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In a noncontextual hidden variable model of quantum theory, hidden variables determine the outcomes

of every measurement in a manner that is independent of how the measurement is implemented. Using a

generalization of this notion to arbitrary operational theories and to preparation procedures, we demon-

strate that a particular two-party information-processing task, ‘‘parity-oblivious multiplexing,’’ is powered

by contextuality in the sense that there is a limit to how well any theory described by a noncontextual

hidden variable model can perform. This bound constitutes a ‘‘noncontextuality inequality’’ that is

violated by quantum theory. We report an experimental violation of this inequality in good agreement

with the quantum predictions. The experimental results also provide the first demonstration of 2-to-1 and

3-to-1 quantum random access codes.
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The Bell-Kochen-Specker theorem [1] shows that the
predictions of quantum theory are inconsistent with a
hidden variable model having the following feature: if A,
B, and C are Hermitian operators such that A and B
commute, A and C commute, but B and C do not commute,
then the value predicted to occur in a measurement of A
does not depend on whether B or C was measured simul-
taneously. This feature is called ‘‘noncontextuality.’’
Significantly, it is only well-defined for models of quantum
theory (and then only for projective measurements and
deterministic models) [2]. By contrast, Bell’s definition
of a localmodel applies to any theory that can be described
operationally [3]. Consequently, whereas one can test
whether or not experimental statistics are consistent with
a local model (by testing whether or not they satisfy Bell
inequalities), there is no way to test whether or not experi-
mental statistics are consistent with a noncontextual model
(and no way of defining associated ‘‘noncontextuality in-
equalities’’) unless one generalizes the traditional notion of
noncontextuality in such a way that it makes no reference
to the quantum formalism. Suggestions for such a formu-
lation have been made by several authors [4]. A particu-
larly natural generalization (and slight modification) which
applies to all models (deterministic or not) of any opera-
tional theory has been proposed in Ref. [2]. We here derive
a noncontextuality (NC) inequality based on this notion.

Because information-theoretic tasks can be character-
ized entirely in terms of experimental statistics, one can
explore whether theories that violate NC inequalities may
provide information-theoretic advantages over theories
that satisfy these inequalities. We prove that this is indeed
the case for a task which we call parity-oblivious multi-
plexing, a kind of two-party secure computation. (The
notion that contextuality might yield an advantage for
multiplexing tasks was first put forward by Galvão [5].)

The NC inequality we derive provides a bound on the
probability of success in this task, and we demonstrate a
quantum protocol for parity-oblivious multiplexing for
which the probability of success exceeds the noncontextual
bound.
Finally, we report an experimental implementation of

this protocol that achieves a probability of success in good
agreement with the quantum result and in violation of the
NC inequality.
Operational theories and noncontextual models.—In an

operational theory, the primitives of description are prepa-
rations and measurements, specified as instructions for
what to do in the laboratory. The theory simply provides
an algorithm for calculating the probability pðkjP;MÞ of
an outcome k of measurementM given a preparation P. As
an example, in quantum theory, every preparation P is
represented by a density operator �P, every measurement
M is represented by a positive operator valued measure
fEM;kg, and the probability of outcome k is given by

pðkjP;MÞ ¼ Trð�PEM;kÞ.
In a hidden variable model of an operational theory, a

preparation procedure is assumed to prepare a system with
certain properties and a measurement procedure is as-
sumed to reveal something about those properties. The
set of all variables describing the system is denoted �.
It is presumed that for every preparation P, there is a
probability distribution pð�jPÞ such that implementing P
causes the system to be prepared in physical state �
with probability pð�jPÞ. Similarly, it is presumed that for
every measurement M, there is a distribution pðkj�;MÞ
such that implementing M on a system described by �
yields outcome k with probability pðkj�;MÞ. For the hid-
den variable model to reproduce the predictions of the
operational theory, it must satisfy pðkjP;MÞ ¼R
d�pðkj�;MÞpð�jPÞ.
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We show, under natural assumptions for qubit systems, that measurement-based quantum computations
(MBQCs) which compute a nonlinear Boolean function with a high probability are contextual. The class of
contextual MBQCs includes an example which is of practical interest and has a superpolynomial speedup over
the best-known classical algorithm, namely, the quantum algorithm that solves the “discrete log” problem.
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I. INTRODUCTION

While numerous quantum algorithms have been found
that offer polynomial or superpolynomial speedups over their
classical counterparts [1–3], the precise quantum mechanical
origin of this speedup remains unknown. The prominent
candidates—entanglement [4], superposition and interference
[5], and largeness of Hilbert space—provide an intuitive
understanding in many situations. Yet, as a whole, the
phenomenology so far uncovered does not lend itself to a
simple interpretation [6–12].

Here we turn our attention to a different characterization
of nonclassicality, namely, contextuality [13,14], and study its
relation to computational power. We choose measurement-
based quantum computation (MBQC) [15] as our setting.
The starting point for this investigation is the observation by
Anders and Browne [16] that one of Mermin’s proofs [17]
of the Kochen-Specker theorem [13] can be converted into
a simple MBQC. We are led to ask whether the connection
between MBQC and contextuality exhibited by this example
is accidental or whether it holds in general. The main finding
of this paper is that, under quite natural assumptions for
multiqubit systems, all MBQCs which compute a nonlinear
Boolean function with a sufficiently high success probability
are contextual.

For MBQC, the separation between linear and nonlinear
functions is fundamental. Every MBQC requires a classical
control computer for adjusting measurement bases according
to the computational input and for converting measurement
outcomes into computational output. This classical side pro-
cessing is all linear. Evaluating nonlinear functions is out of
reach for such a classical control computer without access to
additional resources.

This paper is organized as follows. In Sec. II, we review
Anders and Browne’s example and define the setting of MBQC
and notions of contextuality we use. In Sec. III we present
three results on the interplay between contextuality and the
nonlinearity of the computational output, Theorems 2, 3, and
5 . We point out that the class of contextual MBQCs contains
a computation which is of actual algorithmic interest, i.e.,
achieves a superpolynomial speedup over the best-known
classical algorithm. It is the MBQC variant of the quantum
algorithm for the “discrete log” problem [1,18]. In Sec. IV, we
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discuss experimental tests of contextuality. We conclude with
a discussion in Sec. V.

II. THE SETTING

We discuss the link between contextuality and quantum
computation for MBQC [15]. MBQC is a model of quantum
computation in which a quantum algorithm is implemented
solely by local measurements on a fixed initial state. The
choice of measurement bases determines the algorithm to be
implemented, and correlations among the measurement out-
comes reveal the result of the computation. The computational
power of this scheme is fully determined by the initial quantum
state.1 For suitable initial states such as cluster states, MBQC
is universal.

A. Computation and contextuality: A first example

Following Anders and Browne [16], we consider a three-
party Greenberger-Horne-Zeilinger (GHZ) [21] state |GHZ〉 =
|000〉+|111〉√

2
, which can be used to execute a deterministic OR

gate within the framework of MBQC. While standard elec-
tronic devices routinely perform OR gates without quantum-
mechanical action, this result offers a structural insight into
MBQC. Namely, it is known that every MBQC requires a
classical control computer that converts the classical input
into measurement settings and the measurement outcomes
into computational output. This classical control computer is
capable of doing only one type of operation: addition mod 2. It
is thus not classically universal and, indeed, very limited. Now,
having access to GHZ states and local projective measurements
promotes this control computer to classical universality. Thus,
in the described setting, the access to quantum resources vastly
increases the set of computable functions.

What is more, Anders and Browne’s construction repur-
poses an existing proof [17] of the Kochen-Specker theorem
[13] into a quantum mechanical computation. The computation
takes two bits of input, i1 and i2, and outputs a single bit
o ≡ i1 ∨ i2. It proceeds as follows. Step 1: The settings for the
local measurements on the three qubits are calculated from the
input i1 and i2. For either of the three qubits, a priori the Pauli

1Note, however, that other schemes of universal quantum com-
putation by measurement exist in which the measurements are not
local [19,20]. For such schemes, the initial quantum state of the
system is irrelevant.
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Contextuality supplies the ‘magic’ for
quantum computation
Mark Howard1,2, Joel Wallman2, Victor Veitch2,3 & Joseph Emerson2

Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in
quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality
and the possibility of universal quantum computation via ‘magic state’ distillation, which is the leading model for exper-
imentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which
precludes a simple ‘hidden variable’ model of quantum mechanics, provides one of the fundamental characterizations of
uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum
information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known
to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these funda-
mental issues, this work advances the resource framework for quantum computation, which has a number of practical
applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes
for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quan-
tum algorithms.

Quantum information provides unique new capabilities for computation
such as Shor’s factoring algorithm1 and quantum simulation algorithms2.
This naturally raises the fundamental question: what unique resources
of the quantum world enable the advantages of quantum information?
There have been many attempts to answer this question, with proposals
including the hypothetical ‘quantum parallelism’3 some associate with
quantum superposition, the necessity of large amounts of entanglement4,
and much ado about quantum discord5. Unfortunately none of these
proposals have proven satisfactory6–9, and, in particular, none have helped
resolve outstanding challenges confronting the field. For example, on
the theoretical side, the most general classes of problems for which quan-
tum algorithms might offer an exponential speed-up over classical algo-
rithms are poorly understood. On the experimental side, there remain
significant challenges to the design of robust, large-scale quantum com-
puters, and an important open problem is to determine the minimal
physical requirements of a useful quantum computer10,11. A framework
identifying relevant resources for quantum computation should help
clarify these issues—for example, by identifying new simulation schemes
for classes of quantum algorithms and by clarifying the trade-offs between
the distinct physical requirements for achieving robust quantum com-
putation. Here we establish that quantum contextuality, a generalization
of non-locality identified12,13 almost 50 years ago, is a critical resource for
quantum speed-up within the leading model for fault-tolerant quantum
computation, known as magic state distillation (MSD)14–16.

Contextuality was first recognized as an intrinsic feature of quantum
theory via the Bell–Kochen–Specker ‘no-go’ theorem. This theorem
implies the impossibility of explaining the statistical predictions of quan-
tum theory in a natural way. In particular, the actual outcome observed
under a quantum measurement cannot be understood as simply reveal-
ing a pre-existing value of some underlying ‘hidden variable’17. A key
observation is that the non-locality of quantum theory is a special case
of contextuality. Under the locality restrictions motivating quantum
communication, non-locality is a quantifiable cost for classical simula-
tion complexity18 and a fundamental resource for practical applications

such as device-independent quantum key distribution19–21. Locality restric-
tions can be made relevant to measurement-based quantum computation11,
for which non-locality quantifies the resources required to evaluate non-
linear functions22,23. However, locality restrictions are not relevant in
the standard quantum circuit model for quantum computation, and,
in this context, a large amount of entanglement has been shown to
be neither necessary nor sufficient for an exponential computational
speed-up9.

Here we consider the framework of fault-tolerant stabilizer quantum
computation24 which provides the most promising route to achieving
robust universal quantum computation thanks to the discovery of high-
threshold codes in two-dimensional geometries25–29. In this framework,
only a subset of quantum operations—namely, stabilizer operations—
can be achieved via a fault-tolerant encoding. These operations define
a closed subtheory of quantum theory, the stabilizer subtheory, which
is not universal and in fact admits an efficient classical simulation30.
The stabilizer subtheory can be promoted to universal quantum com-
putation through MSD14–16 which relies on a large number of ancillary
resource states. Here we show that quantum contextuality plays a cri-
tical role in characterizing the suitability of quantum states for MSD.
Our approach builds on recent work31,32 that has established a remark-
able connection between contextuality and graph-theory. We use the
framework of refs 31 and 32 to identify non-contextuality inequalities
such that the onset of state-dependent contextuality, using stabilizer
measurements, coincides exactly with the possibility of universal quantum
computing via MSD. The scope of our results differs depending on whether
we consider a model of computation using qubits (systems of even prime
dimension) or qudits (systems of odd prime dimension). We note that
some authors use the term qudit to describe a system with an arbitrary
number of levels. Whereas in both cases we can prove that violating a non-
contextuality inequality is necessary for quantum-computational speed-
up via MSD, in the qudit case we are able to prove that a state violates a
non-contextuality inequality if and only if it lies outside the known bound-
ary for MSD.
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We describe a universal scheme of quantum computation by state injection on rebits (states with real
density matrices). For this scheme, we establish contextuality and Wigner function negativity as
computational resources, extending results of M. Howard et al. [Nature (London) 510, 351 (2014)] to
two-level systems. For this purpose, we define a Wigner function suited to systems of n rebits and prove a
corresponding discrete Hudson’s theorem. We introduce contextuality witnesses for rebit states and discuss
the compatibility of our result with state-independent contextuality.
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I. INTRODUCTION

