Fault-Tolerant Quantum Computing by Code Deformation

Sergey Bravyi

IBM Watson Center

QIP Tutorial 2016

Stabilizer codes: summary

Encode k logical qubits into a subspace of n physical qubits. Encoded states are eigenvectors of commuting Pauli operators called stabilizers.

Errors are diagnosed by their syndromes (stabilizers whose eigenvalue has been flipped).

The code distance *d* quantifies how well the code protects encoded information.

Any error of weight at most (d-1)/2 is correctable.

Stabilizer codes with extra "gauge qubits". Needed to describe a conversion between stabilizer codes.

Gauge qubits do not store any information.

The purpose of gauge qubits is to describe stabilizers whose eigenvalue can be flipped as a result of the code conversion itself.

Homological CSS codes: logical operators can be described by cycles in a graph. The code distance can be computed efficiently by Dijkstra's algorithm.

Code deformation: summary

Computation is driven by syndrome measurements, error correction, and transversal gates.

Elementary code deformations

- 1. Stop measuring some existing stabilizers. Use them to make new logical or gauge qubits.
- Start measuring some new stabilizers.
 A new stabilizer can be made of logical or gauge operators.
- 3. Transversal logical gates
- 4. Choose a new basis set of generators for syndrome/gauge/logical subsystems

Code deformation: summary

Computation is driven by syndrome measurements, error correction, and transversal gates.

At each step the logical state is encoded into a subsystem quantum code.

A code deformation is fault-tolerant (corrects t errors per step) if each intermediate subsystem code has large enough distance (at least 2t + 1).

Outline

- Stabilizer codes
- The decoding problem and code distance
- Fault-tolerant code deformation
- Example 1: Shor's 4-qubit code
- Example 2: lattice surgery
- Maximum likelihood decoding

Shor's 4-qubit code

Code parameters: [[4,1,2]] Smallest distance-2 code

Stabilizers:

Logical operators:

Pictorial notations for stabilizers:

Qubits = vertices Stabilizers = faces

Pictorial notations for stabilizers:

Qubits = vertices Stabilizers = faces

GHZ state |0000
angle+|1111
angle

Pictorial notations for stabilizers:

Qubits = vertices Stabilizers = faces

logical operators of the Shor's code

Goal: implement logical Hadamard gate for the Shor's code by code deformation

Let's try transversal Hadamard gate:

Wrong number of X and Z stabilizers

Transversal Hadamard does not preserve the code space.

Applying Hadamard to a subset of qubits doesn't help.

Logical Hadarmard: outline

For the next Hadamard gate use the reverse order of deformations to avoid shifting the code

We shall choose the deformations that implement a logical identity gate:

The net effect is a logical Hadamard.

The intermediate code is a subsystem code with one gauge qubit:

This code has distance d=2 because each qubit is touched by both X and Z stabilizers.

How to implement the deformation?

Step 1: choose a new basis set of stabilizers.

current logical operators

We are not done yet... The new code has the desired stabilizers, but wrong logical/gauge operators.

desired logical operators

desired gauge operators

Step 4: choose a new basis set of logical operators

Now we have the desired stabilizer/logical/gauge operators.

Outline

- Stabilizer codes
- The decoding problem and code distance
- Fault-tolerant code deformation
- Example 1: Shor's 4-qubit code
- Example 2: lattice surgery
- Maximum likelihood decoding

Rotated surface code X.-G. Wen (2006)

Generalization of the Shor's 4-qubit code.

Homological CSS code for any boundary conditions.

Achieves the same distance as the standard surface code with twice as less qubits.

Pictorial notations for the logical operators

logical-X

Multiple logical qubits: planar layout

9x9 physical qubits

The empty space between the logical patches is filled by connector qubits.

Connector qubits mediate interactions between logical qubits and provide space for code deformation

Multiple logical qubits: planar layout

Locality restriction: any stabilizer measured in the protocol must be face-like, or edge-like, or a single site.

Promising architecture for platforms based on superconducting qubits (no qubit movement, no long-range interactions) Horsman et al (2011); Gambetta, Chow, Steffen (2015) Target logical operations:

- 1. Prepare a new logical qubit in $|0
 angle\,$ or $|+
 angle\,$
- 2. Measure a logical qubit in Z or X basis
- 3. Logical Hadamard
- 4. Logical CNOT

Goal: implement 1-4 by code deformation satisfying the locality and the fault-tolerance constraints.

Z-Prep

- 1. Initialize each physical qubit in |0
 angle
- 2. Measure syndrome
- 3. Use syndromes of Z-type stabilizers to correct X-type errors
- 4. Use syndromes of X-type stabilizers for gauge fixing.

Step 1: choose a new basis set of stabilizers.

