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What should experimentalists do to 
demonstrate quantum supremacy in 
the near future?


• Build gates etc with high fidelity. 
• Error-correction. 
• Shor’s algorithm. 
• Quantum simulation. 
• Try to solve other “hard” problems 

that can be efficiently checked. 
(e.g. DWave approach)

I’ve finally built a quantum 
computer and it works pretty 

well!

OK, great. So how 
about you convince me 

by, er, um... 
Simulation??

Challenge: Identify easy quantum computations that are 
“post-classical”?
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Boson Sampling [Aaronson and Arkhipov ‘10]: Can 
R(x) approximate P(x) in polynomial time?

0100001110, 1001001010, 10011000101, …

P(x) R(x)

Random LO circuit

vs

No. If: 
1.The PH is infinite 
2.The Permanent anti-concentration conjecture is true 
3.The Gaussian Permanent Approximation Conjecture is true



Our main result: IQP Sampling

If the “average case” complexity of multiplicative approximations to 
either: 

1) The complex temperature Ising model partition functions, or 
2) The gap of degree 3 polynomials 

is #P-hard, then quantum computers cannot be efficiently classically 
simulated to within constant additive error without a collapse of the 
PH. 

• This “improves” on Boson Sampling by proving the equivalent of the 
“Permanent anti-concentration conjecture”. (also see arXiv/
1507.05592) 

• Our techniques are simple enough to generate new conjectures and 
classically difficult to quantum circuit families.



Sample from eiπ/8H|0⟩⊗n

If conjecture (1) is true then there is no 
efficient classical algorithm that can sample 
from any R(x) such that: 
||P(x) - R(x)||1 ≤ 1/192  
(Unless the PH collapses)

Post-classical family 1: Random Ising circuits
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wij ={0,…,7} with 
probability {1/8,….1/8}

vi ={0,…,7} with 
probability {1/8,…,1/8}
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Random circuit 
composed of 
T and √CZ

wij ={0,…,7} with 
probability {1/8,….1/8}

vi ={0,…,7} with 
probability {1/8,…,1/8}



Sample from Uf|0⟩⊗n - the fourier transform 
of f(x)


If conjecture (2) is true then there is no 
efficient classical algorithm that can sample 
from any R(x) such that: 
||P(x) - R(x)||1 ≤ 1/192  
(Unless the PH collapses)

Post-classical family 2: Degree 3 polynomials

Random circuit 
of Z, CZ, and 
CCZ gates

𝛼ijk,βij,𝛾i  ϵ {0,1} randomly chosen.

All are examples of IQP circuits 
(Instantaneous Quantum Polytime)



Implementation

• Ising circuits are drawn from the 
complete graph on n vertices. 

• Requires O(n2) gates 2-local long-
range commuting gates. 

• Depth is O(log n) with a universal 
gate set. 

• Depth is O(n) with a 2D, universal, 
nearest neighbour architecture. 

• Our results imply that with high 
probability a randomly chosen Ising 
circuit will have quantum supremacy. 

• The commuting gates can allow for 
better fault-tolerance thresholds. 

• Requires circuit accuracy to only 
constant variation distance.

vs



Additive bounds are essential
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Wait, Mick, didn’t you give this talk like 5 years ago?

• MB, Jozsa, and Shepherd ’11 proved that there exist IQP circuits that 
cannot be efficiently classically simulated up to constant multiplicative 
error unless the PH collapses. 

• It is unlikely that every “multiplicatively quantum supreme” circuit is 
also “additively quantum supreme”.  

• BJS result has been recently extended to circuits of 2-local 
commuting gates - see Adam Bouland, Laura Maňcinska, and Xue 
Zhang’s talk on Tuesday.

vs
Additive Multiplicative



Why can’t I just simulate <insert my favourite 
quantum system>?



The problem with the quantum 
simulation argument for local 
Hamiltonians H = ∑i Hi

NP

PBPP

PH  
(Polynomial Hierarchy)

#P, GapP, PP, P#P=PPP, PostBQP

Exact partition function* 
Z=tr[e-βH] 

Smallest eigenvalue Local 
Hamiltonian estimation

Exact Quantum amplitudes/
probabilities ⟨x|eiH|y⟩

QMA

Correlation function 
evaluation 
⟨c⟩= ⟨0|eiHce-iH|0⟩

Bounded error  
QC

Factoring

*Only possibilities!



