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» Alice answers with a, Bob answers with b
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Two player games

Game G: distribution u(x,y), predicate V(x,v,a,b)

» Classical value: val(G) = maximum
winning probability when Alice and Bob’s
strategies are local (i.e. no entanglement).

» Can assume strategies are
deterministic.

» Entangled value: val*(G) = maximum

winning probability when Alice and Bob are
quantumly entangled.

» Entanglement can help: There exist G with
val(G) < val*(G) (e.g. CHSH).



Why games?

Theoretical Computer Science

» Local checking of proofs (classical and quantum), hardness of constraint
satisfaction problems, cryptography,...

Testing non-locality in quantum mechanics
> Bell inequality violations correspond to val*(G) > val(G)

» The recent Loophole-Free Bell Test by [Hensen, et al.] is a two player game
in action

Device independent information processing

» Certified random number generation, QKD, delegated quantum
computation,...
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v

Consider the Greenberger-Horne-Zeilinger (GHZ) game
> Three players
> val(GHZ)=3/4
» val*(GHZ) =1

\4

GHZ game was used in one of the earliest tests of quantum non-locality.
» Testing non-locality using the GHZ game:

» Lose: Players are not using optimal quantum strategy.
» Win: Maybe players are using a quantum strategy.

v

Want: Transform GHZ into a game G where

> val*(G) =1
> val(G) < 0.01

v

This is called gap amplification.



Testing non-locality in one round

Idea: Play many instances of the GHZ game in parallel.

GHZ": Alice, Bob and Charlie receive inputs for n GHZ games
simultaneously and have to win all of them.



Testing non-locality in one round

Idea: Play many instances of the GHZ game in parallel.

GHZ": Alice, Bob and Charlie receive inputs for n GHZ games
simultaneously and have to win all of them.

> val*(GHZ") = 1.
> Play each GHZ game independently using entangled strategy.



Testing non-locality in one round

Idea: Play many instances of the GHZ game in parallel.

GHZ": Alice, Bob and Charlie receive inputs for n GHZ games

simultaneously and have to win all of them.

> val*(GHZ") = 1.
> Play each GHZ game independently using entangled strategy.

?

> val(GHZ") < (3/4)"
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Parallel repetition of games

In G", the referee plays n independent
instances of G simultaneously with Alice and

Bob.
> Referee samples i.i.d. (x1,v1),..., (X, vn) ~ ¢
> Alice gets (x1,...,x,), Bob gets (y1,...,v;)

> Alice and Bob win G" if they win all n

instances of G.

The Parallel Repetition Question: How does val(G") relate to

val(G) and n?
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fast in n.
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Parallel repetition of games

» In 1995, Ran Raz proved the Parallel Repetition Theorem

» For two player games G with val(G) < 1, val(G") decays exponentially
fast in n.
> Proof was highly non-trivial; one of the first applications of information

theory to complexity theory.
» Open questions: Does the Parallel Repetition Theorem hold for:
> Entangled games?
> Multiplayer games?
» Our result: We change the problem by solving the gap
amplification problem for entangled games and multiplayer games
by introducing a technique called anchored parallel repetition.
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Parallel repetition of games

» How does val(G") compare to val(G)?

» Trivial bound: val(G)" < val(G").

» “Theorem”: val(G") = val(G)".
> “Proof”: The instances of G are independent of each other, and each
instance cannot be won with probability greater than val(G), so the
maximum success probability is at most val(G)".

val(G") = val(G)" in general!

Next: Feige’s Counterexample G where 3 =val(G) = val(G?).
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Feige’s Counterexample

> Alice and Bob get uniform and independent bits x,y € {0, 1}.

» Alice and Bob both output a statement of the form
“[Alice/Bob]’s input bit is [0/1]”

» Players win iff their statements agree and are true.
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Feige’s Counterexample

> Alice and Bob get uniform and independent bits x,y € {0, 1}.
» Alice and Bob both output a statement of the form

“[Alice/Bob]’s input bit is [0/1]”

» Players win iff their statements agree and are true.

Examples
Alice gets x = 0, Bob gets y = 1.
> Alice says “Alice’s input bit is 0”, Bob says “Alice’s input bit is 0”. v

» Alice says “Alice’s input bit is 0”, Bob says “Bob’s input bit is 1”. X

[ val(G)=1/2 ]
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Feige’s Counterexample

The repeated game G2

> Alice gets (x1,x7) € {0,1}2

> Bob gets (y1,32) € (0,1}

» Alice and Bob have to output two statements of the form:

“[Alice/Bob]’s input bit in G; is [0/1]”
“[Alice/Bob]’s input bit in G, is [0/1]”
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Feige’s Counterexample

The repeated game G2

> Alice gets (x1,x;) € {0,1}?

