
Quantum conditional mutual information and
approximate Markov chains

Omar Fawzi

Banff, January 13th, 2015

Joint work with Renato Renner arXiv:1410.0664

1/19



I (A : C |B)
Correlation measure between A and C from point of view of B

Objective:

Structure of states on A⊗ B ⊗ C with I (A : C |B) ≤ ε

Outline:

1 Definition and properties of conditional mutual information

2 How to ensure that I (A : C |B) ≤ ε?
3 What is the right operational property?

4 Statement and overview of the proof
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Entropy and conditioning

Entropy: measure of uncertainty in a system

Shannon entropy for distribution pX :

H(X ) = −
∑
x

pX (x) log pX (x) ∈ [0, log |X |]

Quantum von Neumann entropy for density operator ρA:

H(A) = − tr(ρA log ρA) ∈ [0, log |A|]

Multiple systems: State ρAB acting on A⊗ B

Conditional entropy of A from B’s viewpoint

H(A|B)ρ = H(AB)ρ − H(B)ρ

Interpretation:
Classical B: ρAB =

∑
b ρA(b)⊗ p(b)|b〉〈b|

H(A|B)ρ =
∑
b

p(b)H(A)ρ(b)

Quantum B: More subtle
H(A|B)ρ can be negative when ρ entangled

− log |A| ≤ H(A|B)ρ ≤ log |A|
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Mutual information and conditioning

State ρAC acting on A⊗ C
Mutual Information:

I (A : C )ρ = H(C )ρ − H(C |A)ρ

Classical ρ: 0 ≤ I (A : C )ρ ≤ min{log |A|, log |C |}
Quantum ρ: 0 ≤ I (A : C )ρ ≤ 2 min{log |A|, log |C |}

State ρABC acting on A⊗ B ⊗ C
Conditional Mutual Information:

I (A : C |B)ρ = H(C |B)ρ − H(C |AB)ρ

Classical B: ρABC =
∑

b ρAC (b)⊗ p(b)|b〉〈b|B

I (A : C |B)ρ =
∑
b

p(b)I (A : C )ρ(b) ∈ [0,min{log |A|, log |C |}]

Quantum B: More subtle

0 ≤ I (A : C |B)ρ ≤ 2 min{log |A|, log |C |}
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Useful property

Additivity property make it a very useful measure:

Chain rule

I (A1 . . .An : C |B)

= I (A1 : C |B) + I (A2 : C |BA1) + · · ·+ I (An : C |BA1 . . .An−1)

Correlations can be decomposed into parts

Some applications:
Direct sum results in communication complexity [Talk Braverman et al. tomorrow]
Entanglement measures (squashed entanglement) [Christandl, Winter, 2003]
de Finetti-type statements [Raghavendra, Tan, 2011] [Brandao, Harrow, 2013]
...

Typical argument:
1 Total correlation between A1 . . .An and C bounded:

I (A1 . . .An : C |B) ≤ 2 log |C |
2 Correlation has to be spread:

1

n

n∑
i=1

I (Ai : C |BA1 . . .Ai−1) ≤ 2 log |C |
n
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Sample application

Intuition: loosing one bit can be replaced with some advice

Theorem

For any joint distribution PX1...XnYZ where Y is a bit. There exists a
subset L ⊂ {1, . . . , n} of length |L| ≤ 1/ε

for all i, Pguess(Xi |ZXL) ≥ Pguess(Xi |ZY )−
√

(2 ln 2)ε

Interpretation: Y can be replaced by a small number of bits of X1 . . .Xn

Algorithm to construct L
L← ∅
while ∃i ∈ {1, . . . , n} st I (Xi : Y |ZXL) > ε
L← L ∪ {i}

Claim 1: The algorithm terminates in < 1/ε steps
Claim 2: When algorithm terminates, Pguess(Xi |ZXL) 'ε Pguess(Xi |ZY )
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Sample application (Proof of claim 1)