Multiplicative 
approximations:

NP

PBPP

PH  
(Polynomial Hierarchy)

#P, GapP, PP, P#P=PPP

GapP complete problems remain 
GapP complete. (i.e. can never have 
an FPRAS) 

#P functions go here!

QMA

Bounded error  
QC

BPPNP⊆PH3
Stockmeyer (STOC ’83): 
Any function in #P can be approximated to 
within a constant factor with high probability 
in BPPNP. This can be generalized to any sum 
of non-negative real numbers.

#P: Sharp P
The class of function problems of the form “compute 
f(x)”, where f is the number of accepting paths of an 
NP machine.



Aaronson and Arkhipov’s great idea!

• If you could simulate linear optics classically, and if you have a BPPNP 
machine, you might be able to use Stockmeyer’s theorem to compute 
complex matrix permanents. This would cause a PH collapse. 

• If you use random circuits then this isn’t ridiculously hard to prove! 



GapP and quantum 
computing

• Fortnow and Rogers/Fenner et al (circa 
’97): computing the amplitude of a 
quantum circuit is GapP-complete.  

GapP: Let C be a classical circuit that 
computes a Boolean function C : {0,1}n 
→ {−1,1}. Given C as input, compute 
ΔC which is given by: 

• GapP generalizes #P to encompass 
negative valued functions. It isn’t too 
hard to see that GapP ⊇ #P. 

• Multiplicative approximations to GapP-
complete problems are still GapP-
complete. Implies |A-P(0n)|≤𝛾P(0n) is 
#P-hard.
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Circuit classes that are universal under 
postselection can have GapP-complete amplitudes

UC

...
...

...
...

...

UCP

postselected circuit

p = O(poly n)

• Circuits constructed from universal 
gate sets. 

• Linear optics without feedforward - i.e. 
Boson Sampling systems. Also 
proportional to matrix permanents! 
(See A+A) 

• IQP circuits, i.e. circuits with all-
commuting gates. Also proportional to 
partition functions, polynomial gaps 
and weight enumerator/Tutte 
polynomials.* 

• Corresponding probabilities are always 
#P-hard even with multiplicative 
approximation. |A-P(0n)|≤𝛾P(0n)

 * (See, Goldberg and Guo arXiv:1409.5627, Fuji and Morimae arXiv:1311.2128 and our paper.)



IQP sampling: rough idea
I m

ake probability distributions
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(3) Stockmeyer counting algorithm: 
|A-R(0)|≤(1/poly(n))R(0)

Want to know P(0)

(1) Write circuit 

(3’)

(2)   0100001110, 1001001010, …  
according to R(x)

(1’) Circuit description of P(x)

No bound on P(0) 😢
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P’ is hidden by P:

Achieved through a random 
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IQP sampling: a PH collapse in the random case?
I m

ake probability distributions
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+NP

(3) Stockmeyer counting algorithm: 
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according to R(x)

(1’) Circuit description of P(x)

P’ is hidden by P:

Achieved through a random 

choice of P’(0) and P(x)

If P’(0) = Ω(2-n) (or “anti-concentrates”) 
we get a multiplicative approximation.

If |A-P’(0)| ≤ 𝛾P’(0) is #P-hard on average 
the PH collapses 



These amplitudes are proportional to the complex 
Ising model (long known to be #P-hard).  
• If wij and vi ϵ {0,…,7} are uniformly randomly 

chosen.  
• Then IQP sampling gives (with constant 

probability): 

• If |Z|2 is #P-hard on average, then we are done! 
• This parameter choice leads to #P-hardness of 

the worst-case complexity of Z. See, Goldberg 
and Guo arXiv:1409.5627, Fuji and Morimae 
arXiv:1311.2128 and our paper.

Ising models and IQP
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Polynomial gaps and IQP

These amplitudes are proportional to the gap of 
degree-3 polynomials over F2, long known to be 
#P-hard to compute.  
• If 𝛼ijk,βij,𝛾i  ϵ {0,1} are randomly chosen.  
• Then IQP sampling gives (with constant 

probability): 

• If ngap(f)2 is #P-hard on average we are done! 
• This parameter choice leads to #P-hardness of 

the worst-case complexity of ngap(f). See our 
paper.



