Anchoring games for parallel repetition

Henry Yuen

MIT

Mohammad Bavarian

MIT

Thomas Vidick CalTech

Games and parallel repetition

Feige's Counterexample

The anchoring transformation and our results

Proof ideas

Games and parallel repetition

Feige's Counterexample

The anchoring transformation and our results

Proof ideas

- ▶ Referee samples questions $(x, y) \sim \mu$
- ► Alice gets *x*, Bob gets *y*

- Referee samples questions $(x, y) \sim \mu$
- Alice gets x, Bob gets y
- Alice answers with a, Bob answers with b

- Referee samples questions $(x, y) \sim \mu$
- Alice gets x, Bob gets y
- Alice answers with a, Bob answers with b
- Players win iff V(x, y, a, b) = 1

- Classical value: val(G) = maximum winning probability when Alice and Bob's strategies are *local* (i.e. no entanglement).
 - Can assume strategies are deterministic.

- Classical value: val(G) = maximum winning probability when Alice and Bob's strategies are *local* (i.e. no entanglement).
 - Can assume strategies are deterministic.
- Entangled value: val*(G) = maximum winning probability when Alice and Bob are quantumly entangled.

- Classical value: val(G) = maximum winning probability when Alice and Bob's strategies are *local* (i.e. no entanglement).
 - Can assume strategies are deterministic.
- Entangled value: val*(G) = maximum winning probability when Alice and Bob are quantumly entangled.
- Entanglement can help: There exist G with $val(G) < val^*(G)$ (e.g. CHSH).

Why games?

Theoretical Computer Science

Local checking of proofs (classical and quantum), hardness of constraint satisfaction problems, cryptography,...

Testing non-locality in quantum mechanics

- ▶ Bell inequality *violations* correspond to $val^{\star}(G) > val(G)$
- The recent Loophole-Free Bell Test by [Hensen, et al.] is a two player game in action

Device independent information processing

 Certified random number generation, QKD, delegated quantum computation,...

- Consider the Greenberger-Horne-Zeilinger (GHZ) game
 - Three players
 - ▶ val(*GHZ*) = 3/4
 - ▶ val[★](GHZ) = 1
- GHZ game was used in one of the earliest tests of quantum non-locality.

- Consider the Greenberger-Horne-Zeilinger (GHZ) game
 - Three players
 - ▶ val(*GHZ*) = 3/4
 - ▶ val*(GHZ) = 1
- GHZ game was used in one of the earliest tests of quantum non-locality.
- Testing non-locality using the GHZ game:
 - Lose: Players are not using optimal quantum strategy.
 - Win: Maybe players are using a quantum strategy.

- Consider the Greenberger-Horne-Zeilinger (GHZ) game
 - Three players
 - ▶ val(*GHZ*) = 3/4
 - ▶ val*(GHZ) = 1
- GHZ game was used in one of the earliest tests of quantum non-locality.
- Testing non-locality using the GHZ game:
 - Lose: Players are not using optimal quantum strategy.
 - Win: Maybe players are using a quantum strategy.
- ▶ Want: Transform GHZ into a game G where
 - val^{*}(G) = 1
 - val(G) ≤ 0.01

- Consider the Greenberger-Horne-Zeilinger (GHZ) game
 - Three players
 - ▶ val(*GHZ*) = 3/4
 - ▶ val*(GHZ) = 1
- GHZ game was used in one of the earliest tests of quantum non-locality.
- Testing non-locality using the GHZ game:
 - Lose: Players are not using optimal quantum strategy.
 - Win: Maybe players are using a quantum strategy.
- ▶ Want: Transform GHZ into a game G where
 - val^{*}(G) = 1
 - val(G) ≤ 0.01
- This is called gap amplification.

Idea: Play many instances of the GHZ game in parallel.

GHZⁿ: Alice, Bob and Charlie receive inputs for n GHZ games simultaneously and have to win all of them.

Idea: Play many instances of the GHZ game in parallel.

GHZⁿ: Alice, Bob and Charlie receive inputs for n GHZ games simultaneously and have to win all of them.

- ▶ $val^{\star}(GHZ^n) = 1.$
 - Play each GHZ game independently using entangled strategy.

Idea: Play many instances of the GHZ game in parallel.