In quantum computation by state injection (QCSI) [1],
the set of quantum gates is, by construction, not universal.
This restriction is compensated by the injection of states
that could not be created within the scheme itself, the
so-called magic states.
Besides its promise for the realization of fault-tolerant

quantum computation, QCSI is of fundamental theoretical
interest. Since the magic states enable universality, one is
led to ask the following question: Precisely which quantum
properties of these states are responsible for the gain in
computational power?
Contextuality [2–5] and negativity of Wigner functions

have recently been proposed as the quintessential quantum
properties of magic states; see Refs. [6–8]. Contextuality is
an obstruction to modeling the inherent randomness of
quantum measurement in a statistical mechanics fashion,
namely, by a probability distribution over configurations
with predetermined measurement outcomes for all meas-
urable observables. Wigner functions [9–11] are the closest
quantum analogue of probability distributions over phase
space. The key difference is that Wigner functions can
assume negative values, and this negativity is taken as an
indication of quantumness. Despite their separate origins in
the fields of quantum optics and foundations of quantum
mechanics, Wigner function negativity and contextuality
are closely related indicators of nonclassical behavior
[6,12].
The reason for the appearance of Wigner functions in the

discussion of QCSI is their relation [7,11] to the stabilizer
formalism [13]. The stabilizer formalism is also relevant for

QCSI since the restricted gate set therein is typically chosen
to be the Clifford gates. These gates are indeed not
universal, and—if supplemented only with Pauli measure-
ments and stabilizer states—can be efficiently classically
simulated by stabilizer techniques.
The epitome for the link between Wigner functions and

QCSI via the stabilizer formalism is the discrete Hudson’s
theorem [11], which says that in Hilbert spaces of odd
prime-power (hence finite) dimension, the pure states with
positive Wigner functions are exactly the stabilizer states.
Thus, stabilizer states are “classical” from the perspectives
of both Wigner functions and QCSI. In the wake of this
result, contextuality and Wigner function negativity have
been established as quantum resources for QCSI with
qudits of odd prime dimension [6,8].
Extending these properties to two-level systems is

pertinent since quantum algorithms are typically formu-
lated in terms of qubits. But attempts to do so hit barriers:
As for the Wigner functions, many constructions cannot be
adapted to qubits [11,14], and for the remaining ones
[7,15], the discrete Hudson’s theorem breaks down. There
are qubit stabilizer states with negative Wigner functions.
As for contextuality, it now arises in its state-independent
form [16]. As a result, every quantum state of more than
one qubit can be considered contextual [6], which is at odds
with viewing contextuality as a resource possessed only by
special states.
Here, we establish Wigner function negativity and

contextuality as necessary resources for QCSI on two-level
systems. We achieve this at the price of restricting from
qubits to rebits, i.e., real density matrices of n two-level
systems. This restriction does not affect universality [17].
The role that was previously played by the stabilizer states
is now played by the Calderbank-Shor-Steane (CSS) states
[18], and the group of Clifford gates is replaced by the
subgroup of CSS-ness preserving Clifford gates. Within
this new setting, we resurrect a discrete Hudson’s theorem,
as well as a number of related properties of the Wigner
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We describe a scheme of quantum computation with magic states on qubits for which contextuality
is a necessary resource possessed by the magic states. More generally, we establish contextuality
as a necessary resource for all schemes of quantum computation with magic states on qubits that
satisfy three simple postulates. Furthermore, we identify stringent consistency conditions on such
computational schemes, revealing the general structure by which negativity of Wigner functions,
hardness of classical simulation of the computation, and contextuality are connected.
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I. INTRODUCTION

Contextuality [1] - [5] has recently been established as a
necessary resource for quantum computation by injection
of magic states (QCSI). This was first achieved for the
case of qudits [6], where the Hilbert space dimension of
the local systems is an odd prime or a power of an odd
prime, and subsequently for the case of rebits [7], where
the Hilbert space dimension of the local systems is 2, but
the density matrix is constrained to be real.

The scheme of QCSI [8] deviates from the standard
circuit model in that the allowed state preparations, uni-
tary transformations and measurements are restricted to
non-universal and, in fact, efficiently classically simula-
ble operations. Computational universality is restored
by the capability to inject so-called magic states. The
source of computational power thus shifts from the gates
to the magic states.

Before the analysis of the magic states as resources
can begin, it needs to be clarified in which sense the re-
stricted state-preparations, unitaries and measurements
available in QCSI are not quantum resources. These op-
erations are certainly not entirely classical. For example,
highly entangled states can be created by them. The
near-classicality of these operations is explained in terms
of a Wigner function; See [6], [7], [9] - [11].

Wigner functions [12] - [15] describe quantum states
in phase space. They are quasi-probability distributions,
and as such the closest quantum analogue to joint prob-
ability distributions of position and momentum in clas-
sical statistical mechanics. The difference is that Wigner
functions can take negative values, and this negativity is
a signature of quantumness [16], [17].

For QCSI on qudits or rebits, Wigner functions pro-
vide a computational notion of classicality [9], [15], [7].
Namely, if the initial quantum state has a non-negative

Wigner function, then the entire quantum computation
can be efficiently classically simulated. Wigner function
negativity is thus necessary for quantum speedup.

After the roles of Wigner function negativity and con-
textuality have been clarified for qudits and rebits, in
this paper we investigate them for the yet unresolved
case of qubits. The case of local dimension 2, into which
the rebit case forays, is complicated by the fact that
the Wigner function for infinite dimension [12] cannot be
adapted to it [14], [15], [18], [19], by the presence of state-
independent contextuality with Pauli observables [3], and
Bell inequalities based on stabilizer operators [20]-[22].

We impose the following three constraints on the QCSI
schemes we discuss: (P1) The computational scheme is
tomographically complete. That is, with the available op-
erations the density matrix ρ of any n-qubit quantum
state can be fully measured, and that (P2) The Wigner
function describing the computational scheme is informa-
tionally complete, i.e., any n-qubit quantum state ρ can
be unambiguously reconstructed from its Wigner func-
tion Wρ. Finally, (P3) The measurements available in
QCSI must not introduce negativity into the Wigner func-
tion of the processed quantum state.

Requirement (P3) is the very basis for the usefulness
of Wigner functions in the description of QCSI, namely
to reveal the near-classicality of QCSI without the magic
states. It is certainly in line with the approach taken for
qudits and rebits. However, (P3) is trickier than might at
first appear. For a start, we do not require a counterpart
of (P3) for the unitary operations available in QCSI, and
imposing it would indeed be too restrictive. Those uni-
taries may introduce large amounts of negativity into the
Wigner function without compromising efficient classical
simulability.

In this paper, we provide a common structural frame-
work for QCSI schemes on qubits which satisfy the above
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The Bell-Kochen-Specker theorem [1] shows that the
predictions of quantum theory are inconsistent with a
hidden variable model having the following feature: if A,
B, and C are Hermitian operators such that A and B
commute, A and C commute, but B and C do not commute,
then the value predicted to occur in a measurement of A
does not depend on whether B or C was measured simul-
taneously. This feature is called ‘‘noncontextuality.’’
Significantly, it is only well-defined for models of quantum
theory (and then only for projective measurements and
deterministic models) [2]. By contrast, Bell’s definition
of a localmodel applies to any theory that can be described
operationally [3]. Consequently, whereas one can test
whether or not experimental statistics are consistent with
a local model (by testing whether or not they satisfy Bell
inequalities), there is no way to test whether or not experi-
mental statistics are consistent with a noncontextual model
(and no way of defining associated ‘‘noncontextuality in-
equalities’’) unless one generalizes the traditional notion of
noncontextuality in such a way that it makes no reference
to the quantum formalism. Suggestions for such a formu-
lation have been made by several authors [4]. A particu-
larly natural generalization (and slight modification) which
applies to all models (deterministic or not) of any opera-
tional theory has been proposed in Ref. [2]. We here derive
a noncontextuality (NC) inequality based on this notion.

Because information-theoretic tasks can be character-
ized entirely in terms of experimental statistics, one can
explore whether theories that violate NC inequalities may
provide information-theoretic advantages over theories
that satisfy these inequalities. We prove that this is indeed
the case for a task which we call parity-oblivious multi-
plexing, a kind of two-party secure computation. (The
notion that contextuality might yield an advantage for
multiplexing tasks was first put forward by Galvão [5].)

The NC inequality we derive provides a bound on the
probability of success in this task, and we demonstrate a
quantum protocol for parity-oblivious multiplexing for
which the probability of success exceeds the noncontextual
bound.
Finally, we report an experimental implementation of

this protocol that achieves a probability of success in good
agreement with the quantum result and in violation of the
NC inequality.
Operational theories and noncontextual models.—In an

operational theory, the primitives of description are prepa-
rations and measurements, specified as instructions for
what to do in the laboratory. The theory simply provides
an algorithm for calculating the probability pðkjP;MÞ of
an outcome k of measurementM given a preparation P. As
an example, in quantum theory, every preparation P is
represented by a density operator �P, every measurement
M is represented by a positive operator valued measure
fEM;kg, and the probability of outcome k is given by

pðkjP;MÞ ¼ Trð�PEM;kÞ.
In a hidden variable model of an operational theory, a

preparation procedure is assumed to prepare a system with
certain properties and a measurement procedure is as-
sumed to reveal something about those properties. The
set of all variables describing the system is denoted �.
It is presumed that for every preparation P, there is a
probability distribution pð�jPÞ such that implementing P
causes the system to be prepared in physical state �
with probability pð�jPÞ. Similarly, it is presumed that for
every measurement M, there is a distribution pðkj�;MÞ
such that implementing M on a system described by �
yields outcome k with probability pðkj�;MÞ. For the hid-
den variable model to reproduce the predictions of the
operational theory, it must satisfy pðkjP;MÞ ¼R
d�pðkj�;MÞpð�jPÞ.
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We show, under natural assumptions for qubit systems, that measurement-based quantum computations
(MBQCs) which compute a nonlinear Boolean function with a high probability are contextual. The class of
contextual MBQCs includes an example which is of practical interest and has a superpolynomial speedup over
the best-known classical algorithm, namely, the quantum algorithm that solves the “discrete log” problem.
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I. INTRODUCTION

While numerous quantum algorithms have been found
that offer polynomial or superpolynomial speedups over their
classical counterparts [1–3], the precise quantum mechanical
origin of this speedup remains unknown. The prominent
candidates—entanglement [4], superposition and interference
[5], and largeness of Hilbert space—provide an intuitive
understanding in many situations. Yet, as a whole, the
phenomenology so far uncovered does not lend itself to a
simple interpretation [6–12].

Here we turn our attention to a different characterization
of nonclassicality, namely, contextuality [13,14], and study its
relation to computational power. We choose measurement-
based quantum computation (MBQC) [15] as our setting.
The starting point for this investigation is the observation by
Anders and Browne [16] that one of Mermin’s proofs [17]
of the Kochen-Specker theorem [13] can be converted into
a simple MBQC. We are led to ask whether the connection
between MBQC and contextuality exhibited by this example
is accidental or whether it holds in general. The main finding
of this paper is that, under quite natural assumptions for
multiqubit systems, all MBQCs which compute a nonlinear
Boolean function with a sufficiently high success probability
are contextual.

For MBQC, the separation between linear and nonlinear
functions is fundamental. Every MBQC requires a classical
control computer for adjusting measurement bases according
to the computational input and for converting measurement
outcomes into computational output. This classical side pro-
cessing is all linear. Evaluating nonlinear functions is out of
reach for such a classical control computer without access to
additional resources.

This paper is organized as follows. In Sec. II, we review
Anders and Browne’s example and define the setting of MBQC
and notions of contextuality we use. In Sec. III we present
three results on the interplay between contextuality and the
nonlinearity of the computational output, Theorems 2, 3, and
5 . We point out that the class of contextual MBQCs contains
a computation which is of actual algorithmic interest, i.e.,
achieves a superpolynomial speedup over the best-known
classical algorithm. It is the MBQC variant of the quantum
algorithm for the “discrete log” problem [1,18]. In Sec. IV, we

*rraussendorf@phas.ubc.ca

discuss experimental tests of contextuality. We conclude with
a discussion in Sec. V.

II. THE SETTING

We discuss the link between contextuality and quantum
computation for MBQC [15]. MBQC is a model of quantum
computation in which a quantum algorithm is implemented
solely by local measurements on a fixed initial state. The
choice of measurement bases determines the algorithm to be
implemented, and correlations among the measurement out-
comes reveal the result of the computation. The computational
power of this scheme is fully determined by the initial quantum
state.1 For suitable initial states such as cluster states, MBQC
is universal.