Theorem

For any joint distribution PX1...XnYZ where Y is a bit. There exists a
subset L ⊂ {1, . . . , n} of length |L| ≤ 1/ε

for all i, Pguess(Xi |ZXL) ≥ Pguess(Xi |ZY )−
√

(2 ln 2)ε

Algorithm to construct L
L← ∅
while ∃i ∈ {1, . . . , n} st I (Xi : Y |ZXL) > ε

L← L ∪ {i}

Claim 1: The algorithm terminates in at most 1/ε steps
L = {i1, . . . , i`}

I (XL : Y |Z) =
∑̀
p=1

I (Xip : Y |ZXi1...ip−1
) ≥ ` · ε

But I (XL : Y |Z) ≤ 1 because Y is one bit

So ` ≤ 1
ε
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Sample application (Proof of claim 2)

Theorem

For any joint distribution PX1...XnYZ where Y is a bit. There exists a
subset L ⊂ {1, . . . , n} of length |L| ≤ 1/ε

for all i, Pguess(Xi |ZXL) ≥ Pguess(Xi |ZY )−
√

(2 ln 2)ε

Algorithm to construct L
L← ∅
while ∃i ∈ {1, . . . , n} st I (Xi : Y |ZXL) > ε

L← L ∪ {i}

Claim 2: When algorithm terminates, Pguess(Xi |ZXL) 'ε Pguess(Xi |ZY )
For all i ,

ε ≥ I (Xi : Y |ZXL) = E
zxL

{
I (Xi : Y )PXi Y |zxL

}
≥ E

zxL

{
1

2 ln 2

∥∥∥PXi Y |zxL
− PXi |zxL

× PY |zxL

∥∥∥2

1

}

≥
1

2 ln 2

(
E
zxL

{∥∥∥PXi |zxLy
− PXi |zxL

∥∥∥
1

})2

≥
1

2 ln 2

(
Pguess(Xi |ZXLY )− Pguess(Xi |ZXL)

)2

Pguess(Xi |ZXL) ≥ Pguess(Xi |ZXLY )−
√

(2 ln 2)ε ≥ Pguess(Xi |ZY )−
√

(2 ln 2)ε
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Sample application: quantum systems

Wanted

For any quantum density operator ρX1...XnCB where C is a qubit. There
exists a subset L ⊂ {1, . . . , n} of length |L| ≤ 2/ε

for all i, Pguess(Xi |BXL) ≥ Pguess(Xi |BC )−
√

(2 ln 2)ε

Algorithm to construct L
L← ∅
while ∃i ∈ {1, . . . , n} st I (Xi : C |BXL) > ε

L← L ∪ {i}

Claim 1: The algorithm terminates in at most 2/ε steps

Only used chain rule and I (X : C |B) ≤ 2 log |C |, which still holds quantum X

Claim 2: When algorithm terminates, Pguess(Xi |BXL) 'ε Pguess(Xi |BC) ? quantum ?
We have for all i , I (Xi : C |BXL) ≤ ε. But how to conclude?

ε ≥ I (Xi : Y |ZXL) = E
zxL

{
I (Xi : Y )PXi Y |zxL

}
? quantum ?

≥ E
zxL

{
1

2 ln 2

∥∥∥PXi Y |zxL
− PXi |zxL

× PY |zxL

∥∥∥2

1

}
? quantum ?

≥
1

2 ln 2

(
Pguess(Xi |ZXLY )− Pguess(Xi |ZXL)

)2
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Structure of states with small QCMI: ε = 0 case

Theorem (Strong subadditivity [Lieb, Ruskai, 1973])

For all quantum states ρ, I (A : C |B)ρ ≥ 0

Rewritten: H(A|B) + H(C |B) ≥ H(AC |B)

Theorem (QCMI and Markov chains [Petz, 1988])

I (A : C |B)ρ = 0 ⇔ ∃T : B → BC , (IA ⊗ TBC←B)(ρAB) = ρABC

Interpretation: C can be generated by acting only on B (without acting on A)

Structure of T : TBC←B(γ) = ρ
1/2
BC ρ

−1/2
B (γ ⊗ idC )ρ

−1/2
B ρ

1/2
BC

ρABC is a quantum Markov chain: ∃T : B → BC , (IA⊗TBC←B)(ρAB) = ρABC
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Illustration of Markov chain condition

Then

ρA1A2A3 = (IA1 ⊗ TA2A3←A2 )(ρA1A2 )

ρA1A2A3A4 = (IA1A2 ⊗ TA3A4←A3 )(ρA1A2A3 )

...

