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How to implement operations on the logical qubits
encoded by a quantum code without exposing them 
to the environment ?

Transversal Logical Gates (TLG): bitwise application
of a physical gate implements a logical gate.

TLGs are highly desirable.

• TLG’s do not spread pre-existing errors
• noisy TLG’s introduce uncorrelated errors
• no need for ancillary qubits, no time overhead

TLGs are not universal for any error detecting code 
Eastin and Knill (2009)

2D stabilizer codes have only Clifford TLGs 
SB and Koenig (2012), Pastawski and Yoshida (2014)



Recent breakthrough: gauge fixing method
[Paetznick and Reichardt 2013]
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error
correction

Apply a bitwise physical gate. Error-correct the system 
back to the codespace, if needed.

Recent breakthrough: gauge fixing method
[Paetznick and Reichardt 2013]



Recent breakthrough: gauge fixing method
[Paetznick and Reichardt 2013]

Similar to code conversion/code deformation:

Transversal
Clifford gates

Transversal  
T-gate

Can we realize the conversion by local measurements 
if the physical qubits are laid out on 2D or 3D grid  ?

error
correction

Two codes are defined on the same set of qubits.
Combine TLGs of the two codes to achieve universality.



Realization of the gauge fixing method with
3D subsystem color codes [Bombin 2014, 2015]
Transversal implementation of the Clifford+T gate set. 
Quantum fault-tolerance with a constant time overhead.



Our result: transversal implementation of
the Clifford+T gate set by the gauge fixing 
method in the 2D architecture.



OUTLINE

• Triply-even CSS codes

• Doubling transformation

• Doubled color codes: overview of the
construction

• Logical Clifford+T circuits: numerical
simulation
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self-orthogonal linear subspace
with odd 𝑛

Stabilizers:

Logical states:
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Self-dual code:

Doubly-even code:

Transversal gate: Hadamard

Transversal gate: 

Any CSS code has transversal logical Paulis and CNOT.

Other TLGs require a special symmetry.



Self-dual code:

Triply-even code:

Transversal gate: Hadamard

Transversal gate: 

Any CSS code has transversal logical Paulis and CNOT.

Other TLGs require a special symmetry.



Need a family of triply-even CSS codes with a
divergent code distance. 

Concatenated Reed-Muller [[15,1,3]]

3D color codes

[[49,1,5]], triply-even

found by a numerical 
search  [SB and Haah 2012]

smallest distance-5
triply even code

Candidates:

hard to 
embed in 2D

Does it have any structure ?
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doubly-even

triply-even

triply-even

Doubling transformation [Betsumiya and Munemasa 2010]

𝑆

generating  matrices of 𝑆, 𝑇, 𝑇𝑜𝑢𝑡

𝐺(𝑆) 𝐺(𝑆)  0

 0  1 1

 0  0 𝐺(𝑇)

𝐺 𝑇𝑜𝑢𝑡

A B C

𝑇
𝑇𝑜𝑢𝑡

𝑛 𝑆 + 𝑛 𝑇 = 0 (mod 8)

𝑑 𝑇𝑜𝑢𝑡 = min 𝑑 𝑆 , 2 + 𝑑 𝑇
Code 

distance:



Doubled Color Codes

𝑆(𝑑) : 2D color code with distance 𝑑 (doubly even) 

𝑇(1) : unencoded qubit (distance 1) 
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Each doubling step increases the distance by two.

Doubled Color Codes:  𝑇 3 , 𝑇 5 , 𝑇 7 ,…



Doubled color codes: small examples

𝑇 3 = 15,1,3

A

CB

Bilayer geometry (quasi-2D). One qubit per site.



Doubled color codes: small examples

𝑇 3 = 15,1,3

𝐴𝐵 𝐶

X-stabilizers: double faces of AB; full BC

Z-stabilizers: single faces of A; single faces of B;
double edges of AB; full BC

Single layer geometry. Two qubits per site in AB.



Doubled color codes: small examples

𝑇 5 = 53,1,5

𝐴1𝐵1

𝐴2𝐵2

𝐶1

X-stabilizers: double faces of 𝐴𝑖𝐵𝑖; full 𝐵2𝐶2 and 𝐵1𝐶1

𝐶2 = 𝐴1𝐵1𝐶1

Z-stabilizers: single faces of 𝐴𝑖 and 𝐵𝑖

double edges of 𝐴𝑖𝐵𝑖; full 𝐵2𝐶2 and 𝐵1𝐶1



Technical remark: color codes on the honeycomb lattice
are doubly-even in a weak sense. 

Weak
doubly-even
condition:

Logical S-gate



Technical remark: color codes on the honeycomb lattice
are doubly-even in a weak sense. 

Weak
triply-even
condition:

Logical T-gate

The doubling transformation works for the weak
version of doubly/triply even codes.



𝐴𝐵 𝐶

How to measure high-weight non-local stabilizers  ?

Step 1 (trivial): choose a new basis set of stabilizers
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The only non-local Z-stabilizers are those
connecting the boundaries of consecutive
color code patches. 



Step 2: decompose non-local Z-stabilizers into a
product of local gauge operators

= two gauge qubits

Connector region: add two gauge qubits  at each site
(ancillary qubits that do not store any information)



New Z-type gauge generators:



non-local
local

non-local

New Z-type gauge generators:



New Z-type gauge generators:

Similar to the lattice surgery method

Landahl and Ryan-Anderson (2014)



non-local local

New Z-type gauge generators:

non-local



Now all Z-stabilizers are locally measurable: they
can be decomposed into a product of local gauge 
generators.

Main technical work: compute the distance of the new 
code with the extra gauge qubits.

Step 3: decompose non-local X-stabilizers into a
product of local gauge operators



Now all Z-stabilizers are locally measurable: they
can be decomposed into a product of local gauge 
generators.

Main technical work: compute the distance of the new 
code with the extra gauge qubits.

Step 3: decompose non-local X-stabilizers into a
product of local gauge operators

Better solution: don’t measure any X-stabilizers 



Illustrative example

Stabilizers: 

non-local

local

measure positions
of the domain walls

annihilate
domain walls



Illustrative example

Stabilizers: 

non-local

local

No need to measure the non-local stabilizer 𝑋1𝑋2𝑋3𝑋4𝑋5

It is already in the stabilizer group of the initial state.



Doubled Color CodeExtended Color Code

Measure Z-generators on all edges

Measure Z-generators on all faces 
in the  connector regions 



Doubled Color Code

Measure both X- and Z-generators on all faces.

Measure both X- and Z-generators on edges 
in the connector regions 

Extended Color Code



Extended Color Code:

logical qubit

Encoded EPR states



Simulation of logical Clifford+T circuits

C : transversal Clifford
gate (random)

T : transversal T-gate

R : error correction 
+ gauge fixing

errors



𝑡 :  the average number of T-gates implemented 
before the first logical error

Logical error probability: 𝑝𝐿 = 1/𝑡



Depolarizing noise + syndrome errors



Bit-flip noise, no syndrome errors



Jones, Brooks, Harrington, 
“Gauge color codes in two dimensions”,
arxiv:1512.04193

Jochym-O’Connor and Bartlett,
“Stacked codes: universal quantum computation in 
a two-dimensional layout”, arxiv:1509.04255

Related work:



Summary

• Subsystem codes on the honeycomb lattice with 
two qubits per site. Local gauge generators. 

• Infinite family with a diverging code distance.

• Transversal Clifford+T gates by gauge fixing.