A. Computation and contextuality: A first example

Following Anders and Browne [16], we consider a three-
party Greenberger-Horne-Zeilinger (GHZ) [21] state |GHZ〉 =
|000〉+|111〉√

2
, which can be used to execute a deterministic OR

gate within the framework of MBQC. While standard elec-
tronic devices routinely perform OR gates without quantum-
mechanical action, this result offers a structural insight into
MBQC. Namely, it is known that every MBQC requires a
classical control computer that converts the classical input
into measurement settings and the measurement outcomes
into computational output. This classical control computer is
capable of doing only one type of operation: addition mod 2. It
is thus not classically universal and, indeed, very limited. Now,
having access to GHZ states and local projective measurements
promotes this control computer to classical universality. Thus,
in the described setting, the access to quantum resources vastly
increases the set of computable functions.

What is more, Anders and Browne’s construction repur-
poses an existing proof [17] of the Kochen-Specker theorem
[13] into a quantum mechanical computation. The computation
takes two bits of input, i1 and i2, and outputs a single bit
o ≡ i1 ∨ i2. It proceeds as follows. Step 1: The settings for the
local measurements on the three qubits are calculated from the
input i1 and i2. For either of the three qubits, a priori the Pauli

1Note, however, that other schemes of universal quantum com-
putation by measurement exist in which the measurements are not
local [19,20]. For such schemes, the initial quantum state of the
system is irrelevant.
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Contextuality supplies the ‘magic’ for
quantum computation
Mark Howard1,2, Joel Wallman2, Victor Veitch2,3 & Joseph Emerson2

Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in
quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality
and the possibility of universal quantum computation via ‘magic state’ distillation, which is the leading model for exper-
imentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which
precludes a simple ‘hidden variable’ model of quantum mechanics, provides one of the fundamental characterizations of
uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum
information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known
to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these funda-
mental issues, this work advances the resource framework for quantum computation, which has a number of practical
applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes
for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quan-
tum algorithms.

Quantum information provides unique new capabilities for computation
such as Shor’s factoring algorithm1 and quantum simulation algorithms2.
This naturally raises the fundamental question: what unique resources
of the quantum world enable the advantages of quantum information?
There have been many attempts to answer this question, with proposals
including the hypothetical ‘quantum parallelism’3 some associate with
quantum superposition, the necessity of large amounts of entanglement4,
and much ado about quantum discord5. Unfortunately none of these
proposals have proven satisfactory6–9, and, in particular, none have helped
resolve outstanding challenges confronting the field. For example, on
the theoretical side, the most general classes of problems for which quan-
tum algorithms might offer an exponential speed-up over classical algo-
rithms are poorly understood. On the experimental side, there remain
significant challenges to the design of robust, large-scale quantum com-
puters, and an important open problem is to determine the minimal
physical requirements of a useful quantum computer10,11. A framework
identifying relevant resources for quantum computation should help
clarify these issues—for example, by identifying new simulation schemes
for classes of quantum algorithms and by clarifying the trade-offs between
the distinct physical requirements for achieving robust quantum com-
putation. Here we establish that quantum contextuality, a generalization
of non-locality identified12,13 almost 50 years ago, is a critical resource for
quantum speed-up within the leading model for fault-tolerant quantum
computation, known as magic state distillation (MSD)14–16.

Contextuality was first recognized as an intrinsic feature of quantum
theory via the Bell–Kochen–Specker ‘no-go’ theorem. This theorem
implies the impossibility of explaining the statistical predictions of quan-
tum theory in a natural way. In particular, the actual outcome observed
under a quantum measurement cannot be understood as simply reveal-
ing a pre-existing value of some underlying ‘hidden variable’17. A key
observation is that the non-locality of quantum theory is a special case
of contextuality. Under the locality restrictions motivating quantum
communication, non-locality is a quantifiable cost for classical simula-
tion complexity18 and a fundamental resource for practical applications

such as device-independent quantum key distribution19–21. Locality restric-
tions can be made relevant to measurement-based quantum computation11,
for which non-locality quantifies the resources required to evaluate non-
linear functions22,23. However, locality restrictions are not relevant in
the standard quantum circuit model for quantum computation, and,
in this context, a large amount of entanglement has been shown to
be neither necessary nor sufficient for an exponential computational
speed-up9.

Here we consider the framework of fault-tolerant stabilizer quantum
computation24 which provides the most promising route to achieving
robust universal quantum computation thanks to the discovery of high-
threshold codes in two-dimensional geometries25–29. In this framework,
only a subset of quantum operations—namely, stabilizer operations—
can be achieved via a fault-tolerant encoding. These operations define
a closed subtheory of quantum theory, the stabilizer subtheory, which
is not universal and in fact admits an efficient classical simulation30.
The stabilizer subtheory can be promoted to universal quantum com-
putation through MSD14–16 which relies on a large number of ancillary
resource states. Here we show that quantum contextuality plays a cri-
tical role in characterizing the suitability of quantum states for MSD.
Our approach builds on recent work31,32 that has established a remark-
able connection between contextuality and graph-theory. We use the
framework of refs 31 and 32 to identify non-contextuality inequalities
such that the onset of state-dependent contextuality, using stabilizer
measurements, coincides exactly with the possibility of universal quantum
computing via MSD. The scope of our results differs depending on whether
we consider a model of computation using qubits (systems of even prime
dimension) or qudits (systems of odd prime dimension). We note that
some authors use the term qudit to describe a system with an arbitrary
number of levels. Whereas in both cases we can prove that violating a non-
contextuality inequality is necessary for quantum-computational speed-
up via MSD, in the qudit case we are able to prove that a state violates a
non-contextuality inequality if and only if it lies outside the known bound-
ary for MSD.
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We describe a universal scheme of quantum computation by state injection on rebits (states with real
density matrices). For this scheme, we establish contextuality and Wigner function negativity as
computational resources, extending results of M. Howard et al. [Nature (London) 510, 351 (2014)] to
two-level systems. For this purpose, we define a Wigner function suited to systems of n rebits and prove a
corresponding discrete Hudson’s theorem. We introduce contextuality witnesses for rebit states and discuss
the compatibility of our result with state-independent contextuality.
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I. INTRODUCTION

In quantum computation by state injection (QCSI) [1],
the set of quantum gates is, by construction, not universal.
This restriction is compensated by the injection of states
that could not be created within the scheme itself, the
so-called magic states.
Besides its promise for the realization of fault-tolerant

quantum computation, QCSI is of fundamental theoretical
interest. Since the magic states enable universality, one is
led to ask the following question: Precisely which quantum
properties of these states are responsible for the gain in
computational power?
Contextuality [2–5] and negativity of Wigner functions

have recently been proposed as the quintessential quantum
properties of magic states; see Refs. [6–8]. Contextuality is
an obstruction to modeling the inherent randomness of
quantum measurement in a statistical mechanics fashion,
namely, by a probability distribution over configurations
with predetermined measurement outcomes for all meas-
urable observables. Wigner functions [9–11] are the closest
quantum analogue of probability distributions over phase
space. The key difference is that Wigner functions can
assume negative values, and this negativity is taken as an
indication of quantumness. Despite their separate origins in
the fields of quantum optics and foundations of quantum
mechanics, Wigner function negativity and contextuality
are closely related indicators of nonclassical behavior
[6,12].
The reason for the appearance of Wigner functions in the

discussion of QCSI is their relation [7,11] to the stabilizer
formalism [13]. The stabilizer formalism is also relevant for

QCSI since the restricted gate set therein is typically chosen
to be the Clifford gates. These gates are indeed not
universal, and—if supplemented only with Pauli measure-
ments and stabilizer states—can be efficiently classically
simulated by stabilizer techniques.
The epitome for the link between Wigner functions and

QCSI via the stabilizer formalism is the discrete Hudson’s
theorem [11], which says that in Hilbert spaces of odd
prime-power (hence finite) dimension, the pure states with
positive Wigner functions are exactly the stabilizer states.
Thus, stabilizer states are “classical” from the perspectives
of both Wigner functions and QCSI. In the wake of this
result, contextuality and Wigner function negativity have
been established as quantum resources for QCSI with
qudits of odd prime dimension [6,8].
Extending these properties to two-level systems is

pertinent since quantum algorithms are typically formu-
lated in terms of qubits. But attempts to do so hit barriers:
As for the Wigner functions, many constructions cannot be
adapted to qubits [11,14], and for the remaining ones
[7,15], the discrete Hudson’s theorem breaks down. There
are qubit stabilizer states with negative Wigner functions.
As for contextuality, it now arises in its state-independent
form [16]. As a result, every quantum state of more than
one qubit can be considered contextual [6], which is at odds
with viewing contextuality as a resource possessed only by
special states.
Here, we establish Wigner function negativity and

contextuality as necessary resources for QCSI on two-level
systems. We achieve this at the price of restricting from
qubits to rebits, i.e., real density matrices of n two-level
systems. This restriction does not affect universality [17].
The role that was previously played by the stabilizer states
is now played by the Calderbank-Shor-Steane (CSS) states
[18], and the group of Clifford gates is replaced by the
subgroup of CSS-ness preserving Clifford gates. Within
this new setting, we resurrect a discrete Hudson’s theorem,
as well as a number of related properties of the Wigner
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We describe a scheme of quantum computation with magic states on qubits for which contextuality
is a necessary resource possessed by the magic states. More generally, we establish contextuality
as a necessary resource for all schemes of quantum computation with magic states on qubits that
satisfy three simple postulates. Furthermore, we identify stringent consistency conditions on such
computational schemes, revealing the general structure by which negativity of Wigner functions,
hardness of classical simulation of the computation, and contextuality are connected.
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I. INTRODUCTION

Contextuality [1] - [5] has recently been established as a
necessary resource for quantum computation by injection
of magic states (QCSI). This was first achieved for the
case of qudits [6], where the Hilbert space dimension of
the local systems is an odd prime or a power of an odd
prime, and subsequently for the case of rebits [7], where
the Hilbert space dimension of the local systems is 2, but
the density matrix is constrained to be real.

The scheme of QCSI [8] deviates from the standard
circuit model in that the allowed state preparations, uni-
tary transformations and measurements are restricted to
non-universal and, in fact, efficiently classically simula-
ble operations. Computational universality is restored
by the capability to inject so-called magic states. The
source of computational power thus shifts from the gates
to the magic states.

Before the analysis of the magic states as resources
can begin, it needs to be clarified in which sense the re-
stricted state-preparations, unitaries and measurements
available in QCSI are not quantum resources. These op-
erations are certainly not entirely classical. For example,
highly entangled states can be created by them. The
near-classicality of these operations is explained in terms
of a Wigner function; See [6], [7], [9] - [11].

Wigner functions [12] - [15] describe quantum states
in phase space. They are quasi-probability distributions,
and as such the closest quantum analogue to joint prob-
ability distributions of position and momentum in clas-
sical statistical mechanics. The difference is that Wigner
functions can take negative values, and this negativity is
a signature of quantumness [16], [17].

For QCSI on qudits or rebits, Wigner functions pro-
vide a computational notion of classicality [9], [15], [7].
Namely, if the initial quantum state has a non-negative

Wigner function, then the entire quantum computation
can be efficiently classically simulated. Wigner function
negativity is thus necessary for quantum speedup.

After the roles of Wigner function negativity and con-
textuality have been clarified for qudits and rebits, in
this paper we investigate them for the yet unresolved
case of qubits. The case of local dimension 2, into which
the rebit case forays, is complicated by the fact that
the Wigner function for infinite dimension [12] cannot be
adapted to it [14], [15], [18], [19], by the presence of state-
independent contextuality with Pauli observables [3], and
Bell inequalities based on stabilizer operators [20]-[22].

We impose the following three constraints on the QCSI
schemes we discuss: (P1) The computational scheme is
tomographically complete. That is, with the available op-
erations the density matrix ρ of any n-qubit quantum
state can be fully measured, and that (P2) The Wigner
function describing the computational scheme is informa-
tionally complete, i.e., any n-qubit quantum state ρ can
be unambiguously reconstructed from its Wigner func-
tion Wρ. Finally, (P3) The measurements available in
QCSI must not introduce negativity into the Wigner func-
tion of the processed quantum state.

Requirement (P3) is the very basis for the usefulness
of Wigner functions in the description of QCSI, namely
to reveal the near-classicality of QCSI without the magic
states. It is certainly in line with the approach taken for
qudits and rebits. However, (P3) is trickier than might at
first appear. For a start, we do not require a counterpart
of (P3) for the unitary operations available in QCSI, and
imposing it would indeed be too restrictive. Those uni-
taries may introduce large amounts of negativity into the
Wigner function without compromising efficient classical
simulability.

