
Fault-Tolerant Quantum Computing
by

Code Deformation

Sergey Bravyi

IBM Watson Center

QIP Tutorial
2016

Stabilizer codes: summary

0 0 0 0 0 0

Encode k logical qubits into a subspace of n
physical qubits. Encoded states are eigenvectors of
commuting Pauli operators called stabilizers.

Errors are diagnosed by their syndromes
(stabilizers whose eigenvalue has been flipped).

The code distance 𝑑 quantifies how well the code
protects encoded information.

Any error of weight at most (𝑑 − 1)/2 is correctable.

Subsystem codes: summary

Stabilizer codes with extra “gauge qubits”. Needed
to describe a conversion between stabilizer codes.

∗ 0 0 0 0∗∗

Gauge qubits do not store any information.

The purpose of gauge qubits is to describe stabilizers
whose eigenvalue can be flipped as a result of the code
conversion itself.

Homological CSS codes: logical operators can be
described by cycles in a graph. The code distance
can be computed efficiently by Dijkstra’s algorithm.

Code deformation: summary

Computation is driven by syndrome measurements,
error correction, and transversal gates.

Elementary code deformations

1. Stop measuring some existing stabilizers.
Use them to make new logical or gauge qubits.

2. Start measuring some new stabilizers.
A new stabilizer can be made of logical or gauge
operators.

3. Transversal logical gates

4. Choose a new basis set of generators for
syndrome/gauge/logical subsystems

Code deformation: summary

Computation is driven by syndrome measurements,
error correction, and transversal gates.

At each step the logical state is encoded into a
subsystem quantum code.

A code deformation is fault-tolerant
(corrects 𝑡 errors per step) if each intermediate
subsystem code has large enough distance
(at least 2𝑡 + 1).

Outline

• Stabilizer codes

• The decoding problem and code distance

• Fault-tolerant code deformation

• Example 1: Shor’s 4-qubit code

• Example 2: lattice surgery

• Maximum likelihood decoding

Shor’s 4-qubit code

Smallest distance-2 code

Code parameters: [[4,1,2]]

Stabilizers:

Z

Z

X

XX

X Z

Z

Logical operators:

X

X

Z Z

Pictorial notations for stabilizers:

XZ Z
Qubits = vertices
Stabilizers = faces

Z

Z

X

XX

X Z

Z

Pictorial notations for stabilizers:

XZ Z
Qubits = vertices
Stabilizers = faces

XZ EPR state

XZ Z GHZ state

Z

Pictorial notations for stabilizers:

XZ Z
Qubits = vertices
Stabilizers = faces

Z

X
logical operators
of the Shor’s code

Goal: implement logical Hadamard gate for the
Shor’s code by code deformation

Let’s try transversal Hadamard gate:

XZ Z ZX X

Wrong number of
X and Z stabilizers

Transversal Hadamard does not preserve the
code space.

Applying Hadamard to a subset of qubits doesn’t help.

Logical Hadarmard: outline

XZ Z Z X EPR

XZ Z X

X ZZX

XZ Z

Shor

ShorEPR ZX

deform

deform

For the next Hadamard gate use the reverse order
of deformations to avoid shifting the code

XZ Z Z X EPR

XZ Z X

X ZZX

XZ Z

Shor

ShorEPR ZX

deform

deform

We shall choose the deformations that implement
a logical identity gate:

deform

deform

The net effect is a logical Hadamard.

The intermediate code is a subsystem code with
one gauge qubit:

XZ Z X

Stabilizers

Logical operators

XZ

Gauge operators

XZ

This code has distance d=2 because each qubit is
touched by both X and Z stabilizers.

How to implement the deformation ?

XZ Z Z X EPR

XZ Z X

Shor

deform

5 elementary
steps

Step 1: choose a new basis set of stabilizers.

XZ Z Z X EPRShor

XZ Z XZ new stabilizers

X

Z

current logical
operators

Step 2: change the stabilizer group

XZ Z XZ

XZ Z X

Stop measuring
Z-stabilizer

Step 2: change the stabilizer group

XZ Z XZ

XZ Z X

Stop measuring
Z-stabilizer

One gauge
qubit has been
created

Z

X

Step 2: change the stabilizer group

XZ Z XZ

XZ Z X

Stop measuring
Z-stabilizer

We are not done yet…
The new code has the desired stabilizers,
but wrong logical/gauge operators.