GHZⁿ: Alice, Bob and Charlie receive inputs for n GHZ games simultaneously and have to win all of them.

- ▶ $val^{\star}(GHZ^n) = 1.$
 - Play each GHZ game independently using entangled strategy.
- ▶ $\operatorname{val}(\operatorname{GHZ}^n) \stackrel{?}{\leq} (3/4)^n$

In G^n , the referee plays *n* independent instances of *G* **simultaneously** with Alice and Bob.

- ▶ Referee samples i.i.d. $(x_1, y_1), \ldots, (x_n, y_n) \sim \mu$
- Alice gets (x_1, \ldots, x_n) , Bob gets (y_1, \ldots, y_n)

In G^n , the referee plays *n* independent instances of *G* **simultaneously** with Alice and Bob.

- ► Referee samples i.i.d. $(x_1, y_1), \ldots, (x_n, y_n) \sim \mu$
- Alice gets (x_1, \ldots, x_n) , Bob gets (y_1, \ldots, y_n)
- ► Alice and Bob win Gⁿ if they win all n instances of G.

In G^n , the referee plays *n* independent instances of *G* **simultaneously** with Alice and Bob.

- ► Referee samples i.i.d. $(x_1, y_1), \ldots, (x_n, y_n) \sim \mu$
- Alice gets (x_1, \ldots, x_n) , Bob gets (y_1, \ldots, y_n)
- ► Alice and Bob win Gⁿ if they win all n instances of G.

The Parallel Repetition Question: How does $val(G^n)$ relate to val(G) and *n*?

- ▶ In 1995, Ran Raz proved the Parallel Repetition Theorem
 - For two player games G with val(G) < 1, val(Gⁿ) decays exponentially fast in n.

- ▶ In 1995, Ran Raz proved the Parallel Repetition Theorem
 - For two player games G with val(G) < 1, val(Gⁿ) decays exponentially fast in n.
 - Proof was highly non-trivial; one of the first applications of information theory to complexity theory.

- ▶ In 1995, Ran Raz proved the Parallel Repetition Theorem
 - For two player games G with val(G) < 1, val(Gⁿ) decays exponentially fast in n.
 - Proof was highly non-trivial; one of the first applications of information theory to complexity theory.
- **Open questions**: Does the Parallel Repetition Theorem hold for:
 - Entangled games?
 - Multiplayer games?

- ▶ In 1995, Ran Raz proved the Parallel Repetition Theorem
 - For two player games G with val(G) < 1, val(Gⁿ) decays exponentially fast in n.
 - Proof was highly non-trivial; one of the first applications of information theory to complexity theory.
- **Open questions**: Does the Parallel Repetition Theorem hold for:
 - Entangled games?
 - Multiplayer games?
- Our result: We change the problem by solving the gap amplification problem for entangled games and multiplayer games by introducing a technique called anchored parallel repetition.

Games and parallel repetition

Feige's Counterexample

The anchoring transformation and our results

Proof ideas

▶ How does val(*Gⁿ*) compare to val(*G*)?

- ▶ How does val(*Gⁿ*) compare to val(*G*)?
 - **Trivial bound**: $val(G)^n \le val(G^n)$.

- ► How does val(Gⁿ) compare to val(G)?
 - **Trivial bound**: $val(G)^n \le val(G^n)$.
- "Theorem": $val(G^n) = val(G)^n$.
 - "Proof": The instances of G are independent of each other, and each instance cannot be won with probability greater than val(G), so the maximum success probability is at most val(G)ⁿ.

- ► How does val(Gⁿ) compare to val(G)?
 - **Trivial bound**: $val(G)^n \le val(G^n)$.
- "Theorem": $val(G^n) = val(G)^n$.
 - "Proof": The instances of G are independent of each other, and each instance cannot be won with probability greater than val(G), so the maximum success probability is at most val(G)ⁿ.

$val(G^n) \neq val(G)^n$ in general!

- ► How does val(Gⁿ) compare to val(G)?
 - **Trivial bound**: $val(G)^n \le val(G^n)$.
- "Theorem": $val(G^n) = val(G)^n$.
 - "Proof": The instances of G are independent of each other, and each instance cannot be won with probability greater than val(G), so the maximum success probability is at most val(G)ⁿ.

$val(G^n) \neq val(G)^n$ in general!