In this paper, we provide a common structural frame-
work for QCSI schemes on qubits which satisfy the above
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In a noncontextual hidden variable model of quantum theory, hidden variables determine the outcomes

of every measurement in a manner that is independent of how the measurement is implemented. Using a

generalization of this notion to arbitrary operational theories and to preparation procedures, we demon-

strate that a particular two-party information-processing task, ‘‘parity-oblivious multiplexing,’’ is powered

by contextuality in the sense that there is a limit to how well any theory described by a noncontextual

hidden variable model can perform. This bound constitutes a ‘‘noncontextuality inequality’’ that is

violated by quantum theory. We report an experimental violation of this inequality in good agreement

with the quantum predictions. The experimental results also provide the first demonstration of 2-to-1 and

3-to-1 quantum random access codes.

DOI: 10.1103/PhysRevLett.102.010401 PACS numbers: 03.65.Ta, 03.67.�a, 42.50.Dv, 42.50.Ex

The Bell-Kochen-Specker theorem [1] shows that the
predictions of quantum theory are inconsistent with a
hidden variable model having the following feature: if A,
B, and C are Hermitian operators such that A and B
commute, A and C commute, but B and C do not commute,
then the value predicted to occur in a measurement of A
does not depend on whether B or C was measured simul-
taneously. This feature is called ‘‘noncontextuality.’’
Significantly, it is only well-defined for models of quantum
theory (and then only for projective measurements and
deterministic models) [2]. By contrast, Bell’s definition
of a localmodel applies to any theory that can be described
operationally [3]. Consequently, whereas one can test
whether or not experimental statistics are consistent with
a local model (by testing whether or not they satisfy Bell
inequalities), there is no way to test whether or not experi-
mental statistics are consistent with a noncontextual model
(and no way of defining associated ‘‘noncontextuality in-
equalities’’) unless one generalizes the traditional notion of
noncontextuality in such a way that it makes no reference
to the quantum formalism. Suggestions for such a formu-
lation have been made by several authors [4]. A particu-
larly natural generalization (and slight modification) which
applies to all models (deterministic or not) of any opera-
tional theory has been proposed in Ref. [2]. We here derive
a noncontextuality (NC) inequality based on this notion.

Because information-theoretic tasks can be character-
ized entirely in terms of experimental statistics, one can
explore whether theories that violate NC inequalities may
provide information-theoretic advantages over theories
that satisfy these inequalities. We prove that this is indeed
the case for a task which we call parity-oblivious multi-
plexing, a kind of two-party secure computation. (The
notion that contextuality might yield an advantage for
multiplexing tasks was first put forward by Galvão [5].)

The NC inequality we derive provides a bound on the
probability of success in this task, and we demonstrate a
quantum protocol for parity-oblivious multiplexing for
which the probability of success exceeds the noncontextual
bound.
Finally, we report an experimental implementation of

this protocol that achieves a probability of success in good
agreement with the quantum result and in violation of the
NC inequality.
Operational theories and noncontextual models.—In an

operational theory, the primitives of description are prepa-
rations and measurements, specified as instructions for
what to do in the laboratory. The theory simply provides
an algorithm for calculating the probability pðkjP;MÞ of
an outcome k of measurementM given a preparation P. As
an example, in quantum theory, every preparation P is
represented by a density operator �P, every measurement
M is represented by a positive operator valued measure
fEM;kg, and the probability of outcome k is given by

pðkjP;MÞ ¼ Trð�PEM;kÞ.
In a hidden variable model of an operational theory, a

preparation procedure is assumed to prepare a system with
certain properties and a measurement procedure is as-
sumed to reveal something about those properties. The
set of all variables describing the system is denoted �.
It is presumed that for every preparation P, there is a
probability distribution pð�jPÞ such that implementing P
causes the system to be prepared in physical state �
with probability pð�jPÞ. Similarly, it is presumed that for
every measurement M, there is a distribution pðkj�;MÞ
such that implementing M on a system described by �
yields outcome k with probability pðkj�;MÞ. For the hid-
den variable model to reproduce the predictions of the
operational theory, it must satisfy pðkjP;MÞ ¼R
d�pðkj�;MÞpð�jPÞ.
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the best-known classical algorithm, namely, the quantum algorithm that solves the “discrete log” problem.
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I. INTRODUCTION

While numerous quantum algorithms have been found
that offer polynomial or superpolynomial speedups over their
classical counterparts [1–3], the precise quantum mechanical
origin of this speedup remains unknown. The prominent
candidates—entanglement [4], superposition and interference
[5], and largeness of Hilbert space—provide an intuitive
understanding in many situations. Yet, as a whole, the
phenomenology so far uncovered does not lend itself to a
simple interpretation [6–12].

Here we turn our attention to a different characterization
of nonclassicality, namely, contextuality [13,14], and study its
relation to computational power. We choose measurement-
based quantum computation (MBQC) [15] as our setting.
The starting point for this investigation is the observation by
Anders and Browne [16] that one of Mermin’s proofs [17]
of the Kochen-Specker theorem [13] can be converted into
a simple MBQC. We are led to ask whether the connection
between MBQC and contextuality exhibited by this example
is accidental or whether it holds in general. The main finding
of this paper is that, under quite natural assumptions for
multiqubit systems, all MBQCs which compute a nonlinear
Boolean function with a sufficiently high success probability
are contextual.

For MBQC, the separation between linear and nonlinear
functions is fundamental. Every MBQC requires a classical
control computer for adjusting measurement bases according
to the computational input and for converting measurement
outcomes into computational output. This classical side pro-
cessing is all linear. Evaluating nonlinear functions is out of
reach for such a classical control computer without access to
additional resources.

This paper is organized as follows. In Sec. II, we review
Anders and Browne’s example and define the setting of MBQC
and notions of contextuality we use. In Sec. III we present
three results on the interplay between contextuality and the
nonlinearity of the computational output, Theorems 2, 3, and
5 . We point out that the class of contextual MBQCs contains
a computation which is of actual algorithmic interest, i.e.,
achieves a superpolynomial speedup over the best-known
classical algorithm. It is the MBQC variant of the quantum
algorithm for the “discrete log” problem [1,18]. In Sec. IV, we
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discuss experimental tests of contextuality. We conclude with
a discussion in Sec. V.

II. THE SETTING

We discuss the link between contextuality and quantum
computation for MBQC [15]. MBQC is a model of quantum
computation in which a quantum algorithm is implemented
solely by local measurements on a fixed initial state. The
choice of measurement bases determines the algorithm to be
implemented, and correlations among the measurement out-
comes reveal the result of the computation. The computational
power of this scheme is fully determined by the initial quantum
state.1 For suitable initial states such as cluster states, MBQC
is universal.

A. Computation and contextuality: A first example

Following Anders and Browne [16], we consider a three-
party Greenberger-Horne-Zeilinger (GHZ) [21] state |GHZ〉 =
|000〉+|111〉√

2
, which can be used to execute a deterministic OR

gate within the framework of MBQC. While standard elec-
tronic devices routinely perform OR gates without quantum-
mechanical action, this result offers a structural insight into
MBQC. Namely, it is known that every MBQC requires a
classical control computer that converts the classical input
into measurement settings and the measurement outcomes
into computational output. This classical control computer is
capable of doing only one type of operation: addition mod 2. It
is thus not classically universal and, indeed, very limited. Now,
having access to GHZ states and local projective measurements
promotes this control computer to classical universality. Thus,
in the described setting, the access to quantum resources vastly
increases the set of computable functions.

What is more, Anders and Browne’s construction repur-
poses an existing proof [17] of the Kochen-Specker theorem
[13] into a quantum mechanical computation. The computation
takes two bits of input, i1 and i2, and outputs a single bit
o ≡ i1 ∨ i2. It proceeds as follows. Step 1: The settings for the
local measurements on the three qubits are calculated from the
input i1 and i2. For either of the three qubits, a priori the Pauli

1Note, however, that other schemes of universal quantum com-
putation by measurement exist in which the measurements are not
local [19,20]. For such schemes, the initial quantum state of the
system is irrelevant.
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Contextuality supplies the ‘magic’ for
quantum computation
Mark Howard1,2, Joel Wallman2, Victor Veitch2,3 & Joseph Emerson2

Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in
quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality
and the possibility of universal quantum computation via ‘magic state’ distillation, which is the leading model for exper-
imentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which
precludes a simple ‘hidden variable’ model of quantum mechanics, provides one of the fundamental characterizations of
uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum
information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known
to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these funda-
mental issues, this work advances the resource framework for quantum computation, which has a number of practical
applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes
for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quan-
tum algorithms.

Quantum information provides unique new capabilities for computation
such as Shor’s factoring algorithm1 and quantum simulation algorithms2.
This naturally raises the fundamental question: what unique resources
of the quantum world enable the advantages of quantum information?
There have been many attempts to answer this question, with proposals
including the hypothetical ‘quantum parallelism’3 some associate with
quantum superposition, the necessity of large amounts of entanglement4,
and much ado about quantum discord5. Unfortunately none of these
proposals have proven satisfactory6–9, and, in particular, none have helped
resolve outstanding challenges confronting the field. For example, on
the theoretical side, the most general classes of problems for which quan-
tum algorithms might offer an exponential speed-up over classical algo-
rithms are poorly understood. On the experimental side, there remain
significant challenges to the design of robust, large-scale quantum com-
puters, and an important open problem is to determine the minimal
physical requirements of a useful quantum computer10,11. A framework
identifying relevant resources for quantum computation should help
clarify these issues—for example, by identifying new simulation schemes
for classes of quantum algorithms and by clarifying the trade-offs between
the distinct physical requirements for achieving robust quantum com-
putation. Here we establish that quantum contextuality, a generalization
of non-locality identified12,13 almost 50 years ago, is a critical resource for
quantum speed-up within the leading model for fault-tolerant quantum
computation, known as magic state distillation (MSD)14–16.

Contextuality was first recognized as an intrinsic feature of quantum
theory via the Bell–Kochen–Specker ‘no-go’ theorem. This theorem
implies the impossibility of explaining the statistical predictions of quan-
tum theory in a natural way. In particular, the actual outcome observed
under a quantum measurement cannot be understood as simply reveal-
ing a pre-existing value of some underlying ‘hidden variable’17. A key
observation is that the non-locality of quantum theory is a special case
of contextuality. Under the locality restrictions motivating quantum
communication, non-locality is a quantifiable cost for classical simula-
tion complexity18 and a fundamental resource for practical applications

such as device-independent quantum key distribution19–21. Locality restric-
tions can be made relevant to measurement-based quantum computation11,
for which non-locality quantifies the resources required to evaluate non-
linear functions22,23. However, locality restrictions are not relevant in
the standard quantum circuit model for quantum computation, and,
in this context, a large amount of entanglement has been shown to
be neither necessary nor sufficient for an exponential computational
speed-up9.

Here we consider the framework of fault-tolerant stabilizer quantum
computation24 which provides the most promising route to achieving
robust universal quantum computation thanks to the discovery of high-
threshold codes in two-dimensional geometries25–29. In this framework,
only a subset of quantum operations—namely, stabilizer operations—
can be achieved via a fault-tolerant encoding. These operations define
a closed subtheory of quantum theory, the stabilizer subtheory, which
is not universal and in fact admits an efficient classical simulation30.
The stabilizer subtheory can be promoted to universal quantum com-
putation through MSD14–16 which relies on a large number of ancillary
resource states. Here we show that quantum contextuality plays a cri-
tical role in characterizing the suitability of quantum states for MSD.
Our approach builds on recent work31,32 that has established a remark-
able connection between contextuality and graph-theory. We use the
framework of refs 31 and 32 to identify non-contextuality inequalities
such that the onset of state-dependent contextuality, using stabilizer
measurements, coincides exactly with the possibility of universal quantum
computing via MSD. The scope of our results differs depending on whether
we consider a model of computation using qubits (systems of even prime
dimension) or qudits (systems of odd prime dimension). We note that
some authors use the term qudit to describe a system with an arbitrary
number of levels. Whereas in both cases we can prove that violating a non-
contextuality inequality is necessary for quantum-computational speed-
up via MSD, in the qudit case we are able to prove that a state violates a
non-contextuality inequality if and only if it lies outside the known bound-
ary for MSD.
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Wigner Function Negativity and Contextuality in Quantum Computation on Rebits
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We describe a universal scheme of quantum computation by state injection on rebits (states with real
density matrices). For this scheme, we establish contextuality and Wigner function negativity as
computational resources, extending results of M. Howard et al. [Nature (London) 510, 351 (2014)] to
two-level systems. For this purpose, we define a Wigner function suited to systems of n rebits and prove a
corresponding discrete Hudson’s theorem. We introduce contextuality witnesses for rebit states and discuss
the compatibility of our result with state-independent contextuality.
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I. INTRODUCTION

