Quantum conditional mutual information and approximate Markov chains

Banff, January 13th, 2015

Joint work with Renato Renner arXiv:1410.0664

Correlation measure between A and C from point of view of B

Objective:

Structure of states on $A \otimes B \otimes C$ with $I(A : C|B) \leq \epsilon$

Outline:

- Operation and properties of conditional mutual information
- **2** How to ensure that $I(A : C|B) \le \epsilon$?
- What is the right operational property?
- Statement and overview of the proof

Entropy and conditioning

Entropy: measure of uncertainty in a system

Shannon entropy for distribution p_X :

$$H(X) = -\sum_{x} p_X(x) \log p_X(x) \in [0, \log |X|]$$

Quantum von Neumann entropy for density operator ρ_A :

 $H(A) = -\operatorname{tr}(\rho_A \log \rho_A) \in [0, \log |A|]$

Entropy and conditioning

Entropy: measure of uncertainty in a system

Shannon entropy for distribution p_X :

$$H(X) = -\sum_{x} p_X(x) \log p_X(x) \in [0, \log |X|]$$

Quantum von Neumann entropy for density operator ρ_A :

 $H(A) = -\operatorname{tr}(\rho_A \log \rho_A) \in [0, \log |A|]$

Multiple systems: State ρ_{AB} acting on $A \otimes B$

Conditional entropy of A from B's viewpoint

$$H(A|B)_{\rho} = H(AB)_{\rho} - H(B)_{\rho}$$

Entropy and conditioning

Entropy: measure of uncertainty in a system

Shannon entropy for distribution p_X :

$$H(X) = -\sum_{x} p_X(x) \log p_X(x) \in [0, \log |X|]$$

Quantum von Neumann entropy for density operator ρ_A :

 $H(A) = -\operatorname{tr}(\rho_A \log \rho_A) \in [0, \log |A|]$

Multiple systems: State ρ_{AB} acting on $A \otimes B$

Conditional entropy of A from B's viewpoint

$$H(A|B)_{\rho} = H(AB)_{\rho} - H(B)_{\rho}$$

Interpretation:

• Classical B: $\rho_{AB} = \sum_{b} \rho_{A}(b) \otimes p(b) |b\rangle \langle b|$

$$H(A|B)_{\rho} = \sum_{b} p(b)H(A)_{\rho(b)}$$

• Quantum *B*: More subtle $H(A|B)_{\rho}$ can be negative when ρ entangled

 $|-\log|A| \le H(A|B)_
ho \le \log|A|$

Mutual information and conditioning

State ρ_{AC} acting on A ⊗ C
 Mutual Information:

$$I(A:C)_{\rho} = H(C)_{\rho} - H(C|A)_{\rho}$$

- Classical ρ : $0 \le I(A : C)_{\rho} \le \min\{\log |A|, \log |C|\}$
- Quantum ρ : $0 \le I(A : C)_{\rho} \le 2\min\{\log |A|, \log |C|\}$
- State ρ_{ABC} acting on A ⊗ B ⊗ C
 Conditional Mutual Information:

$$I(A: C|B)_{\rho} = H(C|B)_{\rho} - H(C|AB)_{\rho}$$

• Classical B: $\rho_{ABC} = \sum_{b} \rho_{AC}(b) \otimes p(b) |b\rangle \langle b|_B$ $I(A: C|B)_{\rho} = \sum_{b} p(b)I(A: C)_{\rho(b)} \in [0, \min\{\log |A|, \log |C|\}]$

• Quantum B: More subtle

 $0 \le I(A:C|B)_{\rho} \le 2\min\{\log|A|, \log|C|\}$

Useful property

Additivity property make it a very useful measure:

Chain rule

 $I(A_1 \dots A_n : C|B) = I(A_1 : C|B) + I(A_2 : C|BA_1) + \dots + I(A_n : C|BA_1 \dots A_{n-1})$

Correlations can be decomposed into parts

Useful property

Additivity property make it a very useful measure:

Chain rule

 $I(A_1 \ldots A_n : C|B)$

 $= I(A_1 : C|B) + I(A_2 : C|BA_1) + \cdots + I(A_n : C|BA_1 \dots A_{n-1})$

Correlations can be decomposed into parts

Some applications:

- Direct sum results in communication complexity [Talk Braverman et al. tomorrow]
- Entanglement measures (squashed entanglement) [Christandl, Winter, 2003]
- de Finetti-type statements [Raghavendra, Tan, 2011] [Brandao, Harrow, 2013]

• ...