> Bob gets (y1,2) €{0,1}?

» Alice and Bob have to output two statements of the form:
“[Alice/Bob]’s input bit in G; is [0/1]”
“[Alice/Bob]’s input bit in G, is [0/1]”

> Would expect val(G?) = val(G)? = 1.
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Feige’s Counterexample
Strategy for G2

Alice says:

“Alice’s input in G; is x”
“Bob’s input in G, is x1”

Bob says:

“Alice’s input in Gy is y,”
“Bob’s input in G; is v,”
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Feige’s Counterexample

Strategy for G2

Alice says: Bob says:
“Alice’s input in G; is x” “Alice’s input in Gy is y,”
“Bob’s input in G, is x1” “Bob’s input in G; is v,”

Analyzing val(G2)

» Pr[Win G1]=Pr[x; =] =1/2.
> Pr[Win G2 |W|n Gl] = Pr[Win G2 |x1 = yz] =1.
> Pr[Win G2] = Pr[Win G,|Win G1]x Pr[Win G{] = 1.

» Winning G, is correlated with winning G;!

[ val(G?) = val(G)
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Parallel repetition of games

Non-product strategies makes the parallel repetition of
games non-trivial!

» The difficulty of non-product strategies is pervasive
> Additivity conjectures in quantum information
» Hardness amplification of proof systems
> Direct sum/product theorems in complexity theory

16



Parallel repetition of games

For a two-player game G with val(G) =1—-¢ > 1/2,

val(G") = (1 - £3)209),

where s is length of players’ answers.
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Parallel repetition of games
Parallel Repetition Theorem [Raz ’95, Holenstein '07]

For a two-player game G with val(G) =1-¢ > 1/2,
val(G") = (1 - %)),
where s is length of players’ answers.

Two major open questions since then:
Does Raz’s parallel repetition theorem extend to

1. More than two players?

2. Entangled players?

17



Answers known for special classes of games.

» Quantum parallel repetition

v

XOR games [Cleve, et al. ’08]
> Unique games [Kempe-Regev-Toner ’08]

v

Free games [Chailloux-Scarpa ’14, Jain-Pereszlényi-Yao 14, Chung-Wu-Y.
'15]

v

Projection games [Dinur-Steurer-Vidick ’14]
» Multiplayer parallel repetition

> Free games [Chung-Wu-Y. ’15]
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Answers known for special classes of games.

» Quantum parallel repetition

v

XOR games [Cleve, et al. ’08]
> Unique games [Kempe-Regev-Toner ’08]

v

Free games [Chailloux-Scarpa ’14, Jain-Pereszlényi-Yao 14, Chung-Wu-Y.
'15]

v

Projection games [Dinur-Steurer-Vidick ’14]
» Multiplayer parallel repetition

> Free games [Chung-Wu-Y. ’15]

General case is still wide open!
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Changing the problem

For the purposes of gap amplification, a completely general parallel
repetition theorem is unnecessary.

» Raz’s Parallel Repetition Theorem: G — G" performs gap
amplification for 2-player classical games.

We present the anchoring transformation:
n
G—->G, -Gl

For all G, G, is an equivalent game that obeys quantum and
multiplayer parallel repetition theorems.

» Technique of changing the game for gap amplification is inspired by
[Feige-Kilian *94].
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Anchoring transformation

» A two player game G can be viewed
as a graph game.

> (x,v) ~ p is a uniformly random edge
from a bipartite graph.
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as a graph game.

> (x,v) ~ p is a uniformly random edge
from a bipartite graph.

ONONE

OXO,

OO0 R

O
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Anchoring transformation

» G — G, : Add anchor questions,
and connect all other questions to
them.

> Add enough anchor edges so
that they form a (small)
constant fraction of the total
number of edges (say 1/100).

> If either player receives “_L”, then
players automatically win.
Otherwise, the referee checks
according to G.

22



Anchored games
G: k-player game with question distribution p.
InG,:
» Referee samples question according to .

» With probability a, each player’s question independently replaced with
anchor question “1” (« is called the probability of anchoring).

> If any player receives “L”, players win automatically.

» Otherwise, referee checks answers according to G.
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Anchored games

G: k-player game with question distribution p.

InG,:

» Referee samples question according to .

» With probability a, each player’s question independently replaced with

anchor question “1” (« is called the probability of anchoring).

> If any player receives “L”, players win automatically.