In quantum computation by state injection (QCSI) [1],
the set of quantum gates is, by construction, not universal.
This restriction is compensated by the injection of states
that could not be created within the scheme itself, the
so-called magic states.
Besides its promise for the realization of fault-tolerant

quantum computation, QCSI is of fundamental theoretical
interest. Since the magic states enable universality, one is
led to ask the following question: Precisely which quantum
properties of these states are responsible for the gain in
computational power?
Contextuality [2–5] and negativity of Wigner functions

have recently been proposed as the quintessential quantum
properties of magic states; see Refs. [6–8]. Contextuality is
an obstruction to modeling the inherent randomness of
quantum measurement in a statistical mechanics fashion,
namely, by a probability distribution over configurations
with predetermined measurement outcomes for all meas-
urable observables. Wigner functions [9–11] are the closest
quantum analogue of probability distributions over phase
space. The key difference is that Wigner functions can
assume negative values, and this negativity is taken as an
indication of quantumness. Despite their separate origins in
the fields of quantum optics and foundations of quantum
mechanics, Wigner function negativity and contextuality
are closely related indicators of nonclassical behavior
[6,12].
The reason for the appearance of Wigner functions in the

discussion of QCSI is their relation [7,11] to the stabilizer
formalism [13]. The stabilizer formalism is also relevant for

QCSI since the restricted gate set therein is typically chosen
to be the Clifford gates. These gates are indeed not
universal, and—if supplemented only with Pauli measure-
ments and stabilizer states—can be efficiently classically
simulated by stabilizer techniques.
The epitome for the link between Wigner functions and

QCSI via the stabilizer formalism is the discrete Hudson’s
theorem [11], which says that in Hilbert spaces of odd
prime-power (hence finite) dimension, the pure states with
positive Wigner functions are exactly the stabilizer states.
Thus, stabilizer states are “classical” from the perspectives
of both Wigner functions and QCSI. In the wake of this
result, contextuality and Wigner function negativity have
been established as quantum resources for QCSI with
qudits of odd prime dimension [6,8].
Extending these properties to two-level systems is

pertinent since quantum algorithms are typically formu-
lated in terms of qubits. But attempts to do so hit barriers:
As for the Wigner functions, many constructions cannot be
adapted to qubits [11,14], and for the remaining ones
[7,15], the discrete Hudson’s theorem breaks down. There
are qubit stabilizer states with negative Wigner functions.
As for contextuality, it now arises in its state-independent
form [16]. As a result, every quantum state of more than
one qubit can be considered contextual [6], which is at odds
with viewing contextuality as a resource possessed only by
special states.
Here, we establish Wigner function negativity and

contextuality as necessary resources for QCSI on two-level
systems. We achieve this at the price of restricting from
qubits to rebits, i.e., real density matrices of n two-level
systems. This restriction does not affect universality [17].
The role that was previously played by the stabilizer states
is now played by the Calderbank-Shor-Steane (CSS) states
[18], and the group of Clifford gates is replaced by the
subgroup of CSS-ness preserving Clifford gates. Within
this new setting, we resurrect a discrete Hudson’s theorem,
as well as a number of related properties of the Wigner
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We describe a scheme of quantum computation with magic states on qubits for which contextuality
is a necessary resource possessed by the magic states. More generally, we establish contextuality
as a necessary resource for all schemes of quantum computation with magic states on qubits that
satisfy three simple postulates. Furthermore, we identify stringent consistency conditions on such
computational schemes, revealing the general structure by which negativity of Wigner functions,
hardness of classical simulation of the computation, and contextuality are connected.
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I. INTRODUCTION

Contextuality [1] - [5] has recently been established as a
necessary resource for quantum computation by injection
of magic states (QCSI). This was first achieved for the
case of qudits [6], where the Hilbert space dimension of
the local systems is an odd prime or a power of an odd
prime, and subsequently for the case of rebits [7], where
the Hilbert space dimension of the local systems is 2, but
the density matrix is constrained to be real.

The scheme of QCSI [8] deviates from the standard
circuit model in that the allowed state preparations, uni-
tary transformations and measurements are restricted to
non-universal and, in fact, efficiently classically simula-
ble operations. Computational universality is restored
by the capability to inject so-called magic states. The
source of computational power thus shifts from the gates
to the magic states.

Before the analysis of the magic states as resources
can begin, it needs to be clarified in which sense the re-
stricted state-preparations, unitaries and measurements
available in QCSI are not quantum resources. These op-
erations are certainly not entirely classical. For example,
highly entangled states can be created by them. The
near-classicality of these operations is explained in terms
of a Wigner function; See [6], [7], [9] - [11].

Wigner functions [12] - [15] describe quantum states
in phase space. They are quasi-probability distributions,
and as such the closest quantum analogue to joint prob-
ability distributions of position and momentum in clas-
sical statistical mechanics. The difference is that Wigner
functions can take negative values, and this negativity is
a signature of quantumness [16], [17].

For QCSI on qudits or rebits, Wigner functions pro-
vide a computational notion of classicality [9], [15], [7].
Namely, if the initial quantum state has a non-negative

Wigner function, then the entire quantum computation
can be efficiently classically simulated. Wigner function
negativity is thus necessary for quantum speedup.

After the roles of Wigner function negativity and con-
textuality have been clarified for qudits and rebits, in
this paper we investigate them for the yet unresolved
case of qubits. The case of local dimension 2, into which
the rebit case forays, is complicated by the fact that
the Wigner function for infinite dimension [12] cannot be
adapted to it [14], [15], [18], [19], by the presence of state-
independent contextuality with Pauli observables [3], and
Bell inequalities based on stabilizer operators [20]-[22].

We impose the following three constraints on the QCSI
schemes we discuss: (P1) The computational scheme is
tomographically complete. That is, with the available op-
erations the density matrix ρ of any n-qubit quantum
state can be fully measured, and that (P2) The Wigner
function describing the computational scheme is informa-
tionally complete, i.e., any n-qubit quantum state ρ can
be unambiguously reconstructed from its Wigner func-
tion Wρ. Finally, (P3) The measurements available in
QCSI must not introduce negativity into the Wigner func-
tion of the processed quantum state.

Requirement (P3) is the very basis for the usefulness
of Wigner functions in the description of QCSI, namely
to reveal the near-classicality of QCSI without the magic
states. It is certainly in line with the approach taken for
qudits and rebits. However, (P3) is trickier than might at
first appear. For a start, we do not require a counterpart
of (P3) for the unitary operations available in QCSI, and
imposing it would indeed be too restrictive. Those uni-
taries may introduce large amounts of negativity into the
Wigner function without compromising efficient classical
simulability.

In this paper, we provide a common structural frame-
work for QCSI schemes on qubits which satisfy the above
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In a noncontextual hidden variable model of quantum theory, hidden variables determine the outcomes

of every measurement in a manner that is independent of how the measurement is implemented. Using a

generalization of this notion to arbitrary operational theories and to preparation procedures, we demon-

strate that a particular two-party information-processing task, ‘‘parity-oblivious multiplexing,’’ is powered

by contextuality in the sense that there is a limit to how well any theory described by a noncontextual

hidden variable model can perform. This bound constitutes a ‘‘noncontextuality inequality’’ that is

violated by quantum theory. We report an experimental violation of this inequality in good agreement

with the quantum predictions. The experimental results also provide the first demonstration of 2-to-1 and

3-to-1 quantum random access codes.
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The Bell-Kochen-Specker theorem [1] shows that the
predictions of quantum theory are inconsistent with a
hidden variable model having the following feature: if A,
B, and C are Hermitian operators such that A and B
commute, A and C commute, but B and C do not commute,
then the value predicted to occur in a measurement of A
does not depend on whether B or C was measured simul-
taneously. This feature is called ‘‘noncontextuality.’’
Significantly, it is only well-defined for models of quantum
theory (and then only for projective measurements and
deterministic models) [2]. By contrast, Bell’s definition
of a localmodel applies to any theory that can be described
operationally [3]. Consequently, whereas one can test
whether or not experimental statistics are consistent with
a local model (by testing whether or not they satisfy Bell
inequalities), there is no way to test whether or not experi-
mental statistics are consistent with a noncontextual model
(and no way of defining associated ‘‘noncontextuality in-
equalities’’) unless one generalizes the traditional notion of
noncontextuality in such a way that it makes no reference
to the quantum formalism. Suggestions for such a formu-
lation have been made by several authors [4]. A particu-
larly natural generalization (and slight modification) which
applies to all models (deterministic or not) of any opera-
tional theory has been proposed in Ref. [2]. We here derive
a noncontextuality (NC) inequality based on this notion.

Because information-theoretic tasks can be character-
ized entirely in terms of experimental statistics, one can
explore whether theories that violate NC inequalities may
provide information-theoretic advantages over theories
that satisfy these inequalities. We prove that this is indeed
the case for a task which we call parity-oblivious multi-
plexing, a kind of two-party secure computation. (The
notion that contextuality might yield an advantage for
multiplexing tasks was first put forward by Galvão [5].)

The NC inequality we derive provides a bound on the
probability of success in this task, and we demonstrate a
quantum protocol for parity-oblivious multiplexing for
which the probability of success exceeds the noncontextual
bound.
Finally, we report an experimental implementation of

this protocol that achieves a probability of success in good
agreement with the quantum result and in violation of the
NC inequality.
Operational theories and noncontextual models.—In an

operational theory, the primitives of description are prepa-
rations and measurements, specified as instructions for
what to do in the laboratory. The theory simply provides
an algorithm for calculating the probability pðkjP;MÞ of
an outcome k of measurementM given a preparation P. As
an example, in quantum theory, every preparation P is
represented by a density operator �P, every measurement
M is represented by a positive operator valued measure
fEM;kg, and the probability of outcome k is given by

pðkjP;MÞ ¼ Trð�PEM;kÞ.
In a hidden variable model of an operational theory, a

preparation procedure is assumed to prepare a system with
certain properties and a measurement procedure is as-
sumed to reveal something about those properties. The
set of all variables describing the system is denoted �.
It is presumed that for every preparation P, there is a
probability distribution pð�jPÞ such that implementing P
causes the system to be prepared in physical state �
with probability pð�jPÞ. Similarly, it is presumed that for
every measurement M, there is a distribution pðkj�;MÞ
such that implementing M on a system described by �
yields outcome k with probability pðkj�;MÞ. For the hid-
den variable model to reproduce the predictions of the
operational theory, it must satisfy pðkjP;MÞ ¼R
d�pðkj�;MÞpð�jPÞ.
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Contextuality in measurement-based quantum computation
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We show, under natural assumptions for qubit systems, that measurement-based quantum computations
(MBQCs) which compute a nonlinear Boolean function with a high probability are contextual. The class of
contextual MBQCs includes an example which is of practical interest and has a superpolynomial speedup over
the best-known classical algorithm, namely, the quantum algorithm that solves the “discrete log” problem.
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I. INTRODUCTION

While numerous quantum algorithms have been found
that offer polynomial or superpolynomial speedups over their
classical counterparts [1–3], the precise quantum mechanical
origin of this speedup remains unknown. The prominent
candidates—entanglement [4], superposition and interference
[5], and largeness of Hilbert space—provide an intuitive
understanding in many situations. Yet, as a whole, the
phenomenology so far uncovered does not lend itself to a
simple interpretation [6–12].

Here we turn our attention to a different characterization
of nonclassicality, namely, contextuality [13,14], and study its
relation to computational power. We choose measurement-
based quantum computation (MBQC) [15] as our setting.
The starting point for this investigation is the observation by
Anders and Browne [16] that one of Mermin’s proofs [17]
of the Kochen-Specker theorem [13] can be converted into
a simple MBQC. We are led to ask whether the connection
between MBQC and contextuality exhibited by this example
is accidental or whether it holds in general. The main finding
of this paper is that, under quite natural assumptions for
multiqubit systems, all MBQCs which compute a nonlinear
Boolean function with a sufficiently high success probability
are contextual.

For MBQC, the separation between linear and nonlinear
functions is fundamental. Every MBQC requires a classical
control computer for adjusting measurement bases according
to the computational input and for converting measurement
outcomes into computational output. This classical side pro-
cessing is all linear. Evaluating nonlinear functions is out of
reach for such a classical control computer without access to
additional resources.

This paper is organized as follows. In Sec. II, we review
Anders and Browne’s example and define the setting of MBQC
and notions of contextuality we use. In Sec. III we present
three results on the interplay between contextuality and the
nonlinearity of the computational output, Theorems 2, 3, and
5 . We point out that the class of contextual MBQCs contains
a computation which is of actual algorithmic interest, i.e.,
achieves a superpolynomial speedup over the best-known
classical algorithm. It is the MBQC variant of the quantum
algorithm for the “discrete log” problem [1,18]. In Sec. IV, we

*rraussendorf@phas.ubc.ca

discuss experimental tests of contextuality. We conclude with
a discussion in Sec. V.