Useful property

Additivity property make it a very useful measure:

Chain rule

 $I(A_1 \ldots A_n : C|B)$

 $= I(A_1 : C|B) + I(A_2 : C|BA_1) + \cdots + I(A_n : C|BA_1 \dots A_{n-1})$

Correlations can be decomposed into parts

Some applications:

- Direct sum results in communication complexity [Talk Braverman et al. tomorrow]
- Entanglement measures (squashed entanglement) [Christandl, Winter, 2003]
- de Finetti-type statements [Raghavendra, Tan, 2011] [Brandao, Harrow, 2013]
 ...

Typical argument:

1 Total correlation between $A_1 \dots A_n$ and C bounded:

 $I(A_1 \dots A_n : C|B) \leq 2 \log |C|$

Orrelation has to be spread:

$$\frac{1}{n}\sum_{i=1}^n I(A_i:C|BA_1\ldots A_{i-1}) \leq \frac{2\log|C|}{n}$$

Sample application

Intuition: loosing one bit can be replaced with some advice

Theorem

For any joint distribution $P_{X_1...X_nYZ}$ where Y is a bit. There exists a subset $L \subset \{1, ..., n\}$ of length $|L| \le 1/\epsilon$

for all
$$i$$
, $P_{guess}(X_i | ZX_L) \ge P_{guess}(X_i | ZY) - \sqrt{(2 \ln 2)\epsilon}$

Interpretation: Y can be replaced by a small number of bits of $X_1 \dots X_n$

Sample application

Intuition: loosing one bit can be replaced with some advice

Theorem

For any joint distribution $P_{X_1...X_nYZ}$ where Y is a bit. There exists a subset $L \subset \{1, ..., n\}$ of length $|L| \le 1/\epsilon$

for all
$$i$$
, $\operatorname{P}_{\operatorname{guess}}(X_i|ZX_L) \geq \operatorname{P}_{\operatorname{guess}}(X_i|ZY) - \sqrt{(2\ln 2)\epsilon}$

Interpretation: Y can be replaced by a small number of bits of $X_1 \dots X_n$

```
Algorithm to construct L

L \leftarrow \emptyset

while \exists i \in \{1, ..., n\} st I(X_i : Y | ZX_L) > \epsilon

L \leftarrow L \cup \{i\}
```

Sample application

Intuition: loosing one bit can be replaced with some advice

Theorem

For any joint distribution $P_{X_1...X_nYZ}$ where Y is a bit. There exists a subset $L \subset \{1, ..., n\}$ of length $|L| \le 1/\epsilon$

for all
$$i$$
, $\operatorname{P}_{\operatorname{guess}}(X_i|ZX_L) \geq \operatorname{P}_{\operatorname{guess}}(X_i|ZY) - \sqrt{(2\ln 2)\epsilon}$

Interpretation: Y can be replaced by a small number of bits of $X_1 \dots X_n$

```
Algorithm to construct L

L \leftarrow \emptyset

while \exists i \in \{1, ..., n\} st I(X_i : Y | ZX_L) > \epsilon

L \leftarrow L \cup \{i\}
```

Claim 1: The algorithm terminates in $< 1/\epsilon$ steps **Claim 2:** When algorithm terminates, $P_{guess}(X_i|ZX_L) \gtrsim P_{guess}(X_i|ZY)$

Sample application (Proof of claim 1)

Theorem

For any joint distribution $P_{X_1...X_nYZ}$ where Y is a bit. There exists a subset $L \subset \{1, ..., n\}$ of length $|L| \le 1/\epsilon$

for all
$$i$$
, $\operatorname{P}_{\operatorname{guess}}(X_i|ZX_L) \geq \operatorname{P}_{\operatorname{guess}}(X_i|ZY) - \sqrt{(2\ln 2)\epsilon}$

Algorithm to construct L $L \leftarrow \emptyset$ while $\exists i \in \{1, ..., n\}$ st $I(X_i : Y | ZX_L) > \epsilon$ $L \leftarrow L \cup \{i\}$

Claim 1: The algorithm terminates in at most $1/\epsilon$ steps $L = \{i_1, \ldots, i_\ell\}$

$$I(X_L:Y|Z) = \sum_{p=1}^{\ell} I(X_{i_p}:Y|ZX_{i_1\dots i_{p-1}}) \geq \ell \cdot \epsilon$$

But $I(X_L:Y|Z) \leq 1$ because Y is one bit So $\ell \leq \frac{1}{\epsilon}$

Sample application (Proof of claim 2)

Theorem

For any joint distribution $P_{X_1...X_nYZ}$ where Y is a bit. There exists a subset $L \subset \{1, ..., n\}$ of length $|L| \le 1/\epsilon$

for all
$$i$$
, $\operatorname{P}_{\operatorname{guess}}(X_i|ZX_L) \geq \operatorname{P}_{\operatorname{guess}}(X_i|ZY) - \sqrt{(2\ln 2)\epsilon}$