Next: Feige's Counterexample *G* where $\frac{1}{2} = val(G) = val(G^2)$.

- ▶ Alice and Bob get uniform and independent bits $x, y \in \{0, 1\}$.
- Alice and Bob both output a statement of the form

"[Alice/Bob]'s input bit is [0/1]"

Players win iff their statements agree and are true.

- ▶ Alice and Bob get uniform and independent bits $x, y \in \{0, 1\}$.
- Alice and Bob both output a statement of the form

"[Alice/Bob]'s input bit is [0/1]"

Players win iff their statements agree and are true.

Examples

Alice gets x = 0, Bob gets y = 1.

- Alice says "Alice's input bit is 0", Bob says "Alice's input bit is 0".
- Alice says "Alice's input bit is 0", Bob says "Bob's input bit is 1". X

- ▶ Alice and Bob get uniform and independent bits $x, y \in \{0, 1\}$.
- Alice and Bob both output a statement of the form

"[Alice/Bob]'s input bit is [0/1]"

Players win iff their statements agree and are true.

Examples

Alice gets x = 0, Bob gets y = 1.

- Alice says "Alice's input bit is 0", Bob says "Alice's input bit is 0".
- Alice says "Alice's input bit is 0", Bob says "Bob's input bit is 1". X

$$\operatorname{val}(G) = 1/2$$

The repeated game G²

- Alice gets $(x_1, x_2) \in \{0, 1\}^2$
- ▶ Bob gets $(y_1, y_2) \in \{0, 1\}^2$
- Alice and Bob have to output two statements of the form:

"[Alice/Bob]'s input bit in G_1 is [0/1]" "[Alice/Bob]'s input bit in G_2 is [0/1]"

The repeated game G²

- Alice gets $(x_1, x_2) \in \{0, 1\}^2$
- ▶ Bob gets $(y_1, y_2) \in \{0, 1\}^2$
- Alice and Bob have to output two statements of the form:

"[Alice/Bob]'s input bit in G_1 is [0/1]" "[Alice/Bob]'s input bit in G_2 is [0/1]"

• Would expect $val(G^2) = val(G)^2 = \frac{1}{4}$.
Strategy for G^2

Alice says:

"Alice's input in G_1 is x_1 " "Bob's input in G_2 is x_1 " Bob says:

Strategy for G^2

Alice says:

"Alice's input in *G*₁ is *x*₁" "Bob's input in *G*₂ is *x*₁"

Analyzing $val(G^2)$

• $\Pr[\text{Win } G_1] = \Pr[x_1 = y_2] = 1/2.$

Bob says:

Strategy for G^2

Alice says:

"Alice's input in G_1 is x_1 " "Bob's input in G_2 is x_1 "

Analyzing $val(G^2)$

- $\Pr[\text{Win } G_1] = \Pr[x_1 = y_2] = 1/2.$
- ▶ $\Pr[\text{Win } G_2 | \text{Win } G_1] = \Pr[\text{Win } G_2 | x_1 = y_2] = 1.$

Bob says:

Strategy for G^2

Alice says:

"Alice's input in *G*₁ is *x*₁" "Bob's input in *G*₂ is *x*₁"

Analyzing $val(G^2)$

- $\Pr[\text{Win } G_1] = \Pr[x_1 = y_2] = 1/2.$
- ▶ $\Pr[\text{Win } G_2 | \text{Win } G_1] = \Pr[\text{Win } G_2 | x_1 = y_2] = 1.$
- ▶ $\Pr[\text{Win } G^2] = \Pr[\text{Win } G_2 | \text{Win } G_1] \times \Pr[\text{Win } G_1] = \frac{1}{2}.$

Bob says:

Strategy for G^2

Alice says:

"Alice's input in *G*₁ is *x*₁" "Bob's input in *G*₂ is *x*₁"

Analyzing $val(G^2)$

- $\Pr[\text{Win } G_1] = \Pr[x_1 = y_2] = 1/2.$
- ▶ $\Pr[\text{Win } G_2 | \text{Win } G_1] = \Pr[\text{Win } G_2 | x_1 = y_2] = 1.$
- ▶ $\Pr[\text{Win } G^2] = \Pr[\text{Win } G_2|\text{Win } G_1] \times \Pr[\text{Win } G_1] = \frac{1}{2}.$
- ▶ Winning *G*² is correlated with winning *G*¹!

$$\operatorname{val}(G^2) = \operatorname{val}(G)$$

Bob says:

Parallel repetition of games

Non-product strategies makes the parallel repetition of games non-trivial!