II. THE SETTING

We discuss the link between contextuality and quantum
computation for MBQC [15]. MBQC is a model of quantum
computation in which a quantum algorithm is implemented
solely by local measurements on a fixed initial state. The
choice of measurement bases determines the algorithm to be
implemented, and correlations among the measurement out-
comes reveal the result of the computation. The computational
power of this scheme is fully determined by the initial quantum
state.1 For suitable initial states such as cluster states, MBQC
is universal.

A. Computation and contextuality: A first example

Following Anders and Browne [16], we consider a three-
party Greenberger-Horne-Zeilinger (GHZ) [21] state |GHZ〉 =
|000〉+|111〉√

2
, which can be used to execute a deterministic OR

gate within the framework of MBQC. While standard elec-
tronic devices routinely perform OR gates without quantum-
mechanical action, this result offers a structural insight into
MBQC. Namely, it is known that every MBQC requires a
classical control computer that converts the classical input
into measurement settings and the measurement outcomes
into computational output. This classical control computer is
capable of doing only one type of operation: addition mod 2. It
is thus not classically universal and, indeed, very limited. Now,
having access to GHZ states and local projective measurements
promotes this control computer to classical universality. Thus,
in the described setting, the access to quantum resources vastly
increases the set of computable functions.

What is more, Anders and Browne’s construction repur-
poses an existing proof [17] of the Kochen-Specker theorem
[13] into a quantum mechanical computation. The computation
takes two bits of input, i1 and i2, and outputs a single bit
o ≡ i1 ∨ i2. It proceeds as follows. Step 1: The settings for the
local measurements on the three qubits are calculated from the
input i1 and i2. For either of the three qubits, a priori the Pauli

1Note, however, that other schemes of universal quantum com-
putation by measurement exist in which the measurements are not
local [19,20]. For such schemes, the initial quantum state of the
system is irrelevant.
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Contextuality supplies the ‘magic’ for
quantum computation
Mark Howard1,2, Joel Wallman2, Victor Veitch2,3 & Joseph Emerson2

Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in
quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality
and the possibility of universal quantum computation via ‘magic state’ distillation, which is the leading model for exper-
imentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which
precludes a simple ‘hidden variable’ model of quantum mechanics, provides one of the fundamental characterizations of
uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum
information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known
to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these funda-
mental issues, this work advances the resource framework for quantum computation, which has a number of practical
applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes
for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quan-
tum algorithms.

Quantum information provides unique new capabilities for computation
such as Shor’s factoring algorithm1 and quantum simulation algorithms2.
This naturally raises the fundamental question: what unique resources
of the quantum world enable the advantages of quantum information?
There have been many attempts to answer this question, with proposals
including the hypothetical ‘quantum parallelism’3 some associate with
quantum superposition, the necessity of large amounts of entanglement4,
and much ado about quantum discord5. Unfortunately none of these
proposals have proven satisfactory6–9, and, in particular, none have helped
resolve outstanding challenges confronting the field. For example, on
the theoretical side, the most general classes of problems for which quan-
tum algorithms might offer an exponential speed-up over classical algo-
rithms are poorly understood. On the experimental side, there remain
significant challenges to the design of robust, large-scale quantum com-
puters, and an important open problem is to determine the minimal
physical requirements of a useful quantum computer10,11. A framework
identifying relevant resources for quantum computation should help
clarify these issues—for example, by identifying new simulation schemes
for classes of quantum algorithms and by clarifying the trade-offs between
the distinct physical requirements for achieving robust quantum com-
putation. Here we establish that quantum contextuality, a generalization
of non-locality identified12,13 almost 50 years ago, is a critical resource for
quantum speed-up within the leading model for fault-tolerant quantum
computation, known as magic state distillation (MSD)14–16.

Contextuality was first recognized as an intrinsic feature of quantum
theory via the Bell–Kochen–Specker ‘no-go’ theorem. This theorem
implies the impossibility of explaining the statistical predictions of quan-
tum theory in a natural way. In particular, the actual outcome observed
under a quantum measurement cannot be understood as simply reveal-
ing a pre-existing value of some underlying ‘hidden variable’17. A key
observation is that the non-locality of quantum theory is a special case
of contextuality. Under the locality restrictions motivating quantum
communication, non-locality is a quantifiable cost for classical simula-
tion complexity18 and a fundamental resource for practical applications

such as device-independent quantum key distribution19–21. Locality restric-
tions can be made relevant to measurement-based quantum computation11,
for which non-locality quantifies the resources required to evaluate non-
linear functions22,23. However, locality restrictions are not relevant in
the standard quantum circuit model for quantum computation, and,
in this context, a large amount of entanglement has been shown to
be neither necessary nor sufficient for an exponential computational
speed-up9.

Here we consider the framework of fault-tolerant stabilizer quantum
computation24 which provides the most promising route to achieving
robust universal quantum computation thanks to the discovery of high-
threshold codes in two-dimensional geometries25–29. In this framework,
only a subset of quantum operations—namely, stabilizer operations—
can be achieved via a fault-tolerant encoding. These operations define
a closed subtheory of quantum theory, the stabilizer subtheory, which
is not universal and in fact admits an efficient classical simulation30.
The stabilizer subtheory can be promoted to universal quantum com-
putation through MSD14–16 which relies on a large number of ancillary
resource states. Here we show that quantum contextuality plays a cri-
tical role in characterizing the suitability of quantum states for MSD.
Our approach builds on recent work31,32 that has established a remark-
able connection between contextuality and graph-theory. We use the
framework of refs 31 and 32 to identify non-contextuality inequalities
such that the onset of state-dependent contextuality, using stabilizer
measurements, coincides exactly with the possibility of universal quantum
computing via MSD. The scope of our results differs depending on whether
we consider a model of computation using qubits (systems of even prime
dimension) or qudits (systems of odd prime dimension). We note that
some authors use the term qudit to describe a system with an arbitrary
number of levels. Whereas in both cases we can prove that violating a non-
contextuality inequality is necessary for quantum-computational speed-
up via MSD, in the qudit case we are able to prove that a state violates a
non-contextuality inequality if and only if it lies outside the known bound-
ary for MSD.
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We describe a universal scheme of quantum computation by state injection on rebits (states with real
density matrices). For this scheme, we establish contextuality and Wigner function negativity as
computational resources, extending results of M. Howard et al. [Nature (London) 510, 351 (2014)] to
two-level systems. For this purpose, we define a Wigner function suited to systems of n rebits and prove a
corresponding discrete Hudson’s theorem. We introduce contextuality witnesses for rebit states and discuss
the compatibility of our result with state-independent contextuality.
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I. INTRODUCTION

In quantum computation by state injection (QCSI) [1],
the set of quantum gates is, by construction, not universal.
This restriction is compensated by the injection of states
that could not be created within the scheme itself, the
so-called magic states.
Besides its promise for the realization of fault-tolerant

quantum computation, QCSI is of fundamental theoretical
interest. Since the magic states enable universality, one is
led to ask the following question: Precisely which quantum
properties of these states are responsible for the gain in
computational power?
Contextuality [2–5] and negativity of Wigner functions

have recently been proposed as the quintessential quantum
properties of magic states; see Refs. [6–8]. Contextuality is
an obstruction to modeling the inherent randomness of
quantum measurement in a statistical mechanics fashion,
namely, by a probability distribution over configurations
with predetermined measurement outcomes for all meas-
urable observables. Wigner functions [9–11] are the closest
quantum analogue of probability distributions over phase
space. The key difference is that Wigner functions can
assume negative values, and this negativity is taken as an
indication of quantumness. Despite their separate origins in
the fields of quantum optics and foundations of quantum
mechanics, Wigner function negativity and contextuality
are closely related indicators of nonclassical behavior
[6,12].
The reason for the appearance of Wigner functions in the

discussion of QCSI is their relation [7,11] to the stabilizer
formalism [13]. The stabilizer formalism is also relevant for

QCSI since the restricted gate set therein is typically chosen
to be the Clifford gates. These gates are indeed not
universal, and—if supplemented only with Pauli measure-
ments and stabilizer states—can be efficiently classically
simulated by stabilizer techniques.
The epitome for the link between Wigner functions and

QCSI via the stabilizer formalism is the discrete Hudson’s
theorem [11], which says that in Hilbert spaces of odd
prime-power (hence finite) dimension, the pure states with
positive Wigner functions are exactly the stabilizer states.
Thus, stabilizer states are “classical” from the perspectives
of both Wigner functions and QCSI. In the wake of this
result, contextuality and Wigner function negativity have
been established as quantum resources for QCSI with
qudits of odd prime dimension [6,8].
Extending these properties to two-level systems is

pertinent since quantum algorithms are typically formu-
lated in terms of qubits. But attempts to do so hit barriers:
As for the Wigner functions, many constructions cannot be
adapted to qubits [11,14], and for the remaining ones
[7,15], the discrete Hudson’s theorem breaks down. There
are qubit stabilizer states with negative Wigner functions.
As for contextuality, it now arises in its state-independent
form [16]. As a result, every quantum state of more than
one qubit can be considered contextual [6], which is at odds
with viewing contextuality as a resource possessed only by
special states.
Here, we establish Wigner function negativity and

contextuality as necessary resources for QCSI on two-level
systems. We achieve this at the price of restricting from
qubits to rebits, i.e., real density matrices of n two-level
systems. This restriction does not affect universality [17].
The role that was previously played by the stabilizer states
is now played by the Calderbank-Shor-Steane (CSS) states
[18], and the group of Clifford gates is replaced by the
subgroup of CSS-ness preserving Clifford gates. Within
this new setting, we resurrect a discrete Hudson’s theorem,
as well as a number of related properties of the Wigner
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We describe a scheme of quantum computation with magic states on qubits for which contextuality
is a necessary resource possessed by the magic states. More generally, we establish contextuality
as a necessary resource for all schemes of quantum computation with magic states on qubits that
satisfy three simple postulates. Furthermore, we identify stringent consistency conditions on such
computational schemes, revealing the general structure by which negativity of Wigner functions,
hardness of classical simulation of the computation, and contextuality are connected.
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I. INTRODUCTION

Contextuality [1] - [5] has recently been established as a
necessary resource for quantum computation by injection
of magic states (QCSI). This was first achieved for the
case of qudits [6], where the Hilbert space dimension of
the local systems is an odd prime or a power of an odd
prime, and subsequently for the case of rebits [7], where
the Hilbert space dimension of the local systems is 2, but
the density matrix is constrained to be real.

The scheme of QCSI [8] deviates from the standard
circuit model in that the allowed state preparations, uni-
tary transformations and measurements are restricted to
non-universal and, in fact, efficiently classically simula-
ble operations. Computational universality is restored
by the capability to inject so-called magic states. The
source of computational power thus shifts from the gates
to the magic states.

Before the analysis of the magic states as resources
can begin, it needs to be clarified in which sense the re-
stricted state-preparations, unitaries and measurements
available in QCSI are not quantum resources. These op-
erations are certainly not entirely classical. For example,
highly entangled states can be created by them. The
near-classicality of these operations is explained in terms
of a Wigner function; See [6], [7], [9] - [11].

Wigner functions [12] - [15] describe quantum states
in phase space. They are quasi-probability distributions,
and as such the closest quantum analogue to joint prob-
ability distributions of position and momentum in clas-
sical statistical mechanics. The difference is that Wigner
functions can take negative values, and this negativity is
a signature of quantumness [16], [17].

For QCSI on qudits or rebits, Wigner functions pro-
vide a computational notion of classicality [9], [15], [7].
Namely, if the initial quantum state has a non-negative

Wigner function, then the entire quantum computation
can be efficiently classically simulated. Wigner function
negativity is thus necessary for quantum speedup.

After the roles of Wigner function negativity and con-
textuality have been clarified for qudits and rebits, in
this paper we investigate them for the yet unresolved
case of qubits. The case of local dimension 2, into which
the rebit case forays, is complicated by the fact that
the Wigner function for infinite dimension [12] cannot be
adapted to it [14], [15], [18], [19], by the presence of state-
independent contextuality with Pauli observables [3], and
Bell inequalities based on stabilizer operators [20]-[22].

We impose the following three constraints on the QCSI
schemes we discuss: (P1) The computational scheme is
tomographically complete. That is, with the available op-
erations the density matrix ρ of any n-qubit quantum
state can be fully measured, and that (P2) The Wigner
function describing the computational scheme is informa-
tionally complete, i.e., any n-qubit quantum state ρ can
be unambiguously reconstructed from its Wigner func-
tion Wρ. Finally, (P3) The measurements available in
QCSI must not introduce negativity into the Wigner func-
tion of the processed quantum state.