The code has no logical/gauge qubits
Step 2: stop measuring stabilizers of type 1,3

Use stabilizers of type 3 to create a logical qubit:

new logical operators

 $\overline{Z} = 1$

Step 2: stop measuring stabilizers of type 1,3

Use stabilizers of type 1 to create 4 gauge qubits:

Step 3: start measuring new stabilizers. Gauge operators of X-type become stabilizers.

The final code has no gauge qubits and one logical qubit with the logical operators

Logical Hadamard

Naive implementation:

Lattice rotation is needed to get the original code.

Lattice rotation by code deformation is too expensive...

Hadamard without lattice rotation: sketch

extend the lattice; deform boundary stabilizers deform boundary stabilizers; contract the lattice

Hadamard without lattice rotation: sketch

Hadamard without lattice rotation: sketch

Lattice extension requires ancillary qubits

Logical Hadamards on adjacent logical qubits do not interfere with each other

Problem: the logical patch is shifted by one lattice period after each Hadamard.

Solution: alternate between left and right shifts

Better solution: use syndrome readout ancillas (not shown) to shift the logical patch back

CNOT truth table:

in out XI XX IX IX ZI ZI IZ ZZ

It suffices to implement non-destructive logical ZZ and XX measurements

Step 1: create one ancillary logical path in logical $\ket{+}$

Step 2: merge C and A patches

Step 2: Logical ZZ becomes a stabilizer

Step 2: the merged patch has one logical qubit

Step 3: disconnect C and A patches

Lattice surgery: summary

Requires only measurements of local stabilizers supported on faces, edges, and sites of the 2D grid.

Fault-tolerant ancilla injection: Lodyga et al, arxiv:1404.2495

Open problems: Phase-shift gate S by code deformation Maximum likelihood decoding Resource optimization

Outline

- Stabilizer codes
- The decoding problem and code distance
- Fault-tolerant code deformation
- Example 1: Shor's 4-qubit code
- Example 2: lattice surgery
- Maximum likelihood decoding

Max-Likelihood Decoder: pick the most likely equivalence class of errors consistent with the observed syndrome

$$L^* = \arg\max_L \sum_S \Pr(D \cdot L \cdot S)$$

Recovery:
$$R(D) = D \cdot L^*$$

Optimal decoder for a given error model.

Computing the ML recovery is #P-hard problem Iyer and Poulin (2013)

Some terminology:

 $\{I, X, Y, Z\}^{\otimes n}$

cosets of the stabilizer group

Errors in the same coset have the same action on the codespace

The four cosets consistent with the syndrome s:

We fixed some canonical error f(s) consistent with s

$$\overline{X}$$
 , \overline{Y} , \overline{Z} are the logical operators

The four cosets consistent with the syndrome s:

Coset probability:
$$\Pr(fG) = \sum_{g \in G} \Pr(fg)$$

The four cosets consistent with the syndrome s:

All errors in the same coset have the same action on the codespace

The optimal decoding strategy is to pick the most likely coset.

Approximate algorithm for MLD:

Step 1: express the coset probability as a contraction of a tensor network on a 2D grid.

Step 2: contract the network column by column using matrix product states

Illustrative example: the trivial coset

$$\Pr(G) = \sum_{g \in G} \Pr(g)$$

Extended surface code lattice

Nodes = tensors

Edges = tensor indexes (0 or 1)

Approximate contraction of 2D tensor networks Murg, Verstraete, Cirac PRA 75, 033605 (2007)

Think of the contraction as a sequence of N-qubit states:

 $\Pr(G) = \langle \Psi_3 | \Psi_4 \rangle$

Approximate contraction of 2D tensor networks Murg, Verstraete, Cirac PRA 75, 033605 (2007)

Think of the contraction as a sequence of N-qubit states:

Let's hope that the time evolution is weakly-entangling. Approximate Ψ 's by matrix product states with a small bond dimension.

Matrix Product States (MPS)

$$\langle i_1 i_2 i_3 i_4 i_5 |\Psi\rangle =$$

χ - bond dimension

MPS admits a concise description as a list of matrices $(N\chi^2 \text{ real parameters})$

Matrix Product States (MPS)

$$\langle i_1 i_2 i_3 i_4 i_5 |\Psi\rangle =$$

Fact 1: Suppose $\Psi, \Phi \in MPS(N, \chi)$. Then the inner product $\langle \Psi | \Phi \rangle$ can be computed in time $O(N\chi^3)$

MPS compression

Efficient compression algorithm: Schollwock, Ann. Phys. 326, 96 (2011)

Fact 2: MPS with a bond dimension 2χ can be approximated by an MPS with a bond dimension χ in time

$$N \cdot \operatorname{svd}(2\chi) + N \cdot \operatorname{qr}(2\chi) = O(N\chi^3)$$

How large bond dimension do we need?

Logical error probability