- The difficulty of non-product strategies is pervasive
 - Additivity conjectures in quantum information
 - Hardness amplification of proof systems
 - Direct sum/product theorems in complexity theory

Parallel repetition of games

Parallel Repetition Theorem [Raz '95, Holenstein '07]

For a two-player game *G* with $val(G) = 1 - \varepsilon \ge 1/2$,

$$\operatorname{val}(G^n) = (1 - \varepsilon^3)^{\Omega(n/s)}.$$

where s is length of players' answers.

Parallel repetition of games

Parallel Repetition Theorem [Raz '95, Holenstein '07]

For a two-player game *G* with $val(G) = 1 - \varepsilon \ge 1/2$,

$$\operatorname{val}(G^n) = (1 - \varepsilon^3)^{\Omega(n/s)}.$$

where *s* is length of players' answers.

Two major open questions since then:

Does Raz's parallel repetition theorem extend to

- 1. More than two players?
- 2. Entangled players?

Answers known for special classes of games.

Quantum parallel repetition

- XOR games [Cleve, et al. '08]
- Unique games [Kempe-Regev-Toner '08]
- Free games [Chailloux-Scarpa '14, Jain-Pereszlényi-Yao '14, Chung-Wu-Y.
 '15]
- Projection games [Dinur-Steurer-Vidick '14]
- Multiplayer parallel repetition
 - Free games [Chung-Wu-Y. '15]

Answers known for special classes of games.

Quantum parallel repetition

- XOR games [Cleve, et al. '08]
- Unique games [Kempe-Regev-Toner '08]
- Free games [Chailloux-Scarpa '14, Jain-Pereszlényi-Yao '14, Chung-Wu-Y.
 '15]
- Projection games [Dinur-Steurer-Vidick '14]
- Multiplayer parallel repetition
 - Free games [Chung-Wu-Y. '15]

General case is still wide open!

For the purposes of gap amplification, a completely general parallel repetition theorem is **unnecessary**.

For the purposes of gap amplification, a completely general parallel repetition theorem is **unnecessary**.

▶ Raz's Parallel Repetition Theorem: $G \rightarrow G^n$ performs gap amplification for 2-player classical games.

For the purposes of gap amplification, a completely general parallel repetition theorem is **unnecessary**.

► Raz's Parallel Repetition Theorem: G → Gⁿ performs gap amplification for 2-player classical games.

We present the anchoring transformation:

$$G \to G_{\perp} \to G_{\perp}^n$$

For all G, G_{\perp} is an equivalent game that obeys quantum and multiplayer parallel repetition theorems.

For the purposes of gap amplification, a completely general parallel repetition theorem is **unnecessary**.

▶ Raz's Parallel Repetition Theorem: $G \rightarrow G^n$ performs gap amplification for 2-player classical games.

We present the anchoring transformation:

$$G \to G_{\perp} \to G_{\perp}^n$$

For all G, G_{\perp} is an equivalent game that obeys quantum and multiplayer parallel repetition theorems.

Technique of *changing the game* for gap amplification is inspired by [Feige-Kilian '94].

Games and parallel repetition

Feige's Counterexample

The anchoring transformation and our results

Proof ideas

- A two player game G can be viewed as a graph game.
- ► (x, y) ~ µ is a uniformly random edge from a bipartite graph.

 μ

- A two player game G can be viewed as a graph game.
- ► (x, y) ~ µ is a uniformly random edge from a bipartite graph.

 μ

G → G_⊥: Add anchor questions, and connect all other questions to them.

- G → G_⊥: Add anchor questions, and connect all other questions to them.
 - Add enough anchor edges so that they form a (small) constant fraction of the total number of edges (say 1/100).

- G → G_⊥: Add anchor questions, and connect all other questions to them.
 - Add enough anchor edges so that they form a (small) constant fraction of the total number of edges (say 1/100).

- G → G_⊥: Add anchor questions, and connect all other questions to them.
 - Add enough anchor edges so that they form a (small) constant fraction of the total number of edges (say 1/100).

