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In a noncontextual hidden variable model of quantum theory, hidden variables determine the outcomes
of every measurement in a manner that is independent of how the measurement is implemented. Using a
generalization of this notion to arbitrary operational theories and to preparation procedures, we demon-
strate that a particular two-party i 7 ing task, “parity-obli ing,” is powered
by contextuality in the sense that there is a limit to how well any theory described by a noncontextual
hidden variable model can perform. This bound constitutes a “‘noncontextuality inequality” that is
violated by quantum theory. We report an experimental violation of this inequality in good agreement
with the quantum predictions. The experimental results also provide the first demonstration of 2-to-1 and
3-to-1 quantum random access codes.
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The NC inequality we denve provides a bound on the
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We show, under natural assumptions for qubit systems, that

sed quantum

(MBQCs) which compute a nonlinear Boolean function with a high probability are contextual. The class of

contextual MBQCs includes an example which is of practical interest and ha

uperpolynomial specdup over

the best-known classical algorithm, namely, the quantum algorithm that solves the “discrete log™ problem.
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L. INTRODUCTION

While numerous quantum algorithms have been found
that offer polynomial or superpolynomial speedups over their
classical counterparts [1-3], the precise quantum mechanical
origin of this speedup remains unknown. The prominent
candidates—entanglement [4], superposition and interference
[5], and largeness of Hilbert space—provide an intuitive
i ituati Yet, as a whole, the
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experimental tests of contextuality. We conclude with

II. THE SETTING

We discuss the link between contextuality and quantum
computation for MBQC [15]. MBQC is a model of quantum
computation in which a quantum algorithm is implemented
solely by local measurements on a fixed initial state. The
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Contextuality supplies the ‘magic’ for
quantum computation

Mark Howard"?, Joel Wallman?, Victor Veitch?® & Joseph Emerson®

Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in
quantum compulmg has remained elusive. Here we prove aremarkable equivalence between the onset of contextuality
and the y of via ‘magic state’ distillation, which is the leading model for exper-

realizing a fault-tolerant . Thisisa: satisfying link, b , which
precludes a simple ‘hidden variable’ model of quantum mechanics, provides one of the fundamental characterizations of
uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum
information: the non-locality of quantum theory is a particular kind of conlextuahty, and non-locality is already known
to be a critical resource for act with In addition to clarifying these funda-
mental issues, this work ad the resource k for ion, which has a number of practical
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‘We describe a universal scheme of quantum computation by state injection on rebits (states with real
density matrices). For this scheme, we establish contextuality and Wigner function negativity as
computational resources, extending results of M. Howard et al. [Nature (London) 510, 351 (2014)] to
two-level systems. For this purpose, we define a Wigner function suited to systems of 7 rebits and prove a
corresponding discrete Hudson’s theorem. We introduce contextuality witnesses for rebit states and discuss
the compatibility of our result with state-independent contextuality.
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L. INTRODUCTION

In quantum computation by state injection (QCSI) [1],
the set of quantum gates is, by construction, not universal.
This restriction is compensated by the injection of states
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QCSI since the restricted gate set therein is typically chosen
to be the Clifford gates. These gates are indeed not
universal, and—if supplemented only with Pauli measure-
ments and stabilizer states—can be efficiently classically
N by P o
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T We describe a scheme of quantum computation with magic states on qubits for which contextuality
the is a necessary resource possessed by the magic states. More generally, we establish contextuality
Thi as a necessary resource for all schemes of quantum computation with magic states on qubits that
] satisfv three simple postulates. Furthermore. we identifv strineent consistencv conditions on such
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Ontological models

p(E[P, M) = / p(EIA, M)p(A|P)dA



Kochen-Specker noncontextuality

p(k[A, M) = v(Il;) € {0,1}
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Operational measurment
noncontextuality®

p(k|P, M) = p(k|P, M') VP
¢
p(k|A, M) = p(k|A, M) YA

!R.W. Spekkens, PRA 71, 052108



Preparation noncontextuality

p(k|P, M) = p(k|P', M) Vk, M
4
P(A[P) = p(A|P’) VA



Example of preparation
noncontextuality
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Example of preparation
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Operational = robust?
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Operational = robust?
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Imperfect case
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Projective measurements

Operational signature: perfect predictability

Vk 3Py s.t. p(k|Pr, M) =1



Projective measurements

Operational signature: perfect predictability

Vk 3Py s.t. p(k|Pr, M) =1

Ontological reflection: determinism

p(k|A, M) € {0,1}



Nearly projective measurements

Operational signature: high predictability

Vk 3P, st. p(k|Pp, M) > 1— ¢



Nearly projective measurements

Operational signature: high predictability

Vk 3P, st. p(k|Pp, M) > 1— ¢

Ontological reflection: near-determinism

H)l\é}fxp(]{‘)\,./\/l) >1—c¢
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Our experiment



Heralded Single
Photon Source

State Preparation
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Direct cryptographic
applications of
contextuality?



Suggestion

A prepare-and-measure key distribution
scheme which assumes only that Bob's
measurements are tomographically complete
for Alice's preparations (4 usual secure labs).



Toy analysis

Alice has four preparations, Bob has two
binary measurements.
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Toy analysis

Alice has four preparations, Bob has two
binary measurements.

Alice and Bob measure p(k|P;, M;).

Consider an extra variable e, with

p(ka 6‘7)757 Mj) - p(e\Pz‘)P(Mpu €, Mj)
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Toy analysis

Alice has four preparations, Bob has two
binary measurements.

Alice and Bob measure p(k|P;, M;).
Consider an extra variable e, with

p(k, e|P;, M;) = ple|P;)p(k|Pi, e, M)
— fk,e,j ({p(k/“)l) Mj’)}k/,j/)

(e=0[Po)+p(e=1|Py)

Maximize Z 5




Results: simple case
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Contextuality inequality: arXiv:1506.04178



Results: general case
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Results: general case

B[

NC

bound
I

Eve’s max. guessing probability

Contextuality inequality value

p(k|Pi, Mj) = O, (5)



Conclusions

» Provided one has a tomographically
complete set of procedures,
noncontextuality is robust both to
failures of exact operational equivalence
and to non-projective measurements

» Conjecture: key distribution can be
secured by tomographic completeness

» However: better justifications for
tomographic completeness are needed!

Main reference: arXiv:1505.06244
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