Step 2: change the stabilizer group

XZ Z XZ

XZ Z X

Stop measuring
Z-stabilizer

X

Z

current logical
operators

Step 2: change the stabilizer group

XZ Z XZ

XZ Z X

Stop measuring
Z-stabilizer

desired logical
operators

XZ

Step 2: change the stabilizer group

XZ Z XZ

XZ Z X

Stop measuring
Z-stabilizer

current gauge
operatorsZ

X

Step 2: change the stabilizer group

XZ Z XZ

XZ Z X

Stop measuring
Z-stabilizer

desired gauge
operators

XZ

Step 3: change the stabilizer group

XZ Z XZ

XZ Z X

Stop measuring
Z-stabilizer

Start measuring
new X-stabilizer

XZ Z X

X

Step 4: choose a new basis set of logical operators

XZ Z X

X

current
stabilizers

X

Z

current
logicals

desired logicals

XZ

Step 5: change the stabilizer group

XZ Z X

X

XZ Z X

Stop measuring
X-stabilizer

Now we have the desired stabilizer/logical/gauge
operators.

Logical Hadamard: summary

XZ Z Z X EPR

XZ Z X

X ZZX

XZ Z

Shor

ShorEPR ZX

deform (5 steps)

deform (5 steps)

Outline

• Stabilizer codes

• The decoding problem and code distance

• Fault-tolerant code deformation

• Example 1: Shor’s 4-qubit code

• Example 2: lattice surgery

• Maximum likelihood decoding

Rotated surface code

Qubits = sites.
Stabilizers = faces.

X.-G. Wen (2006)

X Z

Generalization of the Shor’s 4-qubit code.

Homological CSS code for any boundary conditions.

Achieves the same distance as the standard
surface code with twice as less qubits.

Pictorial notations for the logical operators

logical-Z

Z Z Z Z Z

logical-X

X
X
X
X
X

Multiple logical qubits: planar layout

5 logical qubits9x9 physical qubits

The empty space between the logical patches is filled
by connector qubits.

Connector qubits mediate interactions between
logical qubits and provide space for code deformation

Horsman et al (2011); Gambetta, Chow, Steffen (2015)

Locality restriction: any stabilizer measured in the
protocol must be face-like, or edge-like, or a single site.

Promising architecture for platforms based on
superconducting qubits
(no qubit movement, no long-range interactions)

Multiple logical qubits: planar layout

Target logical operations:

1. Prepare a new logical qubit in or

Z-Prep X-Prep

2. Measure a logical qubit in Z or X basis

3. Logical Hadamard

Z-Meas X-Meas

CNOT H

Goal: implement 1-4 by code deformation satisfying
the locality and the fault-tolerance constraints.

4. Logical CNOT

Z-Prep

1. Initialize each physical qubit in

2. Measure syndrome

3. Use syndromes of Z-type stabilizers to correct
X-type errors

4. Use syndromes of X-type stabilizers for
gauge fixing.

Step 1: choose a new basis set of stabilizers.

The code has no logical/gauge qubits

Step 2: stop measuring stabilizers of type 1,3

Use stabilizers of type 3 to create a logical qubit:

new logical
operators

Step 2: stop measuring stabilizers of type 1,3

Use stabilizers of type 1 to create 4 gauge qubits:

new gauge
operators

Step 3: start measuring new stabilizers.
Gauge operators of X-type become stabilizers.

The final code has no gauge qubits and
one logical qubit with the logical operators

Logical Hadamard

Lattice rotation is needed to get the original code.

Naive implementation:

Lattice rotation by code deformation is too expensive…

Hadamard without lattice rotation: sketch

deform deform

extend the lattice;
deform boundary

stabilizers

deform boundary
stabilizers;

contract the lattice

Hadamard without lattice rotation: sketch

deform deform

Hadamard without lattice rotation: sketch

deform deform

Lattice extension requires ancillary qubits

EPR

EPR

Does it fit into the chosen planar layout ?