- $G \to G_{\perp}$: Add anchor questions, and connect all other questions to them.
 - Add enough anchor edges so that they form a (small) constant fraction of the total number of edges (say 1/100).
- If either player receives "⊥", then players automatically win.
 Otherwise, the referee checks according to *G*.

Anchored games

G: *k*-player game with question distribution μ .

In G_{\perp} :

- Referee samples question according to µ.
- With probability α, each player's question independently replaced with anchor question "⊥" (α is called the probability of anchoring).
- ▶ If any player receives "⊥", players win automatically.
- ▶ Otherwise, referee checks answers according to *G*.

Anchored games

G: k-player game with question distribution μ .

In G_{\perp} :

- Referee samples question according to µ.
- With probability α, each player's question independently replaced with anchor question "⊥" (α is called the probability of anchoring).
- ▶ If any player receives "⊥", players win automatically.
- ▶ Otherwise, referee checks answers according to *G*.

$$\operatorname{val}(G_{\perp}) = p_{\alpha} \cdot \operatorname{val}(G) + (1 - p_{\alpha})$$

$$\operatorname{val}^{\bigstar}(G_{\perp}) = p_{\alpha} \cdot \operatorname{val}^{\bigstar}(G) + (1 - p_{\alpha})$$

 $p_{\alpha} = (1 - \alpha)^k$

Our results

Theorem: Multiplayer parallel repetition

If *G* is a *k*-player game with $val(G) = 1 - \varepsilon$, then

$$\operatorname{val}(G_{\perp}^n) = (1 - \varepsilon^3)^{\Omega(n/s)}.$$

Our results

Theorem: Multiplayer parallel repetition

If *G* is a *k*-player game with $val(G) = 1 - \varepsilon$, then

$$\operatorname{val}(G_{\perp}^n) = (1 - \varepsilon^3)^{\Omega(n/s)}.$$

Theorem: Quantum parallel repetition

If *G* is a two-player game with $val^*(G) = 1 - \delta$, then

 $\operatorname{val}^{\star}(G^n_{\perp}) = (1 - \delta^8)^{\Omega(n/s)}.$

s denotes answer lengths of the players.

Applications: Testing non-locality

- ► Greenberger-Horne-Zeilinger (GHZ) game
 - Three players
 - ▶ val(*GHZ*) = 3/4
 - ▶ val[★](*GHZ*) = 1

Applications: Testing non-locality

- Greenberger-Horne-Zeilinger (GHZ) game
 - Three players
 - ▶ val(*GHZ*) = 3/4
 - ▶ val*(GHZ) = 1

Using our multiplayer parallel repetition theorem:

- val^{*}(GHZⁿ_{\perp}) = 1
- val(GHZⁿ_{\perp}) = $e^{-\Omega(n)}$.

Applications: Complexity theory

 Suppose it is NP-hard (or QMA-hard) to distinguish between: given G,

► val[★](G) <
$$1 - \delta$$
.

Applications: Complexity theory

- Suppose it is NP-hard (or QMA-hard) to distinguish between: given G,
 - val[★](G) = 1, or
 - ► val[★](G) < 1δ .
- Using our quantum parallel repetition theorem: Then for all ε > 0 it is NP-hard (or QMA-hard) to distinguish between: given G
 - ▶ val[★](G) = 1
 - $\operatorname{val}^{\bigstar}(G) = \varepsilon$.

Games and parallel repetition

Feige's Counterexample

The anchoring transformation and our results

Proof ideas

Why does anchoring help?

An anchored game G_{\perp} is *easier* than *G*. How could analyzing G_{\perp}^{n} be helpful?

Why does anchoring help?

An anchored game G_{\perp} is *easier* than *G*. How could analyzing G_{\perp}^{n} be helpful?

Recall that the difficulty comes from non-product strategies.

- Strategies try to correlate winning in one round with winning in other rounds.
- E.g., Alice's answer for G_1 can depend on her question in G_2 .

Why does anchoring help?

An anchored game G_{\perp} is *easier* than *G*. How could analyzing G_{\perp}^{n} be helpful?

Recall that the difficulty comes from non-product strategies.

- Strategies try to correlate winning in one round with winning in other rounds.
- E.g., Alice's answer for G_1 can depend on her question in G_2 .

Intuition: Anchor questions randomly "disrupt" careful coordination of players!