Requirement (P3) is the very basis for the usefulness
of Wigner functions in the description of QCSI, namely
to reveal the near-classicality of QCSI without the magic
states. It is certainly in line with the approach taken for
qudits and rebits. However, (P3) is trickier than might at
first appear. For a start, we do not require a counterpart
of (P3) for the unitary operations available in QCSI, and
imposing it would indeed be too restrictive. Those uni-
taries may introduce large amounts of negativity into the
Wigner function without compromising efficient classical
simulability.

In this paper, we provide a common structural frame-
work for QCSI schemes on qubits which satisfy the above
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In a noncontextual hidden variable model of quantum theory, hidden variables determine the outcomes

of every measurement in a manner that is independent of how the measurement is implemented. Using a

generalization of this notion to arbitrary operational theories and to preparation procedures, we demon-

strate that a particular two-party information-processing task, ‘‘parity-oblivious multiplexing,’’ is powered

by contextuality in the sense that there is a limit to how well any theory described by a noncontextual

hidden variable model can perform. This bound constitutes a ‘‘noncontextuality inequality’’ that is

violated by quantum theory. We report an experimental violation of this inequality in good agreement

with the quantum predictions. The experimental results also provide the first demonstration of 2-to-1 and

3-to-1 quantum random access codes.
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The Bell-Kochen-Specker theorem [1] shows that the
predictions of quantum theory are inconsistent with a
hidden variable model having the following feature: if A,
B, and C are Hermitian operators such that A and B
commute, A and C commute, but B and C do not commute,
then the value predicted to occur in a measurement of A
does not depend on whether B or C was measured simul-
taneously. This feature is called ‘‘noncontextuality.’’
Significantly, it is only well-defined for models of quantum
theory (and then only for projective measurements and
deterministic models) [2]. By contrast, Bell’s definition
of a localmodel applies to any theory that can be described
operationally [3]. Consequently, whereas one can test
whether or not experimental statistics are consistent with
a local model (by testing whether or not they satisfy Bell
inequalities), there is no way to test whether or not experi-
mental statistics are consistent with a noncontextual model
(and no way of defining associated ‘‘noncontextuality in-
equalities’’) unless one generalizes the traditional notion of
noncontextuality in such a way that it makes no reference
to the quantum formalism. Suggestions for such a formu-
lation have been made by several authors [4]. A particu-
larly natural generalization (and slight modification) which
applies to all models (deterministic or not) of any opera-
tional theory has been proposed in Ref. [2]. We here derive
a noncontextuality (NC) inequality based on this notion.

Because information-theoretic tasks can be character-
ized entirely in terms of experimental statistics, one can
explore whether theories that violate NC inequalities may
provide information-theoretic advantages over theories
that satisfy these inequalities. We prove that this is indeed
the case for a task which we call parity-oblivious multi-
plexing, a kind of two-party secure computation. (The
notion that contextuality might yield an advantage for
multiplexing tasks was first put forward by Galvão [5].)

The NC inequality we derive provides a bound on the
probability of success in this task, and we demonstrate a
quantum protocol for parity-oblivious multiplexing for
which the probability of success exceeds the noncontextual
bound.
Finally, we report an experimental implementation of

this protocol that achieves a probability of success in good
agreement with the quantum result and in violation of the
NC inequality.
Operational theories and noncontextual models.—In an

operational theory, the primitives of description are prepa-
rations and measurements, specified as instructions for
what to do in the laboratory. The theory simply provides
an algorithm for calculating the probability pðkjP;MÞ of
an outcome k of measurementM given a preparation P. As
an example, in quantum theory, every preparation P is
represented by a density operator �P, every measurement
M is represented by a positive operator valued measure
fEM;kg, and the probability of outcome k is given by

pðkjP;MÞ ¼ Trð�PEM;kÞ.
In a hidden variable model of an operational theory, a

preparation procedure is assumed to prepare a system with
certain properties and a measurement procedure is as-
sumed to reveal something about those properties. The
set of all variables describing the system is denoted �.
It is presumed that for every preparation P, there is a
probability distribution pð�jPÞ such that implementing P
causes the system to be prepared in physical state �
with probability pð�jPÞ. Similarly, it is presumed that for
every measurement M, there is a distribution pðkj�;MÞ
such that implementing M on a system described by �
yields outcome k with probability pðkj�;MÞ. For the hid-
den variable model to reproduce the predictions of the
operational theory, it must satisfy pðkjP;MÞ ¼R
d�pðkj�;MÞpð�jPÞ.
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Contextuality in measurement-based quantum computation
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We show, under natural assumptions for qubit systems, that measurement-based quantum computations
(MBQCs) which compute a nonlinear Boolean function with a high probability are contextual. The class of
contextual MBQCs includes an example which is of practical interest and has a superpolynomial speedup over
the best-known classical algorithm, namely, the quantum algorithm that solves the “discrete log” problem.
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I. INTRODUCTION

While numerous quantum algorithms have been found
that offer polynomial or superpolynomial speedups over their
classical counterparts [1–3], the precise quantum mechanical
origin of this speedup remains unknown. The prominent
candidates—entanglement [4], superposition and interference
[5], and largeness of Hilbert space—provide an intuitive
understanding in many situations. Yet, as a whole, the
phenomenology so far uncovered does not lend itself to a
simple interpretation [6–12].

Here we turn our attention to a different characterization
of nonclassicality, namely, contextuality [13,14], and study its
relation to computational power. We choose measurement-
based quantum computation (MBQC) [15] as our setting.
The starting point for this investigation is the observation by
Anders and Browne [16] that one of Mermin’s proofs [17]
of the Kochen-Specker theorem [13] can be converted into
a simple MBQC. We are led to ask whether the connection
between MBQC and contextuality exhibited by this example
is accidental or whether it holds in general. The main finding
of this paper is that, under quite natural assumptions for
multiqubit systems, all MBQCs which compute a nonlinear
Boolean function with a sufficiently high success probability
are contextual.

For MBQC, the separation between linear and nonlinear
functions is fundamental. Every MBQC requires a classical
control computer for adjusting measurement bases according
to the computational input and for converting measurement
outcomes into computational output. This classical side pro-
cessing is all linear. Evaluating nonlinear functions is out of
reach for such a classical control computer without access to
additional resources.

This paper is organized as follows. In Sec. II, we review
Anders and Browne’s example and define the setting of MBQC
and notions of contextuality we use. In Sec. III we present
three results on the interplay between contextuality and the
nonlinearity of the computational output, Theorems 2, 3, and
5 . We point out that the class of contextual MBQCs contains
a computation which is of actual algorithmic interest, i.e.,
achieves a superpolynomial speedup over the best-known
classical algorithm. It is the MBQC variant of the quantum
algorithm for the “discrete log” problem [1,18]. In Sec. IV, we

*rraussendorf@phas.ubc.ca

discuss experimental tests of contextuality. We conclude with
a discussion in Sec. V.

II. THE SETTING

We discuss the link between contextuality and quantum
computation for MBQC [15]. MBQC is a model of quantum
computation in which a quantum algorithm is implemented
solely by local measurements on a fixed initial state. The
choice of measurement bases determines the algorithm to be
implemented, and correlations among the measurement out-
comes reveal the result of the computation. The computational
power of this scheme is fully determined by the initial quantum
state.1 For suitable initial states such as cluster states, MBQC
is universal.

A. Computation and contextuality: A first example

Following Anders and Browne [16], we consider a three-
party Greenberger-Horne-Zeilinger (GHZ) [21] state |GHZ〉 =
|000〉+|111〉√

2
, which can be used to execute a deterministic OR

gate within the framework of MBQC. While standard elec-
tronic devices routinely perform OR gates without quantum-
mechanical action, this result offers a structural insight into
MBQC. Namely, it is known that every MBQC requires a
classical control computer that converts the classical input
into measurement settings and the measurement outcomes
into computational output. This classical control computer is
capable of doing only one type of operation: addition mod 2. It
is thus not classically universal and, indeed, very limited. Now,
having access to GHZ states and local projective measurements
promotes this control computer to classical universality. Thus,
in the described setting, the access to quantum resources vastly
increases the set of computable functions.

What is more, Anders and Browne’s construction repur-
poses an existing proof [17] of the Kochen-Specker theorem
[13] into a quantum mechanical computation. The computation
takes two bits of input, i1 and i2, and outputs a single bit
o ≡ i1 ∨ i2. It proceeds as follows. Step 1: The settings for the
local measurements on the three qubits are calculated from the
input i1 and i2. For either of the three qubits, a priori the Pauli

1Note, however, that other schemes of universal quantum com-
putation by measurement exist in which the measurements are not
local [19,20]. For such schemes, the initial quantum state of the
system is irrelevant.

022322-11050-2947/2013/88(2)/022322(7) ©2013 American Physical Society
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Contextuality supplies the ‘magic’ for
quantum computation
Mark Howard1,2, Joel Wallman2, Victor Veitch2,3 & Joseph Emerson2

Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in
quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality
and the possibility of universal quantum computation via ‘magic state’ distillation, which is the leading model for exper-
imentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which
precludes a simple ‘hidden variable’ model of quantum mechanics, provides one of the fundamental characterizations of
uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum
information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known
to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these funda-
mental issues, this work advances the resource framework for quantum computation, which has a number of practical
applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes
for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quan-
tum algorithms.

Quantum information provides unique new capabilities for computation
such as Shor’s factoring algorithm1 and quantum simulation algorithms2.
This naturally raises the fundamental question: what unique resources
of the quantum world enable the advantages of quantum information?
There have been many attempts to answer this question, with proposals
including the hypothetical ‘quantum parallelism’3 some associate with
quantum superposition, the necessity of large amounts of entanglement4,
and much ado about quantum discord5. Unfortunately none of these
proposals have proven satisfactory6–9, and, in particular, none have helped
resolve outstanding challenges confronting the field. For example, on
the theoretical side, the most general classes of problems for which quan-
tum algorithms might offer an exponential speed-up over classical algo-
rithms are poorly understood. On the experimental side, there remain
significant challenges to the design of robust, large-scale quantum com-
puters, and an important open problem is to determine the minimal
physical requirements of a useful quantum computer10,11. A framework
identifying relevant resources for quantum computation should help
clarify these issues—for example, by identifying new simulation schemes
for classes of quantum algorithms and by clarifying the trade-offs between
the distinct physical requirements for achieving robust quantum com-
putation. Here we establish that quantum contextuality, a generalization
of non-locality identified12,13 almost 50 years ago, is a critical resource for
quantum speed-up within the leading model for fault-tolerant quantum
computation, known as magic state distillation (MSD)14–16.

Contextuality was first recognized as an intrinsic feature of quantum
theory via the Bell–Kochen–Specker ‘no-go’ theorem. This theorem
implies the impossibility of explaining the statistical predictions of quan-
tum theory in a natural way. In particular, the actual outcome observed
under a quantum measurement cannot be understood as simply reveal-
ing a pre-existing value of some underlying ‘hidden variable’17. A key
observation is that the non-locality of quantum theory is a special case
of contextuality. Under the locality restrictions motivating quantum
communication, non-locality is a quantifiable cost for classical simula-
tion complexity18 and a fundamental resource for practical applications

such as device-independent quantum key distribution19–21. Locality restric-
tions can be made relevant to measurement-based quantum computation11,
for which non-locality quantifies the resources required to evaluate non-
linear functions22,23. However, locality restrictions are not relevant in
the standard quantum circuit model for quantum computation, and,
in this context, a large amount of entanglement has been shown to
be neither necessary nor sufficient for an exponential computational
speed-up9.