ρA1...An = (IA1...An−2 ⊗ TAn−1An←An−1 )(ρA1...An−1 )

=⇒ ρA1...An =
(
TAn−1An←An−1 ◦ · · · ◦ TA2A3←A2

)
(ρA1A2 )

Efficient representation of ρA1...An : only O(n) bits (compare to 2Ω(n) in general)

Hope: if I (A1 . . .Ai−1 : Ai+1|Ai ) ≤ ε
=⇒ then efficient approximate representation of ρA1...An
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Small QCMI: ε > 0 (Known lower bounds on QCMI)

Theorem (Remainder term for SSA [Carlen, Lieb, 2014] see also [Zhang, Wu 2014])

I (A : C |B)ρ ≥ tr

[
√
ρABC − exp

(
1

2
log ρAB −

1

2
log ρB +

1

2
log ρBC

)]2

Problem: Term exp (log + log) difficult to interpret operationally

Theorem (Faithful squashed entanglement [Brandao, Christandl, Yard, 2010])

I (A : C |B)ρ ≥ min
σAC separable

1

8 ln 2
‖ρAC − σAC‖2

LOCC

Problem: Bound is independent of B, value 0 when A or C classical

QCMI used to quantify entanglement: Esq(A : C )ρ = infρABC
1
2 I (A : C |B)ρ
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Small QCMI: ε > 0 case

ρABC is a quantum Markov chain: ∃T : B → BC , (IA ⊗ TBC←B)(ρAB) = ρABC

Candidate conjecture 1:

I (A : C |B)ρ ≤ ε ⇒ ρABC ≈f (ε) ωABC , with ωABC Markov chain

Counterexamples [Ibinson, Linden, Winter, 2006] and [Christandl, Schuch, Winter, 2012]

→ f has to depend on dimensions

Candidate conjecture 2:
[Li, Winter, 2012], [Kim, 2013], [Zhang, 2013], [Berta, Seshadreesan, Wilde, 2014]

I (A : C |B)ρ ≤ ε ⇒ ∃T : B → BC , (IA ⊗ T )(ρAB) ≈ε ρABC

with T (γ) = ρ
1/2
BC ρ

−1/2
B (γ ⊗ idC )ρ

−1/2
B ρ

1/2
BC

Remarks:

Conj. 1 and Conj. 2 are true for classical states

General quantum case: Conj. 2 does not imply Conj. 1
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Main result

A proof of a variant of Conj. 2

Theorem

For any ρABC , there exists T : B → BC such that

I (A : C |B)ρ ≥ −2 log F (ρABC , TBC←B(ρAB))

Remarks:

F (ρ, σ) = ‖√ρ
√
σ‖1 is the fidelity

Implies I (A : C |B)ρ ≥ 1
4 ln 2‖ρABC − TBC←B(ρAB)‖2

1

Properties of the map T

TBC←B(γ) = VBCρ
1/2
BC ρ

−1/2
B UB(γ ⊗ idC )U†Bρ

−1/2
B ρ

1/2
BCV

†
BC

Structure of states ρABC with I (A : C |B)ρ ≤ ε
=⇒ states for which C can be approximately reconstructed from B
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Back to our sample applications (replacing lost C )

Main result: I (A : C |B)ρ ≥ 1
4 ln 2‖ρABC − TBC←B(ρAB)‖2

1

Theorem
For any quantum density operator ρX1...XnCB where C is a qubit. There exists a subset
L ⊂ {1, . . . , n} of length |L| ≤ 1/ε

for all i, Pguess(Xi |BXL) ≥ Pguess(Xi |BC)−
√

(4 ln 2)ε

Algorithm to construct L
L← ∅
while ∃i ∈ {1, . . . , n} st I (Xi : C |BXL) > ε

L← L ∪ {i}

Claim 1: The algorithm terminates in at most 2/ε steps quantum X
Claim 2: When algorithm terminates, Pguess(Xi |BXL) 'ε Pguess(Xi |BC)