» Otherwise, referee checks answers according to G.

val(G,)
1.0

0.8
0.6
0.4

0.2

val(G, ) =py -val(G) + (1 - pg)
val*(G ) = pa - val*(G) + (1 - pg)

pa=(1 _a)k

0.2

0.4

0.6

0.8

1.0vaI(G)
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Our results

If G is a k-player game with val(G) = 1 — ¢, then

val(G") = (1 - 3)Q0/s),
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Our results

If G is a k-player game with val(G) = 1 — ¢, then

val(G") = (1 - 3)Q0/s),

If G is a two-player game with val*(G) = 1 - 6, then

val*(Gl) = (1 - &%),

s denotes answer lengths of the players.
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Applications: Testing non-locality

» Greenberger-Horne-Zeilinger (GHZ) game
> Three players
> val(GHZ) = 3/4
» val*(GHZ) =1
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Applications: Testing non-locality

» Greenberger-Horne-Zeilinger (GHZ) game
> Three players
> val(GHZ) = 3/4
» val*(GHZ) =1

» Using our multiplayer parallel repetition theorem:

» val*(GHZ") =1
> val(GHZ" ) = e Q).
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Applications: Complexity theory

» Suppose it is NP-hard (or QMA-hard) to distinguish between: given
G,
> val*(G)=1, or
> val*(G)<1-6.
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Applications: Complexity theory

» Suppose it is NP-hard (or QMA-hard) to distinguish between: given
G,
> val*(G)=1, or
> val*(G)<1-6.
» Using our quantum parallel repetition theorem: Then for all ¢ > 0
it is NP-hard (or QMA-hard) to distinguish between: given G
> val*(G) =1

> val*(G) =e.
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Proof ideas
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helpful?
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Why does anchoring help?

An anchored game G is easier than G. How could analyzing G’} be
helpful?

Recall that the difficulty comes from non-product strategies.

» Strategies try to correlate winning in one round with winning in
other rounds.

» E.g., Alice’s answer for G; can depend on her question in G,.

Intuition: Anchor questions randomly “disrupt” careful coordination
of players!

» E.g., if Alice’s question in G, is “L”, she cannot use it to play G;.

» But Bob doesn’t know she received “1” in G,!

28



Proof strategy

Proof by contradiction:
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Proof strategy

Proof by contradiction: If val*(G") is too large
(i.e. supergood), then we get a strategy for G
with success probability greater than val*(G).

Contradiction.
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Proof strategy

Fix a supergood strategy for G".

» Entangled state: |¢)

» For all x = (xq,...,x,), Alice uses POVM {A(a)},.

> Forally = (yy,...,9,), Bob uses POVM {By(b)}}.
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Proof strategy

Fix a supergood strategy for G".

» Entangled state: [¢)

» For all x = (xq,...,x,), Alice uses POVM {A(a)},.
> Forally = (yy,...,9,), Bob uses POVM {By(b)}}.

Claim: If val*(G") > val*(G)", there exist many i such that

Pr[Win G; |Win Gy,...,G;_1] > val*(G) + &.

Goal: Alice and Bob try to simulate playing G; conditioned on
winning games Gy,...,G;_1.

30



Proof strategy

Strategy for G;:
1. Alice gets x;, Bob gets y;.

2. Using local operations Alice and Bob generate the entangled state
|cDXi,yi >

3. Alice and Bob measure the state to obtain answers 4; and b;.
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Proof strategy
Strategy for G;:
1. Alice gets x;, Bob gets y;.

2. Using local operations Alice and Bob generate the entangled state
|q)x,-,y,- >

3. Alice and Bob measure the state to obtain answers 4; and b;.

Intuition: The state |q)xf,yi> represents the behavior of Alice and Bob
in G" conditioned on winning games G;,..., G;_; and inputs (x;,v;).

31



What is |D, ,)?

Imagine the following experiment: Alice and Bob play G" using the optimal
entangled strategy, but their inputs x = (x1,...,x,) and y = (v1,...,y,) are in
superposition.
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What is |D, ,)?

Imagine the following experiment: Alice and Bob play G" using the optimal
entangled strategy, but their inputs x = (x1,...,x,) and y = (v1,...,y,) are in
superposition.

Initially, the state of Alice and Bob is

[©) =) \uxy) Kelp)oly)
25/

Recall that u(x,y) = p(x1,v1) x -+ X p(x, v)-
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What is |D, ,)?

Imagine the following experiment: Alice and Bob play G" using the optimal
entangled strategy, but their inputs x = (x1,...,x,) and y = (v1,...,y,) are in
superposition.

Controlled by their question registers, they apply their measurements, and

coherently store their answers.