- ▶ E.g., if Alice's question in G_2 is "⊥", she cannot use it to play G_1 .
- ▶ But Bob doesn't know she received " \perp " in G_2 !

Proof strategy

Proof by contradiction:

Proof strategy

Proof by contradiction: If $val^*(G^n)$ is too large

(i.e. supergood),
Proof by contradiction: If $val^*(G^n)$ is too large (i.e. *supergood*), then we get a strategy for *G* with success probability greater than $val^*(G)$.

Proof by contradiction: If $val^*(G^n)$ is too large (i.e. *supergood*), then we get a strategy for *G* with success probability greater than $val^*(G)$. **Contradiction**.

Fix a supergood strategy for G^n .

- Entangled state: $|\psi\rangle$
- For all $\mathbf{x} = (x_1, \dots, x_n)$, Alice uses POVM $\{A_{\mathbf{x}}(\mathbf{a})\}_{\mathbf{a}}$.
- ▶ For all $\mathbf{y} = (y_1, \dots, y_n)$, Bob uses POVM $\{B_{\mathbf{y}}(\mathbf{b})\}_{\mathbf{b}}$.

Fix a supergood strategy for G^n .

- Entangled state: $|\psi\rangle$
- For all $\mathbf{x} = (x_1, \dots, x_n)$, Alice uses POVM $\{A_{\mathbf{x}}(\mathbf{a})\}_{\mathbf{a}}$.
- For all $\mathbf{y} = (y_1, \dots, y_n)$, Bob uses POVM $\{B_{\mathbf{y}}(\mathbf{b})\}_{\mathbf{b}}$.

Claim: If $\operatorname{val}^*(G^n) \gg \operatorname{val}^*(G)^n$, there exist many *i* such that

 $\Pr[\mathsf{Win} \ G_i | \mathsf{Win} \ G_1, \dots, G_{i-1}] > \mathsf{val}^{\star}(G) + \delta.$

Fix a supergood strategy for G^n .

- Entangled state: $|\psi\rangle$
- For all $\mathbf{x} = (x_1, \dots, x_n)$, Alice uses POVM $\{A_{\mathbf{x}}(\mathbf{a})\}_{\mathbf{a}}$.
- For all $\mathbf{y} = (y_1, \dots, y_n)$, Bob uses POVM $\{B_{\mathbf{y}}(\mathbf{b})\}_{\mathbf{b}}$.

Claim: If val^{*}(G^n) \gg val^{*}(G^n), there exist many *i* such that

 $\Pr[\mathsf{Win} \ G_i | \mathsf{Win} \ G_1, \dots, G_{i-1}] > \mathsf{val}^{\star}(G) + \delta.$

Goal: Alice and Bob try to simulate playing G_i conditioned on winning games G_1, \ldots, G_{i-1} .

Strategy for G_i:

- 1. Alice gets x_i , Bob gets y_i .
- 2. Using local operations Alice and Bob generate the entangled state $|\Phi_{x_i,y_i}\rangle$.
- 3. Alice and Bob measure the state to obtain answers a_i and b_i .

Strategy for G_i:

- 1. Alice gets x_i , Bob gets y_i .
- 2. Using local operations Alice and Bob generate the entangled state $|\Phi_{x_i,y_i}\rangle$.
- 3. Alice and Bob measure the state to obtain answers a_i and b_i .

Intuition: The state $|\Phi_{x_i,y_i}\rangle$ represents the behavior of Alice and Bob in G^n conditioned on winning games G_1, \ldots, G_{i-1} and inputs (x_i, y_i) .

Imagine the following experiment: Alice and Bob play G^n using the optimal entangled strategy, but their inputs $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{y} = (y_1, ..., y_n)$ are in **superposition**.

Imagine the following experiment: Alice and Bob play G^n using the optimal entangled strategy, but their inputs $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{y} = (y_1, ..., y_n)$ are in superposition.

Initially, the state of Alice and Bob is

$$|\Phi\rangle = \sum_{\mathbf{x},\mathbf{y}} \sqrt{\mu(\mathbf{x},\mathbf{y})} \, \left|\mathbf{x}\rangle \otimes \left|\psi\right\rangle \otimes \left|\mathbf{y}\right\rangle$$

Recall that $\mu(\mathbf{x}, \mathbf{y}) = \mu(x_1, y_1) \times \cdots \times \mu(x_n, y_n)$.