 $\begin{array}{l} \textbf{Algorithm to construct } L\\ L \leftarrow \emptyset\\ \text{while } \exists i \in \{1, \ldots, n\} \text{ st } I(X_i : Y | ZX_L) > \epsilon\\ L \leftarrow L \cup \{i\} \end{array}$

Claim 2: When algorithm terminates, $P_{guess}(X_i|ZX_L) \gtrsim_{\epsilon} P_{guess}(X_i|ZY)$ For all *i*,

$$\begin{split} \epsilon &\geq I(X_i:Y|ZX_L) = \mathop{\mathbb{E}}_{zx_L} \left\{ I(X_i:Y)_{P_{X_i}Y|zx_L} \right\} \\ &\geq \mathop{\mathbb{E}}_{zx_L} \left\{ \frac{1}{2\ln 2} \left\| P_{X_iY|zx_L} - P_{X_i|zx_L} \times P_{Y|zx_L} \right\|_1^2 \right\} \\ &\geq \frac{1}{2\ln 2} \left(\mathop{\mathbb{E}}_{zx_L} \left\{ \left\| P_{X_i|zx_Ly} - P_{X_i|zx_L} \right\|_1 \right\} \right)^2 \\ &\geq \frac{1}{2\ln 2} \left(\operatorname{Pguess}(X_i|ZX_LY) - \operatorname{Pguess}(X_i|ZX_L) \right)^2 \end{split}$$

$$\begin{split} &\operatorname{Pguess}(X_i|ZX_L) \geq \operatorname{Pguess}(X_i|ZX_LY) - \sqrt{(2\ln 2)\epsilon} \geq \operatorname{Pguess}(X_i|ZY) - \sqrt{(2\ln 2)\epsilon} \quad \Box \end{split}$$

Sample application: quantum systems

Wanted

For any **quantum** density operator $\rho_{X_1...X_nCB}$ where C is a qubit. There exists a subset $L \subset \{1, ..., n\}$ of length $|L| \le 2/\epsilon$

for all
$$i$$
, $\operatorname{P}_{\operatorname{guess}}(X_i|\mathsf{B}X_L) \geq \operatorname{P}_{\operatorname{guess}}(X_i|\mathsf{B}C) - \sqrt{(2\ln 2)\epsilon}$

Algorithm to construct L $L \leftarrow \emptyset$ while $\exists i \in \{1, ..., n\}$ st $I(X_i : C | BX_L) > \epsilon$ $L \leftarrow L \cup \{i\}$

Claim 1: The algorithm terminates in at most $2/\epsilon$ steps Only used **chain rule** and $I(X : C|B) \le 2 \log |C|$, which still holds **quantum** \checkmark

Sample application: quantum systems

Wanted

For any **quantum** density operator $\rho_{X_1...X_nCB}$ where C is a qubit. There exists a subset $L \subset \{1, ..., n\}$ of length $|L| \le 2/\epsilon$

for all
$$i$$
, $\operatorname{P}_{\operatorname{guess}}(X_i|BX_L) \geq \operatorname{P}_{\operatorname{guess}}(X_i|BC) - \sqrt{(2\ln 2)\epsilon}$

Algorithm to construct L $L \leftarrow \emptyset$ while $\exists i \in \{1, ..., n\}$ st $I(X_i : C|BX_L) > \epsilon$ $L \leftarrow L \cup \{i\}$

Claim 1: The algorithm terminates in at most $2/\epsilon$ steps Only used chain rule and $I(X : C|B) \le 2 \log |C|$, which still holds quantum \checkmark Claim 2: When algorithm terminates, $P_{guess}(X_i|BX_L) \ge \epsilon P_{guess}(X_i|BC)$? quantum ? We have for all *i*, $I(X_i : C|BX_L) \le \epsilon$. But how to conclude?

$$\epsilon \geq I(X_i : Y | ZX_L) = \mathop{\mathbb{E}}_{ZX_L} \left\{ I(X_i : Y)_{P_{X_i Y | ZX_L}} \right\} \quad ? \text{ quantum } ?$$

$$\geq \mathop{\mathbb{E}}_{ZX_L} \left\{ \frac{1}{2 \ln 2} \left\| P_{X_i Y | ZX_L} - P_{X_i | ZX_L} \times P_{Y | ZX_L} \right\|_1^2 \right\} \quad ? \text{ quantum } ?$$

$$\geq \frac{1}{2 \ln 2} \left(\operatorname{Pguess}(X_i | ZX_L Y) - \operatorname{Pguess}(X_i | ZX_L) \right)^2 \qquad 9/19$$