Does it fit into the chosen planar layout ?

Logical Hadamards on adjacent logical qubits do not
interfere with each other

Does it fit into the chosen planar layout ?

Problem: the logical patch is shifted by one lattice
period after each Hadamard.

Does it fit into the chosen planar layout ?

Solution: alternate between left and right shifts

Better solution: use syndrome readout ancillas
(not shown) to shift the logical patch back

Logical CNOT

CNOT truth table:

XI XX
IX IX
ZI ZI
IZ ZZ

in out

Logical CNOT

CNOT truth table:

XI XX
IX IX
ZI ZI
IZ ZZ

in out

X

Logical CNOT

CNOT truth table:

XI XX
IX IX
ZI ZI
IZ ZZ

in out

X

X

Logical CNOT

CNOT truth table:

XI XX
IX IX
ZI ZI
IZ ZZ

in out

X

X

Logical CNOT

CNOT truth table:

XI XX
IX IX
ZI ZI
IZ ZZ

in out

X

X

Logical CNOT

CNOT truth table:

XI XX
IX IX
ZI ZI
IZ ZZ

in out

X

X

Logical CNOT

It suffices to implement non-destructive logical
ZZ and XX measurements

Step 1: create one ancillary logical path in logical

Logical ZZ measurement

C

TA

Step 2: merge C and A patches

Logical ZZ measurement

C

TA

Step 2: Logical ZZ becomes a stabilizer

Logical ZZ measurement

C

TA

Step 2: the merged patch has one logical qubit

Logical ZZ measurement

C

TA

Step 3: disconnect C and A patches

Logical ZZ measurement

C

TA

Lattice surgery: summary

Z-Prep X-Prep

Z-Meas X-Meas

CNOT H

Requires only measurements of local stabilizers
supported on faces, edges, and sites of the 2D grid.

Open problems:
Phase-shift gate S by code deformation
Maximum likelihood decoding
Resource optimization

Fault-tolerant ancilla injection:
Lodyga et al, arxiv:1404.2495

Outline

• Stabilizer codes

• The decoding problem and code distance

• Fault-tolerant code deformation

• Example 1: Shor’s 4-qubit code

• Example 2: lattice surgery

• Maximum likelihood decoding

Max-Likelihood Decoder: pick the most likely equivalence
class of errors consistent with the observed syndrome

Recovery:

Optimal decoder for a given error model.

Computing the ML recovery is #P-hard problem
Iyer and Poulin (2013)

𝐺Stabilizer group 𝐺

Pauli group

…

𝑓3𝐺

𝑓2𝐺

𝑓1𝐺

cosets of the
stabilizer group

Some terminology:

𝐼, 𝑋, 𝑌, 𝑍 ⨂𝑛

𝐺Stabilizer group 𝐺

Pauli group

…

𝑓3𝐺

𝑓2𝐺

𝑓1𝐺

Errors in the same coset have the same action on
the codespace

𝐺Stabilizer group 𝐺

Pauli group

…

𝑓3𝐺

𝑓2𝐺

𝑓1𝐺

Coset probability: Pr 𝑓𝐺 =

𝑔∈𝐺

Pr(𝑓𝑔)

The four cosets consistent with the syndrome 𝑠 :

We fixed some canonical error 𝑓(𝑠) consistent with 𝑠

𝑓 𝑠 𝐺 𝑓 𝑠 𝑋𝐺

𝑓 𝑠 𝑌𝐺 𝑓 𝑠 𝑍𝐺

I-coset X-coset

Z-cosetY-coset

 𝑋, 𝑌, 𝑍 are the logical operators

The four cosets consistent with the syndrome 𝑠 :

𝑓 𝑠 𝐺 𝑓 𝑠 𝑋𝐺

𝑓 𝑠 𝑌𝐺 𝑓 𝑠 𝑍𝐺

I-coset X-coset

Z-cosetY-coset

Coset probability: Pr 𝑓𝐺 =

𝑔∈𝐺

Pr(𝑓𝑔)

The four cosets consistent with the syndrome 𝑠 :

3.5e-249

I-coset X-coset

Z-cosetY-coset

2.2e-263

4.5e-239

7.9e-257

Real example for d=25, 𝜖=10%

Coset probability: Pr 𝑓𝐺 =

𝑔∈𝐺

Pr(𝑓𝑔)

3.5e-249

I-coset X-coset

Z-cosetY-coset

2.2e-263

4.5e-239

7.9e-257

The optimal decoding strategy is to pick the most
likely coset.