Imagine the following experiment: Alice and Bob play G^n using the optimal entangled strategy, but their inputs $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{y} = (y_1, ..., y_n)$ are in **superposition**.

Controlled by their question registers, they apply their measurements, and coherently store their answers.

$$|\Phi\rangle = \sum_{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}} \sqrt{\mu(\mathbf{x},\mathbf{y})} |\mathbf{x}\rangle |\mathbf{a}\rangle \otimes |\psi_{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}}\rangle \otimes |\mathbf{y}\rangle |\mathbf{b}\rangle$$

$$|\psi_{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}}\rangle = \left(\sqrt{A_{\mathbf{x}}(\mathbf{a})} \otimes \sqrt{B_{\mathbf{y}}(\mathbf{b})}\right) |\psi\rangle.$$

Imagine the following experiment: Alice and Bob play G^n using the optimal entangled strategy, but their inputs $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{y} = (y_1, ..., y_n)$ are in **superposition**.

After conditioning the state on winning G_1, \ldots, G_{i-1} and (x_i, y_i) we have

$$\begin{split} |\Phi_{x_i,y_i}\rangle \propto \sum_{\substack{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}:\\V(x_j,y_j,a_j,b_j)=1 \ \forall j < i\\x_i,y_i}} \sqrt{\mu(\mathbf{x},\mathbf{y})} \ |\mathbf{x}\rangle |\mathbf{a}\rangle \otimes |\psi_{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}}\rangle \otimes |\mathbf{y}\rangle |\mathbf{b}\rangle \end{split}$$

In other words: $|\Phi_{x_i,y_i}\rangle$ is the *post-measurement state* of Alice and Bob in the game G^n , conditioned on questions (x_i, y_i) and the having won games G_1, \ldots, G_{i-1} .

$$\begin{split} |\Phi_{x_i,y_i}\rangle \propto \sum_{\substack{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}:\\V(x_j,y_j,a_j,b_j)=1 \;\forall j < i\\x_i,y_i}} \sqrt{\mu(\mathbf{x},\mathbf{y})} \; |\mathbf{x}\rangle |\mathbf{a}\rangle \otimes |\psi_{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}}\rangle \otimes |\mathbf{y}\rangle |\mathbf{b}\rangle \end{split}$$

Suppose Alice and Bob can prepare $|\Phi_{x_i,y_i}\rangle$ when given questions (x_i,y_i) .

$$\begin{split} |\Phi_{x_i,y_i}\rangle \propto \sum_{\substack{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}:\\V(x_j,y_j,a_j,b_j)=1 \,\forall j < i\\x_i,y_i}} \sqrt{\mu(\mathbf{x},\mathbf{y})} \, |\mathbf{x}\rangle |\mathbf{a}\rangle \otimes |\psi_{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}}\rangle \otimes |\mathbf{y}\rangle |\mathbf{b}\rangle \end{split}$$

Suppose Alice and Bob can prepare $|\Phi_{x_i,y_i}\rangle$ when given questions (x_i, y_i) . Then if Alice and Bob measure a_i and b_i , the answers will win with probability close to

 $\Pr[\mathsf{Win} G_i | \mathsf{Win} G_1, \dots, G_{i-1}] > \mathsf{val}^{\star}(G) + \delta.$

$$\begin{split} |\Phi_{x_i,y_i}\rangle \propto \sum_{\substack{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}:\\V(x_j,y_j,a_j,b_j)=1 \,\forall j < i\\x_i,y_i}} \sqrt{\mu(\mathbf{x},\mathbf{y})} \, |\mathbf{x}\rangle |\mathbf{a}\rangle \otimes |\psi_{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}}\rangle \otimes |\mathbf{y}\rangle |\mathbf{b}\rangle \end{split}$$

Suppose Alice and Bob can prepare $|\Phi_{x_i,y_i}\rangle$ when given questions (x_i, y_i) . Then if Alice and Bob measure a_i and b_i , the answers will win with probability close to

 $\Pr[\mathsf{Win} G_i | \mathsf{Win} G_1, \dots, G_{i-1}] > \mathsf{val}^{\star}(G) + \delta.$

Contradiction.