Structure of states with small QCMI: $\epsilon = 0$ case

Theorem (Strong subadditivity [Lieb, Ruskai, 1973])

For all quantum states ρ , $I(A : C|B)_{\rho} \ge 0$

Rewritten: $H(A|B) + H(C|B) \ge H(AC|B)$

Structure of states with small QCMI: $\epsilon = 0$ case

Theorem (Strong subadditivity [Lieb, Ruskai, 1973])

For all quantum states ρ , $I(A : C|B)_{\rho} \ge 0$

Rewritten: $H(A|B) + H(C|B) \ge H(AC|B)$

Theorem (QCMI and Markov chains [Petz, 1988])

$$I(A:C|B)_{\rho} = 0 \quad \Leftrightarrow \quad \exists \mathcal{T}:B \to BC, \ (\mathcal{I}_A \otimes \mathcal{T}_{BC \leftarrow B})(\rho_{AB}) = \rho_{ABC}$$

Interpretation: *C* can be generated by acting only on *B* (without acting on *A*) Structure of \mathcal{T} : $\mathcal{T}_{BC \leftarrow B}(\gamma) = \rho_{BC}^{1/2} \rho_{B}^{-1/2} (\gamma \otimes id_{C}) \rho_{B}^{-1/2} \rho_{BC}^{1/2}$

Structure of states with small QCMI: $\epsilon = 0$ case

Theorem (Strong subadditivity [Lieb, Ruskai, 1973])

For all quantum states ρ , $I(A : C|B)_{\rho} \ge 0$

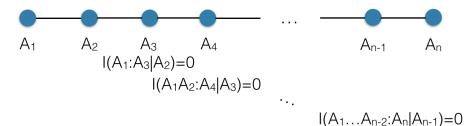
Rewritten: $H(A|B) + H(C|B) \ge H(AC|B)$

Theorem (QCMI and Markov chains [Petz, 1988])

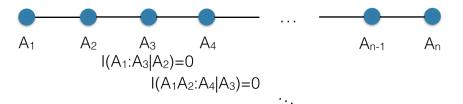
$$I(A:C|B)_{\rho} = 0 \quad \Leftrightarrow \quad \exists \mathcal{T}:B \to BC, \ (\mathcal{I}_A \otimes \mathcal{T}_{BC \leftarrow B})(\rho_{AB}) = \rho_{ABC}$$

Interpretation: *C* can be generated by acting only on *B* (without acting on *A*) Structure of \mathcal{T} : $\mathcal{T}_{BC \leftarrow B}(\gamma) = \rho_{BC}^{1/2} \rho_{B}^{-1/2} (\gamma \otimes \text{id}_{C}) \rho_{B}^{-1/2} \rho_{BC}^{1/2}$

 ρ_{ABC} is a quantum Markov chain: $\exists T : B \to BC$, $(\mathcal{I}_A \otimes \mathcal{T}_{BC \leftarrow B})(\rho_{AB}) = \rho_{ABC}$



÷



Then

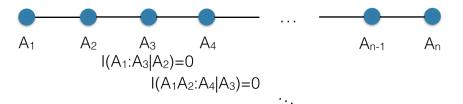
$$I(A_1...A_{n-2}:A_n|A_{n-1})=0$$

$$\rho_{A_1A_2A_3} = (\mathcal{I}_{A_1} \otimes \mathcal{T}_{A_2A_3 \leftarrow A_2})(\rho_{A_1A_2})$$
$$\rho_{A_1A_2A_3A_4} = (\mathcal{I}_{A_1A_2} \otimes \mathcal{T}_{A_3A_4 \leftarrow A_3})(\rho_{A_1A_2A_3})$$

$$\rho_{A_1...A_n} = (\mathcal{I}_{A_1...A_{n-2}} \otimes \mathcal{T}_{A_{n-1}A_n \leftarrow A_{n-1}})(\rho_{A_1...A_{n-1}})$$
$$\implies \rho_{A_1...A_n} = (\mathcal{T}_{A_{n-1}A_n \leftarrow A_{n-1}} \circ \cdots \circ \mathcal{T}_{A_2A_3 \leftarrow A_2})(\rho_{A_1A_2})$$

:

Then



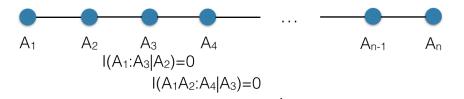
 $I(A_1...A_{n-2}:A_n|A_{n-1})=0$

$$\rho_{A_1A_2A_3} = (\mathcal{I}_{A_1} \otimes \mathcal{T}_{A_2A_3 \leftarrow A_2})(\rho_{A_1A_2})$$

$$\rho_{A_1A_2A_3A_4} = (\mathcal{I}_{A_1A_2} \otimes \mathcal{T}_{A_3A_4 \leftarrow A_3})(\rho_{A_1A_2A_3})$$

$$\rho_{A_1...A_n} = (\mathcal{I}_{A_1...A_{n-2}} \otimes \mathcal{T}_{A_{n-1}A_n \leftarrow A_{n-1}})(\rho_{A_1...A_{n-1}})$$
$$\implies \rho_{A_1...A_n} = (\mathcal{T}_{A_{n-1}A_n \leftarrow A_{n-1}} \circ \cdots \circ \mathcal{T}_{A_2A_3 \leftarrow A_2})(\rho_{A_1A_2})$$

Efficient representation of $\rho_{A_1...A_n}$: only O(n) bits (compare to $2^{\Omega(n)}$ in general)



Then

$$I(A_1...A_{n-2}:A_n|A_{n-1})=0$$

$$\rho_{A_1A_2A_3} = (\mathcal{I}_{A_1} \otimes \mathcal{T}_{A_2A_3 \leftarrow A_2})(\rho_{A_1A_2})$$
$$\rho_{A_1A_2A_3A_4} = (\mathcal{I}_{A_1A_2} \otimes \mathcal{T}_{A_3A_4 \leftarrow A_3})(\rho_{A_1A_2A_3})$$

$$\rho_{A_1...A_n} = (\mathcal{I}_{A_1...A_{n-2}} \otimes \mathcal{T}_{A_{n-1}A_n \leftarrow A_{n-1}})(\rho_{A_1...A_{n-1}})$$
$$\implies \rho_{A_1...A_n} = (\mathcal{T}_{A_{n-1}A_n \leftarrow A_{n-1}} \circ \cdots \circ \mathcal{T}_{A_2A_3 \leftarrow A_2})(\rho_{A_1A_2})$$

Efficient representation of $\rho_{A_1...A_n}$: only O(n) bits (compare to $2^{\Omega(n)}$ in general) Hope: if $I(A_1...A_{i-1}:A_{i+1}|A_i) \le \epsilon$ \implies then efficient approximate representation of $\rho_{A_1...A_n}$

Small QCMI: $\epsilon > 0$ (Known lower bounds on QCMI)

Theorem (Remainder term for SSA [Carlen, Lieb, 2014] see also [Zhang, Wu 2014])

$$I(A:C|B)_{\rho} \geq \operatorname{tr}\left[\sqrt{\rho_{ABC}} - \exp\left(\frac{1}{2}\log\rho_{AB} - \frac{1}{2}\log\rho_{B} + \frac{1}{2}\log\rho_{BC}\right)\right]^{2}$$

Problem: Term exp(log + log) difficult to interpret **operationally**

Small QCMI: $\epsilon > 0$ (Known lower bounds on QCMI)

Theorem (Remainder term for SSA [Carlen, Lieb, 2014] see also [Zhang, Wu 2014])

$$\mathcal{U}(A:C|B)_{
ho} \geq \operatorname{tr}\left[\sqrt{
ho_{ABC}} - \exp\left(\frac{1}{2}\log
ho_{AB} - \frac{1}{2}\log
ho_{B} + \frac{1}{2}\log
ho_{BC}
ight)
ight]^{2} \, .$$

Problem: Term exp(log + log) difficult to interpret **operationally**

Theorem (Faithful squashed entanglement [Brandao, Christandl, Yard, 2010])

$$I(A:C|B)_{\rho} \geq \min_{\sigma_{AC} \text{ separable}} \frac{1}{8 \ln 2} \|\rho_{AC} - \sigma_{AC}\|_{LOCC}^2$$

Problem: Bound is independent of *B*, value 0 when *A* or *C* classical QCMI used to quantify entanglement: $E_{sq}(A:C)_{\rho} = \inf_{\rho_{ABC}} \frac{1}{2}I(A:C|B)_{\rho}$

Small QCMI: $\epsilon > 0$ case

 ρ_{ABC} is a quantum Markov chain: $\exists T : B \to BC, \ (\mathcal{I}_A \otimes \mathcal{T}_{BC \leftarrow B})(\rho_{AB}) = \rho_{ABC}$

Candidate conjecture 1:

 $I(A: C|B)_{\rho} \leq \epsilon \quad \Rightarrow \quad \rho_{ABC} \approx_{f(\epsilon)} \omega_{ABC}, \text{ with } \omega_{ABC} \text{ Markov chain}$

Counterexamples [Ibinson, Linden, Winter, 2006] and [Christandl, Schuch, Winter, 2012] $\rightarrow f$ has to depend on dimensions