Boson Sampling ingredients IQP (1504.07999)

Amplitudes are #P-hard to precisely 
compute Common to q. circuit class that is 

universal with post-selection (in which 
case the problem is GapP-complete).

Probabilities are #P-hard to 
multiplicatively approximate Actually a property of GapP-

completeness.

Gaussian matrices can be hidden in Haar 
random matrices enabling a LO sampler 
to estimate |GPE|2± in BPPNP.

An obfuscation circuit can be built in IQP 
enabling an IQP sampler to estimate  
|⟨x|IQP|0⟩|2± in BPPNP.

There are classes of Per(A) known to anti-
concentrate. Fairly good evidence that this 
is true for Gaussian Permanents. This 
enables |GPE|2± to approximate |GPE|×

|⟨x|IQP|0⟩|2 anti-concentrates for random 
Ising models and for randomly chosen 
degree 3 polynomials (in F2).

GPE randomly-self-reduces. It is not 
clear that |GPE|× also randomly self 
reduces.

hS|�(U)|T i = Per(US,T )p
s1! . . . sm!t1! . . . tm!

1

g
Per(A)2  R(A)  gPer(A)2

✓

✓

✓

✓



Why these circuit classes?

• The commuting properties of these circuits make it possible to prove 
the anti-concentration bound. 

• Follows from the Paley-Zygmund inequality (R>0, 0<𝛼<1): 

and a lot of counting of roots of unity… 

• There may be other choices of IQP circuit that allow for anti-
concentration, however they will probably always need sufficient 
depth.



Boson Sampling ingredients IQP (1504.07999)

Amplitudes are #P-hard to precisely 
compute Common to q. circuit class that is 

universal with post-selection (in which 
case the problem is GapP-complete).

Probabilities are #P-hard to 
multiplicatively approximate Actually a property of GapP-

completeness.

Gaussian matrices can be hidden in Haar 
random matrices enabling a LO sampler 
to estimate |GPE|2± in BPPNP.

An obfuscation circuit can be built in IQP 
enabling an IQP sampler to estimate |⟨x|
IQP|0⟩|2± in BPPNP.

There are classes of Per(A) known to anti-
concentrate. Fairly good evidence that this 
is true for Gaussian Permanents. This 
enables |GPE|2± to approximate |GPE|×

|⟨x|IQP|0⟩|2 anti-concentrates for random 
Ising models and for randomly chosen 
degree 3 polynomials (in F2).

GPE randomly-self-reduces. It is not 
clear that |GPE|× also randomly self 
reduces.

We don’t know of any tools for proving 
that A× is hard on average.

hS|�(U)|T i = Per(US,T )p
s1! . . . sm!t1! . . . tm!
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Evidence for our 
conjecture

For 

• GapP-complete problems are 
always randomly self-reducible. 

•  complex Ising model is #P-hard 
with almost all choices of 
parameters. See Goldberg and 
Guo, arXiv:1409.5627 

• Similarly, #P-hardness of the Ising 
model follows from Baharona’s 
work on spin glasses. 

• Both these arguments require a 
deterministic choice over 
parameters - whereas our 
conjectures demand a random 
choice.

Against 

• In the exact case the GPE 
problems is hard on average 
because linear interpolation can be 
used to reduce any instance of the 
GPE to the random case. 

• This technique does not work for 
the Ising model. 

• This technique also does not work 
for the |GPE|× either. 

• Something really new has to be 
invented!



Other circuit classes?

• Fefferman and Umans (arXiv:1507.05592) recently argued that there exist 
circuit families drawn from universal gate sets that cannot be classically 
efficiently additively approximated - proving the equivalent of the random-
self reducibility conjecture. 

• However the anti-concentration conjecture seems difficult for such circuits. 

• Can the commuting 2-local gates results of Bouland, Maňcinska, and 
Zhang be be extended to show new families of circuits, and corresponding 
conjectures, that imply quantum supremacy? 

• Are there any circuits of lower depth than IQP circuits that are quantum 
supreme?



What’s next?

• Obviously, prove the conjectures - or find new conjectures 
that can be proved more easily. 

• Find a convincing argument for the verification of Boson/
IQP Sampling experiments. 

• Discover new quantum algorithms that somehow use the 
post-classicality of IQP or Boson Sampling-like circuits.



Thank you!

(Also, we have PhD and postdoc opportunities at UTS in Australia - if you are 
interested come see me!)


