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What should experimentalists do to

~ demonstrate quantum supremacy in
I've finally built a quantum the near future?
computer and it works pretty

well!
4 e Build gates etc with high fidelity.

e Error-correction.
e Shor’s algorithm.
e Quantum simulation.

< e [ry to solve other “hard” problems
OK, great. S0 how that can be efficiently checked.

about you convince me | (e.g. DWave approach)
by, er, um... |

Simulation??

Challenge: [dentify easy quantum computations that are
“post-classical”?
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Boson Sampling [Aaronson and Arkhipov “10]: Can
R(X) approximate P(x) in polynomial time*?
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No. If:

1.The PH is infinite

2.The Permanent anti-concentration conjecture is true

3.The Gaussian Permanent Approximation Conjecture is true




Our main result: IQP Sampling

If the "average case” complexity of multiplicative approximations to
either:

1) The complex temperature Ising model partition functions, or

2) The gap of degree 3 polynomials

IS #P-hard, then guantum computers cannot be efficiently classically
simulated to within constant additive error without a collapse of the
PH.

e This “improves” on Boson Sampling by proving the equivalent of the
“Permanent anti-concentration conjecture”. (also see arXiv/
1507.05592)

e Our technigques are simple enough to generate new conjectures and
classically difficult to quantum circuit families.



Post-classical family 1: Random Ising circuits
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If conjecture (1) is true then there is no
efficient classical algorithm that can sample
from any R(x) such that:

IP(x) - RX)l|7 < 1/192
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Post-classical family 1: Random Ising circuits
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Post-classical family 2: Degree 3 polynomials
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of (x) Random circuit
of Z, CZ, and
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If conjecture (2) is true then there is no
efficient classical algorithm that can sample
from any R(x) such that:

IP(x) - R(x)||r < 1/192 All are examples of IQP circuits
(Unless the PH collapses) (Instantaneous Quantum Polytime)




Implementation

e [sing circuits are drawn from the
complete graph on n vertices.

e Requires O(n?) gates 2-local long-
range commuting gates.

¢ Depth is O(log n) with a universal
gate set.

e Depth is O(n) with a 2D, universal,
nearest neighbour architecture.

e Our results imply that with high
probability a randomly chosen Ising
circuit will have quantum supremacy.

e The commuting gates can allow for
better fault-tolerance thresholds.

e Requires circuit accuracy to only
constant variation distance.
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Additive bounds are essential
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Wait, Mick, didn’t you give this talk like 5 years ago”

Additive Multiplicative
|P — R|[1 = Z P(z) — R(z)| <€ vys %P(a:) < R(x) < cP(x), Vx

e MB, Jozsa, and Shepherd '11 proved that there exist IQP circuits that
cannot be efficiently classically simulated up to constant multiplicative
error unless the PH collapses.

e [t is unlikely that every “multiplicatively quantum supreme” circuit Is
also “additively quantum supreme”.

e BJS result has been recently extended to circuits of 2-local
commuting gates - see Adam Bouland, Laura Mancinska, and Xue
/hang’s talk on Tuesday.



Why can’t | just simulate <insert my favourite
guantum system>"
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The problem with the quantum

simulation argument for local
Hamiltonians H = >, H, PostBQP

Exact Quantum amplitudes/
probabilities ¢x|e|y)

Exact partition function®
Z=tr[ePH]

*Only possibilities!

Correlation function
evaluation
()= <0|ece™|0)

Smallest eigenvalue Local
Hamiltonian estimation

<Factoring >




Multiplicative
approximations: |[Ax — f| < f

GapP complete problems remain
GapP complete. (i.e. can never have
an FPRAS)

#P functions go herel!

Stockmeyer (STOC ’83):

Any function in #P can be approximated to
within a constant factor with high probability
in BPPNP. This can be generalized to any sum
of non-negative real numbers.

#P: Sharp P

The class of function problems of the form “compute
f(x)", where f is the number of accepting paths of an
NP machine.



Aaronson and Arkhipov’s great ideal

Classical control & processing
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e [f you could simulate linear optics classically, and if you have a BPP""
machine, you might be able to use Stockmeyer’s theorem to compute
complex matrix permanents. This would cause a PH collapse.

e [f you use random circuits then this isn’t ridiculously hard to prove!



GapP and quantum
computing

e Fortnow and Rogers/Fenner et al (circa
'97). computing the amplitude of a
guantum circuit is GapP-complete.

GapP: Let C be a classical circuit that
computes a Boolean function C : {0,1}"
— {-1,1}. Given C as input, compute
Ac which Is given by:

Ac= ) Cz)
xe{0,1}"
e GapP generalizes #P to encompass
negative valued functions. It isn’t too
hard to see that GapP 2 #P.

e Multiplicative approximations to GapP-
complete problems are still GapP-
complete. Implies |A-P(0")|<yP(0") is
#P-hard.
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Circuit classes that are universal under
postselection can have GapP-complete amplitudes

e Circuits constructed from universal «

gate sets. postselected circuit

¢ | inear optics without feedforward - I.e.
Boson Sampling systems. Also
proportional to matrix permanents!
(See A+A)

¢ |QP circuits, i.e. circuits with all-
commuting gates. Also proportional to
partition functions, polynomial gaps
and weight enumerator/Tutte
polynomials.”

e Corresponding probabilities are always
#P-hard even with multiplicative
approximation. |[A-P(0")|<yP(0")

o = O(poly n)

* (See, Goldberg and Guo arXiv:1409.5627, Fuji and Morimae arXiv:1311.2128 and our paper.)



|QP sampling: rough idea
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o -} rHAHA

+NP @ 0100001110, 1001001010, ...
according to R(x)

=

Q

o
@

T

-

O

o
QO

O
E
<

Q
wn

f_|-
.
o
(-

=
O

D)

w

€

A

Py [\p(x) — R(z)| > } <5

(3) Stockmeyer counting algorithm:
[A-R(0)|<(1/poly(n))R(0)

A— P < P(x) N e(1 + 1/poly(n))

No bound on P(0) @



|QP sampling
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|QP sampling: a PH collapse in the random case”
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(3) Stockmeyer counting algorithm:
|A-R’(0)|<(1/poly(n)R’(0)

| - @)  [A—=P(0)] <~vP(0)
ITP°(0) = €2(27) (or "anti-concentrates™)  If |A-P’(0)| < yP’(Q) is #P-hard on average
we get a multiplicative approximation. the PH collapses



Ising models and 1QP
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These amplitudes are proportional to the complex
Ising model (long known to be #P-hard).

