuting Hamiltonians hard to sample

* There are log-depth circuits for Shor’s
algorithm (BUT!) [Cleve-Watrous 2000]



Main Result

Theorem 1. Supposen > kd—+1. Then any d-sparse
quantum computation on n+k qubits can be simulated
by a (d 4 3)-sparse quantum computation on n qubits

repeated 2°FY times and a classical processing which
takes time 29 poly(n).

_U_—>

Poly(n) and exponential in d and k



Main Result

Theorem 1. Supposen > kd+ 1. Then any d-sparse
quantum computation on n+k qubits can be simulated
by a (d 4 3)-sparse quantum computation on n qubits

repeated 2°FY times and a classical processing which
takes time 29 poly(n).
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Poly(n) and exponential in d and k

If d and k are O(1) then runs in poly(n) time
Direct classical simulation takes O(2”n)



Standard guantum computation
with classical postprocessing

n qubits poly(n) gates poly(n) classical

0) B . B

0) M

0) U —w=C—=

0) N . B

O> —_— M = T\
Tests membership
In set S

Input encoded in circuit



Main Result

Theorem 1. Supposen > kd+1. Then any d-sparse
quantum computation on n+k qubits can be stmulated
by a (d + 3)-sparse quantum computation on n qubits

repeated 2° K times and a classical processing which
takes time 29 poly(n).

First Idea: Fix each of the qubits to be removed,
and evaluate each branch

Problem 1) qubits change each time you touch them
Problem 2) Branches have to be able to interfere



Main Result

Theorem 1. Supposen > kd—+1. Then any d-sparse
quantum computation on n+k qubits can be simulated
by a (d 4 3)-sparse quantum computation on n qubits

repeated 2°FY times and a classical processing which
takes time 29 poly(n).



Main Result

Theorem 1. Supposen > kd+1. Then any d-sparse
quantum computation on n+k qubits can be stmulated
by a (d + 3)-sparse quantum computation on n qubits

repeated 29 times and a classical processing which
takes time 2°F D poly(n).

Better: Express acceptance probabllity as
convenient contraction of tensors such that

1) Entries of tensors can be evaluated on n-k
gubits and

2) Contraction can be done efficiently



Removing a gubit: simplest case
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Removing a gubit: simplest case

n qubits O> y
()> T M —
O> W M — C — 01
0) N B
0) N B

We can expand the CNOT in the Pauli basis CNOT =3 .c, P, P,



Removing a gubit: simplest case

abis [() —— .
0) M —
)— W —w=C—u
0) N B
0) N B

We can expand the CNOT in the Pauli basis CNOT =3 .c, P, P,



Removing a gubit: simplest case

n qubits O> — b - v

0 —— .
)— W —w=C—u

0) N . B

0) N B

We can expand the CNOT in the Pauli basis CNOT =3 .c, P, P,
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We can expand the CNOT in the Pauli basis CNOT =3 .c . P, P,
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Acceptance prob in terms of these:

k+1 qubits ()> Vu T
0)
0) |
n-k-1 qubits yt
0) W,
0)

Let’'s evaluate them!



Lemma: contraction of
acceptance probability
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Lemma: contraction of
acceptance probabillity

Proof;
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Lemma II1.3. Let W, and W3 be poly(n)-sized unitaries on n qubits, and let T C {0,1}" be a set for which
membership can be tested efficiently on a classical computer. Then,

Bag =Y (y[Wa|0™)(0"|W]|y) (19)

yeT
can be estimated to within € by O {?]'g'lﬂg{]flf}) quantum computations that take poly(n) time on a quantum
computer with n + 1 qubits.

Proof. First note that, letting |p.)} = W, |0™) and |gz) = W;z|0™) we can efficiently prepare
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Measuring in the computational basis, and labeling the first bit b and the next n bits y, we find that
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Trivial lower “bound”

No unconditional results---it’s unknown whether quantum
computer can be efficiently simulated classically (though such
a simulation is “implausible”)

Assume L-gate QC takes 2 x L x 2" classical computation time

Suppose can emulate L-gate n qubit computation by
performing a larger number of L-gate quantum computations b
on n-1 qubits plus poly-time classical comp.

By iterating, we end up with a ¢" single-qubit computations
with L gates, which can be done classically in time L b*' gates,
so b>2.

Our algorithm gives somewhat larger b = O(8*! 16%+/2%)



Characterizing Noise

If we run a quantum computation with some noise, how do we check it's working right?

n qubits poly(n) gates poly(n) classical
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right Answer?
right statistics?



Characterizing Noise

W, il

) HHHHE

If different, removed qubits aren’t working right same Answer?
If same, noise on removed qubits benign same statistics?




Summary

Want to emulate an n qubit computation using n-k qubits together
with a classical machine

Can do so by expressing acceptance probability as a contraction of
tensors whose entries can be estimated on n qubits

Cost scales exponentially with k and d for a d-sparse computation.
k scaling is expected, but d scaling may not be optimal

Could be used for characterizing noise in quantum circuits and
emulating modular guantum computations

Most annoying open question: can you remove 1 qubit from an
arbitrary poly(n) circuit for less than 2" effort? More generally, lower
bounds?



Pauli-Based Computation (PBC)

|H) = cos(m/8)|0) + sin(7/8)|1) The Magic State
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Theorem 2. Any quantum computation in the
circuit-based model with n qubits and poly(n) gates
drawn from the Clifford+T set can be simulated by a
PBC on m qubits, where m is the number of T' gates,
and poly(n) classical processing.

Theorem 3. A PBC on n + k qubits can be simu-
lated by a PBC on n qubits repeated 2°F) times and
a classical processing which takes time 2° %) poly(n).

Theorem 4. Any PBC on n qubits can be simulated
classically in time 2" poly(n), where a =~ 0.94.



Theorem 2. Any quantum computation in the
circuit-based model with n qubits and poly(n) gates
drawn from the Clifford+T set can be simulated by a
PBC on m qubits, where m is the number of T' gates,
and poly(n) classical processing.

Theorem 3. A PBC on n + k qubits can be simu-

lated by a PBC on n qubits repeated 2°F) times and
a classical processing which takes time 2° %) poly(n).

Theorem 4. Any PBC on n qubits can be simulated
classically in time 2" poly(n), where a =~ 0.94.

Note that 2°* < 2



Theorem 4. Any PBC on n qubits can be simulated
classically in time 2" poly(n), where o ~ 0.94.

Proof comes from decomposing magic states
as superpositions of stabilizer states

Stabilizer rank of |¢) is smallest value of y

such that ‘?ﬂ> — S:fi(_l Cz‘¢z>

Stabilizer states

Conjecture: Magic states have the lowest stabilizer rank of any
non-stabilizer states



Theorem 4. Any PBC on n qubits can be simulated
classically in time 2*™poly(n), where o ~ 049

Proof comes from decomposing magic states
as superpositions of stabilizer states

Stabilizer rank of |¢) is smallest value of y

such that ‘?ﬂ> — S:fi(_l Cz‘¢z>

Stabilizer states

Conjecture: Magic states have the lowest stabilizer rank of any
non-stabilizer states

See Bravyi and Gosset's talk at QIP 2017
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