We have for all i , I (Xi : C |BXL) ≤ ε

Apply main result: ρXiCBXL ≈δ TBXLC←BXL(ρXiBXL) with δ =
√

(4 ln 2)ε
Strategy for guessing Xi from B and XL:

1 Construct the state TBXLC←BXL(ρXiBXL)

2 Pretend the state was ρXiCBXL and use its optimal guessing strategy

Pguess(Xi |BXL)ρ ≥ Pguess(Xi |BXLC)ρ − δ ≥ Pguess(Xi |BC)ρ − δ
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for all i, Pguess(Xi |BXL) ≥ Pguess(Xi |BC)−
√

(4 ln 2)ε

Algorithm to construct L
L← ∅
while ∃i ∈ {1, . . . , n} st I (Xi : C |BXL) > ε

L← L ∪ {i}

Claim 1: The algorithm terminates in at most 2/ε steps quantum X
Claim 2: When algorithm terminates, Pguess(Xi |BXL) 'ε Pguess(Xi |BC)

We have for all i , I (Xi : C |BXL) ≤ ε
Apply main result: ρXiCBXL ≈δ TBXLC←BXL(ρXiBXL) with δ =

√
(4 ln 2)ε

Strategy for guessing Xi from B and XL:

1 Construct the state TBXLC←BXL(ρXiBXL)

2 Pretend the state was ρXiCBXL and use its optimal guessing strategy

Pguess(Xi |BXL)ρ ≥ Pguess(Xi |BXLC)ρ − δ ≥ Pguess(Xi |BC)ρ − δ
15/19



Back to our sample applications (long chain)

Main result: I (A : C |B)ρ ≥ 1
4 ln 2‖ρABC − TBC←B(ρAB)‖2

1

Let ρA1...An be of the form

Let δ =
√

(4 ln 2)ε, then

ρA1...An ≈δ TAn−1An←An−1
(ρA1...An−1

)

≈2δ TAn−1An←An−1
(TAn−2An−1←An−2

(ρA1...An−2
))

...

≈(n−2)δ

(
TAn−1An←An−1

◦ · · · ◦ TA2A3←A2

)
(ρA1A2

)

If ε� 1
n2 , good approximation of ρA1...An in O(n) memory
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Main result: proof sketch

Statement to prove:

∃T : B → BC , F (ρABC , TBC←B(ρAB)) ≥ 2−
1
2
I (A:C |B)

1 Easy special case: flat marginals ρB = ΠB
rB

and ρBC = ΠBC
rBC

F (ρABC , ρ
1/2
BC
ρ
−1/2
B

ρABρ
−1/2
B

ρ
1/2
BC

) =

√
rBC

rB
F (ρABC ,ΠBC ΠBρABΠBΠBC )

≥ 2
− 1

2
(H(BC)ρ−H(B)ρ)

2
− 1

2
D(ρABC‖ρAB⊗idC )

= 2
− 1

2
I (A:C|B)ρ

2 General case → ≈ flat marginals: study ρ⊗n and consider types

I (A : C |B)ρ =
I (An : Cn|Bn)

ρ⊗n

n

Obtain T n
BnCn←Bn such that F (ρ⊗nABC , T

n(ρ⊗nAB)) ≥ 2−
1
2
I (An:Cn|Bn)ρ⊗n

3 If T n
BnCn←Bn = T ⊗nBC←B , done.

For that, de Finetti reduction: T n ≤ poly(n)
∫
T ⊗ndT
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Map of known proofs

Proof not following this scheme: see next talk
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Map of known proofs

Proof not following this scheme: see next talk
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Conclusion

Conditional mutual information useful for its additivity properties

Main result:

I (A : C |B)ρ ≤ ε
⇒ ρABC approximately satisfies Markov chain condition

Can show a similar upper bound on I (A : C |B):

1

4 ln 2
‖ρABC − TBC←B(ρAB)‖2

1 ≤ I (A : C |B)ρ ≤ 7 log dA
√
‖ρABC − TBC←B(ρAB)‖1

Open questions:

Many natural improvements: next talk
More applications of recoverability: direct sum communication
complexity? lower bounds using restricted norms (LOCC, ...)?
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