Most likely coset

All errors in the same coset have the same action on
the codespace

Approximate algorithm for MLD:

Illustrative example: the trivial coset

Pr 𝐺 =

𝑔∈𝐺

Pr(𝑔)

Step 1: express the coset probability as a contraction
of a tensor network on a 2D grid.

Step 2: contract the network column by column
using matrix product states

𝑁

𝑁
distance-𝑑

Extended surface code lattice

qubit node

stabilizer node

𝑁 = 2𝑑 − 1

𝑖

𝑗

𝑘

𝑙

𝑖

𝑗

𝑘

𝑙 𝑇𝑖,𝑗,𝑘,𝑙 =
1 − 𝜖 if 𝑖⨁𝑘 = 𝑗⨁𝑙 = 0

𝜖/3 otherwise

Nodes = tensors

Edges = tensor indexes (0 or 1)

𝑇𝑖,𝑗,𝑘,𝑙 =
1 if 𝑖 = 𝑗 = 𝑘 = 𝑙

0 otherwise

depends only on the code

depends on the coset

Nodes = tensors

Edges = tensor indexes (0 or 1)

Contraction value of a tensor network :

𝑐 =

𝛾

𝑛𝑜𝑑𝑒𝑠

𝑇(𝛾)

𝛾 = edge labeling by 0 and 1

Pr 𝐺 = 𝑐

Approximate contraction of 2D tensor networks
Murg, Verstraete, Cirac PRA 75, 033605 (2007)

Think of the contraction as a sequence of N-qubit states:

Ψ0 Ψ1 Ψ2 Ψ3 Ψ4

Pr 𝐺 = Ψ3 Ψ4

Approximate contraction of 2D tensor networks
Murg, Verstraete, Cirac PRA 75, 033605 (2007)

Think of the contraction as a sequence of N-qubit states:

Ψ0 Ψ1 Ψ2 Ψ3 Ψ4

Let’s hope that the time evolution is weakly-entangling.
Approximate Ψ’s by matrix product states with a
small bond dimension.

Matrix Product States (MPS)

𝑖1𝑖2𝑖3𝑖4𝑖5 Ψ =

𝐴1(𝑖1)
𝐴2(𝑖2) 𝐴3(𝑖3) 𝐴4(𝑖4)

𝐴
5
(𝑖

5
).

. . .

1 × 𝜒 𝜒 × 𝜒 𝜒 × 𝜒 𝜒 × 𝜒 𝜒 × 1

𝜒 - bond dimension

MPS admits a concise description as a list of matrices

(𝑁𝜒2 real parameters)

Matrix Product States (MPS)

𝑖1𝑖2𝑖3𝑖4𝑖5 Ψ =

𝐴1(𝑖1)
𝐴2(𝑖2) 𝐴3(𝑖3) 𝐴4(𝑖4)

𝐴
5
(𝑖

5
).

. . .

=

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

Fact 1: Suppose Ψ,Φ ∈ MPS(𝑁, 𝜒). Then the inner

product Ψ Φ can be computed in time 𝑂(𝑁𝜒3)

MPS(𝑁, 𝜒)

MPS(𝑁, 2𝜒)

Ψ
Φ

Efficient compression algorithm:
Schollwock, Ann. Phys. 326, 96 (2011)

MPS compression

Fact 2: MPS with a bond dimension 2𝜒 can be approximated
by an MPS with a bond dimension 𝜒 in time

𝑁 ∙ svd 2𝜒 + 𝑁 ⋅ qr 2𝜒 = 𝑂(𝑁𝜒3)

How large bond dimension do we need ?