If wjand v; € {0,...,7} are uniformly randomly
chosen.

Then IQP sampling gives (with constant
probability):

1
Ax — 12| < (1 +0(1)> Z|?

If |[Z|? is #P-hard on average, then we are done!

This parameter choice leads to #P-hardness of
the worst-case complexity of Z. See, Goldberg
and Guo arXiv:1409.5627, Fuji and Morimae
arXiv:1311.2128 and our paper.



Polynomial gaps and QP
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0) | H[—e o 7 HHH A These amplitudes are proportional to the gap of
I degree-3 polynomials over F2, long known to be
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e This parameter choice leads to #P-hardness of
the worst-case complexity of ngap(f). See our

paper.



Boson Sampling ingredients IQP (1504.07999)

Amplitudes are #P-hard to precisely

compute Common to q. circuit class that is

universal with post-selection (in which

Per(Us, 7) case the problem is GapP-complete).

\/Sl'Sm'tl'tm'

Probabilities are #P-hard to

multiplicatively approximate Actually a property of GapP-

1 completeness.
JPer(4)” < R(4) < gPer(4)’ P

(Slo(U)|T) =

Gaussian matrices can be hidden in Haar | An obfuscation circuit can be built in IQP
random matrices enabling a LO sampler enabling an IQP sampler to estimate
to estimate |GPE[2. in BPPNP, [<x|IQP|0) |2+ in BPPN,

There are classes of Per(A) known to anti-
concentrate. Fairly good evidence that this
s true for Gaussian Permanents. This
enables |GPE|. to approximate |GPE|«

<x|IQP|0)|? anti-concentrates for random

Ising models and for randomly chosen
degree 3 polynomials (in F2).

GPE randomly-self-reduces. It is not
clear that |GPE|«x also randomly self
reduces.




Why these circuit classes?

® The commuting properties of these circuits make it possible to prove
the anti-concentration bound.

¢ Follows from the Paley-Zygmund inequality (R>0, O<a<1):
RJ®
R?]

_4

. 4

Pr[R > E[R]] > (1 — a)?

L'L-J

and a lot of counting of roots of unity...

e There may be other choices of IQP circuit that allow for anti-

concentration, however they will probably always need sufficient
depth.



Boson Sampling ingredients

IQP (1504.07999)

Amplitudes are #P-hard to precisely
compute

Per(Us 1)
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Probabilities are #P-hard to
multiplicatively approximate
1

gPer(A)2 < R(A) < gPer(A)?

(Slo(U)|T) =

Gaussian matrices can be hidden in Haar
random matrices enabling a LO sampler
to estimate |GPE[°. in BPPNP,

There are classes of Per(A) known to anti-
concentrate. Fairly good evidence that this
s true for Gaussian Permanents. This
enables |GPE|. to approximate |GPE|«

GPE randomly-self-reduces. It is not
clear that |GPE|«x also randomly self
reduces.

Common to g. circuit class that is
universal with post-selection (in which
case the problem is GapP-complete).

Actually a property of GapP-
completeness.

An obfuscation circuit can be built in IQP
enabling an IQP sampler to estimate [<x|
IQP|0>|° in BPPNF,

<x|IQP|0)|? anti-concentrates for random

Ising models and for randomly chosen
degree 3 polynomials (in F2).

We don’t know of any tools for proving
that Ax is hard on average.




—vidence for our
conjecture

For

e GapP-complete problems are
always randomly self-reducible.

e complex Ising model is #P-hard
with almost all choices of
parameters. See Goldberg and
Guo, arXiv:1409.5627

e Similarly, #P-hardness of the Ising
model follows from Baharona’s
work on spin glasses.

¢ Both these arguments require a
deterministic choice over
parameters - whereas our
conjectures demand a random
choice.

Against

¢ |n the exact case the GPE

problems is hard on average
because linear interpolation can be
used to reduce any instance of the
GPE to the random case.

® This technigue does not work for

the Ising model.

e This technigue also does not work

for the |GPE|« either.

Something really new has to be
iInvented!



Other circuilt classes?

e Fefferman and Umans (arXiv:1507.05592) recently argued that there exist
circuit families drawn from universal gate sets that cannot be classically
efficiently additively approximated - proving the equivalent of the random-
self reducibility conjecture.

e However the anti-concentration conjecture seems difficult for such circuits.

e Can the commuting 2-local gates results of Bouland, Mancinska, and
/Zhang be be extended to show new families of circuits, and corresponding
conjectures, that imply quantum supremacy”?

e Are there any circuits of lower depth than IQP circuits that are quantum
supreme?



What’s next?

e Obviously, prove the conjectures - or find new conjectures
that can be proved more easily.

e Find a convincing argument for the verification of Boson/
|QP Sampling experiments.

e Discover new guantum algorithms that somehow use the
nost-classicality of IQP or Boson Sampling-like circuits.




hank youl!

(Also, we have PhD and postdoc opportunities at UTS in Australia - if you are
interested come see me!)