$$\begin{split} |\Phi_{x_i,y_i}\rangle \propto \sum_{\substack{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}:\\V(x_j,y_j,a_j,b_j)=1 \,\forall j < i\\x_i,y_i}} \sqrt{\mu(\mathbf{x},\mathbf{y})} \, |\mathbf{x}\rangle |\mathbf{a}\rangle \otimes |\psi_{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}}\rangle \otimes |\mathbf{y}\rangle |\mathbf{b}\rangle \end{split}$$

• It's not clear how to locally sample $|\Phi_{x_i,y_i}\rangle$!

$$\begin{split} |\Phi_{x_i,y_i}\rangle &\propto \sum_{\substack{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}:\\V(x_j,y_j,a_j,b_j)=1 \,\forall j < i}} \sqrt{\mu(\mathbf{x},\mathbf{y})} \, |\mathbf{x}\rangle |\mathbf{a}\rangle \otimes |\psi_{\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}}\rangle \otimes |\mathbf{y}\rangle |\mathbf{b}\rangle \end{split}$$

- It's not clear how to locally sample $|\Phi_{x_i,v_i}\rangle$!
- This is the primary challenge of proving a quantum parallel repetition theorem.

Anchoring our way to parallel repetition

We carefully define $|\Phi_{x_i,y_i}\rangle$ so that

- 1. it allows Alice and Bob to win G_i with high probability, and
- 2. is jointly sampleable by the players with high fidelity.

Anchoring our way to parallel repetition

We carefully define $|\Phi_{x_i,y_i}\rangle$ so that

- 1. it allows Alice and Bob to win G_i with high probability, and
- 2. is jointly sampleable by the players with high fidelity.

Key Lemma

On average over $(x_i, y_i) \sim \mu$,

$$|\Phi_{x_i,y_i}\rangle \approx U_{x_i} \otimes V_{y_i} |\Phi_{\perp,\perp}\rangle$$

for some unitaries U_{x_i} , V_{y_i} .

Ingredients in our Key Lemma

We bound

 $I(X_i; B)_{\Phi} \leq \varepsilon$ and $I(Y_i; A)_{\Phi} \leq \varepsilon$

- By Pinsker, this implies that Bob's side of entanglement in Φ is nearly independent of X_i, and Alice's side of Φ is nearly independent of Y_i.
- (The Church of the Larger Hilbert Space) Uhlmann's Theorem implies there exist unitaries U_{xi} and V_{vi} so that

 $|\Phi_{x_i,\perp}\rangle \approx U_{x_i} \otimes \mathbb{I}|\Phi_{\perp,\perp}\rangle$ and $|\Phi_{\perp,y_i}\rangle \approx \mathbb{I} \otimes V_{y_i}|\Phi_{\perp,\perp}\rangle$

► Using the fact that the "⊥" questions anchor all other questions, we can stitch together these two statements to get

$$|\Phi_{x_i,y_i}\rangle\approx U_{x_i}\otimes V_{y_i}|\Phi_{\perp,\perp}\rangle$$

Theorem: Quantum parallel repetition

If *G* is a two-player game with $val^*(G) = 1 - \delta$, then

$$\operatorname{val}^{\star}(G_{\perp}^{n}) = (1 - \delta^{8})^{\Omega(n/s)}$$

Conclusion

What we showed: We give the first gap amplification results for general games in the quantum and multiplayer settings.

Future directions

- Other applications of anchoring?
 - Direct sums in communication complexity?
 - Additivity questions in quantum information
- Prove a general quantum parallel repetition theorem
 - First, prove that $\operatorname{val}^{\star}(G^n)$ goes to 0 as $n \to \infty$ for all G when $\operatorname{val}^{\star}(G) < 1$.
- Prove a general multiplayer parallel repetition theorem

Conclusion

What we showed: We give the first gap amplification results for general games in the quantum and multiplayer settings.

Future directions

- Other applications of anchoring?
 - Direct sums in communication complexity?
 - Additivity questions in quantum information
- Prove a general quantum parallel repetition theorem
 - First, prove that $\operatorname{val}^{\star}(G^n)$ goes to 0 as $n \to \infty$ for all G when $\operatorname{val}^{\star}(G) < 1$.
- Prove a general multiplayer parallel repetition theorem

Thank you! Any questions?