Here we consider the framework of fault-tolerant stabilizer quantum
computation24 which provides the most promising route to achieving
robust universal quantum computation thanks to the discovery of high-
threshold codes in two-dimensional geometries25–29. In this framework,
only a subset of quantum operations—namely, stabilizer operations—
can be achieved via a fault-tolerant encoding. These operations define
a closed subtheory of quantum theory, the stabilizer subtheory, which
is not universal and in fact admits an efficient classical simulation30.
The stabilizer subtheory can be promoted to universal quantum com-
putation through MSD14–16 which relies on a large number of ancillary
resource states. Here we show that quantum contextuality plays a cri-
tical role in characterizing the suitability of quantum states for MSD.
Our approach builds on recent work31,32 that has established a remark-
able connection between contextuality and graph-theory. We use the
framework of refs 31 and 32 to identify non-contextuality inequalities
such that the onset of state-dependent contextuality, using stabilizer
measurements, coincides exactly with the possibility of universal quantum
computing via MSD. The scope of our results differs depending on whether
we consider a model of computation using qubits (systems of even prime
dimension) or qudits (systems of odd prime dimension). We note that
some authors use the term qudit to describe a system with an arbitrary
number of levels. Whereas in both cases we can prove that violating a non-
contextuality inequality is necessary for quantum-computational speed-
up via MSD, in the qudit case we are able to prove that a state violates a
non-contextuality inequality if and only if it lies outside the known bound-
ary for MSD.
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We describe a universal scheme of quantum computation by state injection on rebits (states with real
density matrices). For this scheme, we establish contextuality and Wigner function negativity as
computational resources, extending results of M. Howard et al. [Nature (London) 510, 351 (2014)] to
two-level systems. For this purpose, we define a Wigner function suited to systems of n rebits and prove a
corresponding discrete Hudson’s theorem. We introduce contextuality witnesses for rebit states and discuss
the compatibility of our result with state-independent contextuality.
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I. INTRODUCTION

In quantum computation by state injection (QCSI) [1],
the set of quantum gates is, by construction, not universal.
This restriction is compensated by the injection of states
that could not be created within the scheme itself, the
so-called magic states.
Besides its promise for the realization of fault-tolerant

quantum computation, QCSI is of fundamental theoretical
interest. Since the magic states enable universality, one is
led to ask the following question: Precisely which quantum
properties of these states are responsible for the gain in
computational power?
Contextuality [2–5] and negativity of Wigner functions

have recently been proposed as the quintessential quantum
properties of magic states; see Refs. [6–8]. Contextuality is
an obstruction to modeling the inherent randomness of
quantum measurement in a statistical mechanics fashion,
namely, by a probability distribution over configurations
with predetermined measurement outcomes for all meas-
urable observables. Wigner functions [9–11] are the closest
quantum analogue of probability distributions over phase
space. The key difference is that Wigner functions can
assume negative values, and this negativity is taken as an
indication of quantumness. Despite their separate origins in
the fields of quantum optics and foundations of quantum
mechanics, Wigner function negativity and contextuality
are closely related indicators of nonclassical behavior
[6,12].
The reason for the appearance of Wigner functions in the

discussion of QCSI is their relation [7,11] to the stabilizer
formalism [13]. The stabilizer formalism is also relevant for

QCSI since the restricted gate set therein is typically chosen
to be the Clifford gates. These gates are indeed not
universal, and—if supplemented only with Pauli measure-
ments and stabilizer states—can be efficiently classically
simulated by stabilizer techniques.
The epitome for the link between Wigner functions and

QCSI via the stabilizer formalism is the discrete Hudson’s
theorem [11], which says that in Hilbert spaces of odd
prime-power (hence finite) dimension, the pure states with
positive Wigner functions are exactly the stabilizer states.
Thus, stabilizer states are “classical” from the perspectives
of both Wigner functions and QCSI. In the wake of this
result, contextuality and Wigner function negativity have
been established as quantum resources for QCSI with
qudits of odd prime dimension [6,8].
Extending these properties to two-level systems is

pertinent since quantum algorithms are typically formu-
lated in terms of qubits. But attempts to do so hit barriers:
As for the Wigner functions, many constructions cannot be
adapted to qubits [11,14], and for the remaining ones
[7,15], the discrete Hudson’s theorem breaks down. There
are qubit stabilizer states with negative Wigner functions.
As for contextuality, it now arises in its state-independent
form [16]. As a result, every quantum state of more than
one qubit can be considered contextual [6], which is at odds
with viewing contextuality as a resource possessed only by
special states.
Here, we establish Wigner function negativity and

contextuality as necessary resources for QCSI on two-level
systems. We achieve this at the price of restricting from
qubits to rebits, i.e., real density matrices of n two-level
systems. This restriction does not affect universality [17].
The role that was previously played by the stabilizer states
is now played by the Calderbank-Shor-Steane (CSS) states
[18], and the group of Clifford gates is replaced by the
subgroup of CSS-ness preserving Clifford gates. Within
this new setting, we resurrect a discrete Hudson’s theorem,
as well as a number of related properties of the Wigner
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We describe a scheme of quantum computation with magic states on qubits for which contextuality
is a necessary resource possessed by the magic states. More generally, we establish contextuality
as a necessary resource for all schemes of quantum computation with magic states on qubits that
satisfy three simple postulates. Furthermore, we identify stringent consistency conditions on such
computational schemes, revealing the general structure by which negativity of Wigner functions,
hardness of classical simulation of the computation, and contextuality are connected.

PACS numbers: 03.67.Mn, 03.65.Ud, 03.67.Ac

I. INTRODUCTION

Contextuality [1] - [5] has recently been established as a
necessary resource for quantum computation by injection
of magic states (QCSI). This was first achieved for the
case of qudits [6], where the Hilbert space dimension of
the local systems is an odd prime or a power of an odd
prime, and subsequently for the case of rebits [7], where
the Hilbert space dimension of the local systems is 2, but
the density matrix is constrained to be real.

The scheme of QCSI [8] deviates from the standard
circuit model in that the allowed state preparations, uni-
tary transformations and measurements are restricted to
non-universal and, in fact, efficiently classically simula-
ble operations. Computational universality is restored
by the capability to inject so-called magic states. The
source of computational power thus shifts from the gates
to the magic states.

Before the analysis of the magic states as resources
can begin, it needs to be clarified in which sense the re-
stricted state-preparations, unitaries and measurements
available in QCSI are not quantum resources. These op-
erations are certainly not entirely classical. For example,
highly entangled states can be created by them. The
near-classicality of these operations is explained in terms
of a Wigner function; See [6], [7], [9] - [11].

Wigner functions [12] - [15] describe quantum states
in phase space. They are quasi-probability distributions,
and as such the closest quantum analogue to joint prob-
ability distributions of position and momentum in clas-
sical statistical mechanics. The difference is that Wigner
functions can take negative values, and this negativity is
a signature of quantumness [16], [17].

For QCSI on qudits or rebits, Wigner functions pro-
vide a computational notion of classicality [9], [15], [7].
Namely, if the initial quantum state has a non-negative

Wigner function, then the entire quantum computation
can be efficiently classically simulated. Wigner function
negativity is thus necessary for quantum speedup.

After the roles of Wigner function negativity and con-
textuality have been clarified for qudits and rebits, in
this paper we investigate them for the yet unresolved
case of qubits. The case of local dimension 2, into which
the rebit case forays, is complicated by the fact that
the Wigner function for infinite dimension [12] cannot be
adapted to it [14], [15], [18], [19], by the presence of state-
independent contextuality with Pauli observables [3], and
Bell inequalities based on stabilizer operators [20]-[22].

We impose the following three constraints on the QCSI
schemes we discuss: (P1) The computational scheme is
tomographically complete. That is, with the available op-
erations the density matrix ρ of any n-qubit quantum
state can be fully measured, and that (P2) The Wigner
function describing the computational scheme is informa-
tionally complete, i.e., any n-qubit quantum state ρ can
be unambiguously reconstructed from its Wigner func-
tion Wρ. Finally, (P3) The measurements available in
QCSI must not introduce negativity into the Wigner func-
tion of the processed quantum state.

Requirement (P3) is the very basis for the usefulness
of Wigner functions in the description of QCSI, namely
to reveal the near-classicality of QCSI without the magic
states. It is certainly in line with the approach taken for
qudits and rebits. However, (P3) is trickier than might at
first appear. For a start, we do not require a counterpart
of (P3) for the unitary operations available in QCSI, and
imposing it would indeed be too restrictive. Those uni-
taries may introduce large amounts of negativity into the
Wigner function without compromising efficient classical
simulability.

In this paper, we provide a common structural frame-
work for QCSI schemes on qubits which satisfy the above
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Part I

Introduction to
contextuality



Ontological models

p(k|P ,M) =

∫
p(k|λ,M)p(λ|P)dλ



Kochen-Specker noncontextuality

p(k|λ,M) = v(Πk) ∈ {0, 1}



Kochen-Specker noncontextuality

p(k|λ,M) = v(Πk) ∈ {0, 1}



Operational measurment

noncontextuality1

p(k|P ,M) = p(k|P ,M′) ∀P
⇓

p(k|λ,M) = p(k|λ,M′) ∀λ

1R.W. Spekkens, PRA 71, 052108



Preparation noncontextuality

p(k|P ,M) = p(k|P ′,M) ∀k,M
⇓

p(λ|P) = p(λ|P ′) ∀λ



Example of preparation
noncontextuality

|0〉 〈0| + |1〉 〈1|
2

=
|+〉 〈+| + |−〉 〈−|

2

⇓
p(λ| |0〉) + p(λ| |1〉)

2
=
p(λ| |+〉) + p(λ| |−〉)

2



Example of preparation
noncontextuality

|0〉 〈0| + |1〉 〈1|
2

=
|+〉 〈+| + |−〉 〈−|

2

⇓
p(λ| |0〉) + p(λ| |1〉)

2
=
p(λ| |+〉) + p(λ| |−〉)

2



Part II

Robustness



Operational = robust?

p(k|P ,M) = p(k|P ′,M) ∀k,M
⇓

p(λ|P) = p(λ|P ′) ∀λ



Operational = robust?

p(k|P ,M) = p(k|P ′,M) ∀k,M
⇓

p(λ|P) = p(λ|P ′) ∀λ



Operational = robust?

p(k|P ,M) = p(k|P ′,M) ∀k,M
⇓

p(λ|P) = p(λ|P ′) ∀λ



Ideal case

ẑ

x̂

P i
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P i
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P i
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Imperfect case

ẑ

x̂
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3,0

Pp
3,1



Secondary preparations

ẑ
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Secondary preparations

ẑ

x̂

Ps
1,0

Ps
1,1

Ps
2,0

Ps
2,1

Ps
3,0

Ps
3,1



Projective measurements

Operational signature: perfect predictability

∀k ∃Pk s.t. p(k|Pk,M) = 1

Ontological reflection: determinism

p(k|λ,M) ∈ {0, 1}



Projective measurements

Operational signature: perfect predictability

∀k ∃Pk s.t. p(k|Pk,M) = 1

Ontological reflection: determinism

p(k|λ,M) ∈ {0, 1}



Nearly projective measurements

Operational signature: high predictability

∀k ∃Pk s.t. p(k|Pk,M) ≥ 1− ε

Ontological reflection: near-determinism

max
λ,k

p(k|λ,M) ≥ 1− ε



Nearly projective measurements

Operational signature: high predictability

∀k ∃Pk s.t. p(k|Pk,M) ≥ 1− ε

Ontological reflection: near-determinism

max
λ,k

p(k|λ,M) ≥ 1− ε



Part III

Our experiment



Setup

Heralded Single

Photon Source

State Preparation

PBS

Measurement

GT-

PBS

Coupler

Mirror

IF

HWP

QWP

Dh

PPKTP

Dt

Dr

meascompprep



a

b
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Part IV

Direct cryptographic
applications of
contextuality?



Suggestion

A prepare-and-measure key distribution

scheme which assumes only that Bob’s

measurements are tomographically complete

for Alice’s preparations (+ usual secure labs).



Toy analysis

Alice has four preparations, Bob has two

binary measurements.

Alice and Bob measure p(k|Pi,Mj).

Consider an extra variable e, with

p(k, e|Pi,Mj) = p(e|Pi)p(k|Pi, e,Mj)



Toy analysis

Alice has four preparations, Bob has two

binary measurements.

Alice and Bob measure p(k|Pi,Mj).

Consider an extra variable e, with

p(k, e|Pi,Mj) = p(e|Pi)p(k|Pi, e,Mj)



Toy analysis

Alice has four preparations, Bob has two

binary measurements.

Alice and Bob measure p(k|Pi,Mj).

Consider an extra variable e, with

p(k, e|Pi,Mj) = p(e|Pi)p(k|Pi, e,Mj)



Toy analysis

Alice has four preparations, Bob has two

binary measurements.

Alice and Bob measure p(k|Pi,Mj).

Consider an extra variable e, with

p(k, e|Pi,Mj) = p(e|Pi)p(k|Pi, e,Mj)

= fk,e,j
(
{p(k′|Pi,Mj′)}k′,j′

)



Toy analysis

Alice has four preparations, Bob has two

binary measurements.

Alice and Bob measure p(k|Pi,Mj).

Consider an extra variable e, with

p(k, e|Pi,Mj) = p(e|Pi)p(k|Pi, e,Mj)

= fk,e,j
(
{p(k′|Pi,Mj′)}k′,j′

)
Maximize p(e=0|P0)+p(e=1|P1)

2



Results: simple case
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Contextuality inequality: arXiv:1506.04178



Results: general case
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Results: general case
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p(k|Pi,Mj) = δkbi(j)



Conclusions
I Provided one has a tomographically

complete set of procedures,

noncontextuality is robust both to

failures of exact operational equivalence

and to non-projective measurements

I Conjecture: key distribution can be

secured by tomographic completeness

I However: better justifications for

tomographic completeness are needed!

Main reference: arXiv:1505.06244
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