Small QCMI: $\epsilon > 0$ case

 ρ_{ABC} is a quantum Markov chain: $\exists T : B \to BC, \ (\mathcal{I}_A \otimes \mathcal{T}_{BC \leftarrow B})(\rho_{AB}) = \rho_{ABC}$

Candidate conjecture 1:

 $I(A: C|B)_{\rho} \leq \epsilon \quad \Rightarrow \quad \rho_{ABC} \approx_{f(\epsilon)} \omega_{ABC}, \text{ with } \omega_{ABC} \text{ Markov chain}$

Counterexamples [Ibinson, Linden, Winter, 2006] and [Christandl, Schuch, Winter, 2012] $\rightarrow f$ has to depend on dimensions

Candidate conjecture 2:

[Li, Winter, 2012], [Kim, 2013], [Zhang, 2013], [Berta, Seshadreesan, Wilde, 2014]

$$I(A: C|B)_{\rho} \leq \epsilon \quad \Rightarrow \quad \exists \mathcal{T}: B \to BC, \ (\mathcal{I}_A \otimes \mathcal{T})(\rho_{AB}) \approx_{\epsilon} \rho_{ABC}$$

with $\mathcal{T}(\gamma) = \rho_{BC}^{1/2} \rho_B^{-1/2} (\gamma \otimes \mathrm{id}_C) \rho_B^{-1/2} \rho_{BC}^{1/2}$

Remarks:

- Conj. 1 and Conj. 2 are true for classical states
- General quantum case: Conj. 2 does not imply Conj. 1

Main result

A proof of a variant of Conj. 2

Theorem

For any ρ_{ABC} , there exists $\mathcal{T}: B \rightarrow BC$ such that

$$I(A: C|B)_{\rho} \ge -2 \log F(\rho_{ABC}, \mathcal{T}_{BC \leftarrow B}(\rho_{AB}))$$

Remarks:

- $F(
 ho,\sigma) = \|\sqrt{
 ho}\sqrt{\sigma}\|_1$ is the fidelity
- Implies $I(A: C|B)_{\rho} \geq \frac{1}{4 \ln 2} \|\rho_{ABC} \mathcal{T}_{BC \leftarrow B}(\rho_{AB})\|_{1}^{2}$

Main result

A proof of a variant of Conj. 2

Theorem

For any ρ_{ABC} , there exists $\mathcal{T}: B \rightarrow BC$ such that

$$I(A: C|B)_{\rho} \geq -2 \log F(\rho_{ABC}, \mathcal{T}_{BC \leftarrow B}(\rho_{AB}))$$

Remarks:

- $F(
 ho,\sigma) = \|\sqrt{
 ho}\sqrt{\sigma}\|_1$ is the fidelity
- Implies $I(A: C|B)_{\rho} \geq \frac{1}{4 \ln 2} \|\rho_{ABC} \mathcal{T}_{BC \leftarrow B}(\rho_{AB})\|_{1}^{2}$
- Properties of the map ${\mathcal T}$

$$\mathcal{T}_{BC\leftarrow B}(\gamma) = V_{BC}
ho_{BC}^{1/2}
ho_B^{-1/2} U_B(\gamma \otimes \mathsf{id}_C) U_B^\dagger
ho_B^{-1/2}
ho_{BC}^{1/2} V_{BC}^\dagger$$

Structure of states ρ_{ABC} with $I(A : C|B)_{\rho} \leq \epsilon$

 \implies states for which C can be approximately reconstructed from B

Back to our sample applications (replacing lost C)

Main result:
$$I(A : C|B)_{\rho} \geq \frac{1}{4 \ln 2} \|\rho_{ABC} - \mathcal{T}_{BC \leftarrow B}(\rho_{AB})\|_{1}^{2}$$

Theorem

For any quantum density operator $\rho_{X_1...X_nCB}$ where C is a qubit. There exists a subset $L \subset \{1, ..., n\}$ of length $|L| \leq 1/\epsilon$

for all *i*, $P_{guess}(X_i|BX_L) \ge P_{guess}(X_i|BC) - \sqrt{(4 \ln 2)\epsilon}$

Algorithm to construct L $L \leftarrow \emptyset$ while $\exists i \in \{1, \ldots, n\}$ st $I(X_i : C|BX_L) > \epsilon$ $L \leftarrow L \cup \{i\}$

Claim 1: The algorithm terminates in at most $2/\epsilon$ steps quantum \checkmark Claim 2: When algorithm terminates, $P_{guess}(X_i|BX_L) \gtrsim_{\epsilon} P_{guess}(X_i|BC)$ We have for all *i*, $I(X_i : C|BX_L) \leq \epsilon$

Back to our sample applications (replacing lost C)

Main result:
$$I(A : C|B)_{\rho} \geq \frac{1}{4 \ln 2} \|\rho_{ABC} - \mathcal{T}_{BC \leftarrow B}(\rho_{AB})\|_{1}^{2}$$

Theorem

For any quantum density operator $\rho_{X_1...X_nCB}$ where C is a qubit. There exists a subset $L \subset \{1, ..., n\}$ of length $|L| \leq 1/\epsilon$

for all *i*, $P_{guess}(X_i|BX_L) \ge P_{guess}(X_i|BC) - \sqrt{(4 \ln 2)\epsilon}$

```
Algorithm to construct L

L \leftarrow \emptyset

while \exists i \in \{1, \ldots, n\} st I(X_i : C|BX_L) > \epsilon

L \leftarrow L \cup \{i\}
```

Claim 1: The algorithm terminates in at most $2/\epsilon$ steps quantum \checkmark Claim 2: When algorithm terminates, $P_{guess}(X_i|BX_L) \gtrsim \epsilon P_{guess}(X_i|BC)$ We have for all *i*, $I(X_i : C|BX_L) \le \epsilon$ Apply main result: $\rho_{X_iCBX_L} \approx_{\delta} \mathcal{T}_{BX_LC \leftarrow BX_L}(\rho_{X_iBX_L})$ with $\delta = \sqrt{(4 \ln 2)\epsilon}$ Strategy for guessing X_i from *B* and X_L :

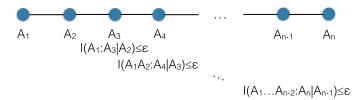
1 Construct the state $\mathcal{T}_{BX_LC \leftarrow BX_L}(\rho_{X_iBX_L})$

2 Pretend the state was $\rho_{X_i CBX_L}$ and use its optimal guessing strategy $P_{guess}(X_i | BX_L)_{\rho} \ge P_{guess}(X_i | BX_L C)_{\rho} - \delta \ge P_{guess}(X_i | BC)_{\rho} - \delta$

Back to our sample applications (long chain)

Main result:
$$I(A : C|B)_{\rho} \geq \frac{1}{4 \ln 2} \|\rho_{ABC} - \mathcal{T}_{BC \leftarrow B}(\rho_{AB})\|_{1}^{2}$$

Let $\rho_{A_1...A_n}$ be of the form



Let $\delta = \sqrt{(4 \ln 2)\epsilon}$, then

$$\rho_{A_1...A_n} \approx_{\delta} \mathcal{T}_{A_{n-1}A_n \leftarrow A_{n-1}}(\rho_{A_1...A_{n-1}})$$

$$\approx_{2\delta} \mathcal{T}_{A_{n-1}A_n \leftarrow A_{n-1}}(\mathcal{T}_{A_{n-2}A_{n-1} \leftarrow A_{n-2}}(\rho_{A_1...A_{n-2}}))$$

$$\vdots$$

$$\approx_{(n-2)\delta} \left(\mathcal{T}_{A_{n-1}A_n \leftarrow A_{n-1}} \circ \cdots \circ \mathcal{T}_{A_2A_3 \leftarrow A_2}\right)(\rho_{A_1A_2})$$
If $\epsilon \ll \frac{1}{n^2}$, good approximation of $\rho_{A_1...A_n}$ in $O(n)$ memory

Main result: proof sketch

Statement to prove:

$$\exists \mathcal{T}: B \to BC, \quad F(\rho_{ABC}, \mathcal{T}_{BC \leftarrow B}(\rho_{AB})) \ge 2^{-\frac{1}{2}I(A:C|B)}$$

() Easy special case: flat marginals $\rho_B = \frac{\Pi_B}{r_B}$ and $\rho_{BC} = \frac{\Pi_{BC}}{r_{BC}}$

$$F(\rho_{ABC}, \rho_{BC}^{1/2} \rho_{B}^{-1/2} \rho_{AB} \rho_{B}^{-1/2} \rho_{BC}^{1/2}) = \sqrt{\frac{r_{BC}}{r_{B}}} F(\rho_{ABC}, \Pi_{BC} \Pi_{B} \rho_{AB} \Pi_{B} \Pi_{BC})$$

$$\geq 2^{-\frac{1}{2}(H(BC)_{\rho} - H(B)_{\rho})} 2^{-\frac{1}{2}D(\rho_{ABC} \parallel \rho_{AB} \otimes id_{C})} = 2^{-\frac{1}{2}I(A:C|B)_{\rho}}$$

2 General case $\rightarrow \approx$ flat marginals: **study** $\rho^{\otimes n}$ and consider types

$$I(A:C|B)_{\rho} = \frac{I(A^{n}:C^{n}|B^{n})_{\rho\otimes n}}{n}$$

Obtain $\mathcal{T}_{B^n C^n \leftarrow B^n}^n$ such that $F(\rho_{ABC}^{\otimes n}, \mathcal{T}^n(\rho_{AB}^{\otimes n})) \ge 2^{-\frac{1}{2}I(A^n:C^n|B^n)_{\rho^{\otimes n}}}$ If $\mathcal{T}_{B^n C^n \leftarrow B^n}^n = \mathcal{T}_{BC \leftarrow B}^{\otimes n}$, done. For that, **de Finetti reduction**: $\mathcal{T}^n \le \operatorname{poly}(n) \int \mathcal{T}^{\otimes n} d\mathcal{T}$

Map of known proofs

$$\begin{split} I(A:C|B)_{\rho} &= \frac{1}{n} I(A:C|B)_{\rho^{\otimes n}} \\ & [FR15]: \text{ Properties of fidelity} & \mathbb{D} = -2\log F \\ & | \bigvee & [BHOS15]: \text{ Quantum state redistribution } \mathbb{D} = D \\ & [STH16]: \text{ Properties of pinching map} & \mathbb{D} = D \\ & \frac{1}{n} \mathbb{D}(\rho_{ABC}^{\otimes n} \| \mathcal{T}_{B^{n}C^{n} \leftarrow B^{n}}^{n}(\rho_{AB}^{\otimes n})) \\ & [FR15]: \text{ de Finetti reduction} \\ & | \bigvee & [BT15]: \text{ SDP duality} \\ & [STH16]: \text{ Minimax theorem} \\ & \frac{1}{n} \mathbb{D}(\rho_{ABC}^{\otimes n} \| \mathcal{T}_{BC \leftarrow B}^{\otimes n}(\rho_{AB}^{\otimes n})) = \mathbb{D}(\rho_{ABC} \| \mathcal{T}_{BC \leftarrow B}(\rho_{AB})) \end{split}$$

Map of known proofs

$$\begin{split} I(A:C|B)_{\rho} &= \frac{1}{n} I(A:C|B)_{\rho^{\otimes n}} \\ & [FR15]: \text{ Properties of fidelity} & \mathbb{D} = -2\log F \\ & | \bigvee & [BHOS15]: \text{ Quantum state redistribution } \mathbb{D} = D \\ & [STH16]: \text{ Properties of pinching map} & \mathbb{D} = D \\ & \frac{1}{n} \mathbb{D}(\rho_{ABC}^{\otimes n} \| \mathcal{T}_{B^{n}C^{n} \leftarrow B^{n}}^{n}(\rho_{AB}^{\otimes n})) \\ & [FR15]: \text{ de Finetti reduction} \\ & | \bigvee & [BT15]: \text{ SDP duality} \\ & [STH16]: \text{ Minimax theorem} \\ & \frac{1}{n} \mathbb{D}(\rho_{ABC}^{\otimes n} \| \mathcal{T}_{BC \leftarrow B}^{\otimes n}(\rho_{AB}^{\otimes n})) = \mathbb{D}(\rho_{ABC} \| \mathcal{T}_{BC \leftarrow B}(\rho_{AB})) \end{split}$$

Proof not following this scheme: see next talk

Conclusion

- Conditional mutual information useful for its additivity properties
- Main result:

 $I(A: C|B)_{
ho} \leq \epsilon$ $\Rightarrow
ho_{ABC}$ approximately satisfies Markov chain condition

• Can show a similar upper bound on I(A : C|B):

$$\frac{1}{4 \ln 2} \|\rho_{ABC} - \mathcal{T}_{BC \leftarrow B}(\rho_{AB})\|_1^2 \leq I(A:C|B)_\rho \leq 7 \log d_A \sqrt{\|\rho_{ABC} - \mathcal{T}_{BC \leftarrow B}(\rho_{AB})\|_1}$$

Conclusion

- Conditional mutual information useful for its additivity properties
- Main result:

 $I(A: C|B)_{
ho} \leq \epsilon$ $\Rightarrow
ho_{ABC}$ approximately satisfies Markov chain condition

• Can show a similar upper bound on I(A : C|B):

$$\frac{1}{4\ln 2} \|\rho_{ABC} - \mathcal{T}_{BC \leftarrow B}(\rho_{AB})\|_1^2 \leq I(A:C|B)_\rho \leq 7\log d_A \sqrt{\|\rho_{ABC} - \mathcal{T}_{BC \leftarrow B}(\rho_{AB})\|_1}$$

Open questions:

- Many natural improvements: next talk
- More applications of recoverability: direct sum communication complexity? lower bounds using restricted norms (LOCC, ...)?