@) = 2 HExY) %)) @[y y,a0) @ y)Ib)

x,y,a,b

[Pxyab) = (VAx@ @ By (b)) 1)
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What is |D, ,)?

Imagine the following experiment: Alice and Bob play G" using the optimal
entangled strategy, but their inputs x = (x1,...,x,) and y = (v1,...,y,) are in

superposition.

After conditioning the state on winning G1,..., G;_1 and (x;,y;) we have

(D ) o ) VHEY) [01a) @ thx y,0,6) ® [y)Ib)

x,y,a,b:
V(x]-,yj,a]-,b]-):l V]<l
Xi Yi

In other words: |q)x,vyi> is the post-measurement state of Alice and Bob in
the game G, conditioned on questions (x;,y;) and the having won games

G1,..,Gj_1-

32



Why is |D, ) useful?

P ;)

) H(x,y) (X))@ [y y,06) @1y)Ib)
X,y,a,b:
V(Xj,y]‘,a]‘,bj):1 Vj<i
XirYi

Suppose Alice and Bob can prepare |¢'xi,yi> when given questions

(xi,9i)-
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(D, p,) o ) H(xy) [0la) ® x,y,ab) @ 1y)Ib)
X,y,a,b:
V(X]',y]‘,a]‘,b]'):1 Vj<i
XirYi

Suppose Alice and Bob can prepare |¢'xi,yi> when given questions
(x;,9;). Then if Alice and Bob measure a; and b;, the answers will win
with probability close to

Pr[Win G; |Win Gy,...,G;_;] > val*(G) + 9.
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X,y,a,b:
V(X]',y]‘,a]‘,b]'):1 Vj<i
XirYi

Suppose Alice and Bob can prepare |¢'xi,yi> when given questions
(x;,9;). Then if Alice and Bob measure a; and b;, the answers will win
with probability close to

Pr[Win G; |Win Gy,...,G;_;] > val*(G) + 9.

Contradiction.
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Why is |D, ) useful?

@y Y Juoy) WR)@lkyab) ®ly)b)

X,y,a,b:
V(Xj,y]‘,a]‘,bj):1 Vj<i
Xi,Yi

» It’s not clear how to locally sample |q)x,»sz>!
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Why is |D, ) useful?

(D ) o ) VHEY) [01a) @ [thx y,0,6) ® [y)Ib)

X,y,a,b:
V(X]',y]‘,a]‘,b]'):1 Vj<i
XirYi

» It’s not clear how to locally sample |q)x,»sz>!

» This is the primary challenge of proving a quantum parallel
repetition theorem.
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Anchoring our way to parallel repetition

We carefully define |®,, ,) so that
1. it allows Alice and Bob to win G; with high probability, and
2. is jointly sampleable by the players with high fidelity.

35



Anchoring our way to parallel repetition

We carefully define |®,, ,) so that
1. it allows Alice and Bob to win G; with high probability, and
2. is jointly sampleable by the players with high fidelity.

On average over (x;,v;) ~ p,
|q)xi,y,-> = le' ® Vyl |q)J_,J_>

for some unitaries U,,, vy,
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Ingredients in our Key Lemma

\4

We bound
I(X;;B)p < ¢ and I(Y;;A)p < ¢

\4

By Pinsker, this implies that Bob’s side of entanglement in @ is nearly
independent of X;, and Alice’s side of @ is nearly independent of Y;.

v

(The Church of the Larger Hilbert Space) Uhimann’s Theorem implies
there exist unitaries Uy, and V,, so that

|q)Xi,J_> ~ le' ®]I|q)J_,J_> and |(DJ_,}/1‘> ~I® Vyi |q)J_,J_>

v

Using the fact that the “_L” questions anchor all other questions, we can
stitch together these two statements to get

|(Dxiryi> ~ Uxi ® Vyi |(DJ-,J_>
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If G is a two-player game with val*(G) = 1 - 6, then

val*(GY) = (1-6%)20)
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Conclusion

What we showed: We give the first gap amplification results for
general games in the quantum and multiplayer settings.

Future directions
» Other applications of anchoring?
> Direct sums in communication complexity?
> Additivity questions in quantum information
» Prove a general quantum parallel repetition theorem
> First, prove that val*(G") goes to 0 as n — co for all G when

val*(G) < 1.

» Prove a general multiplayer parallel repetition theorem
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Conclusion

What we showed: We give the first gap amplification results for
general games in the quantum and multiplayer settings.

Future directions
» Other applications of anchoring?

> Direct sums in communication complexity?
> Additivity questions in quantum information

» Prove a general quantum parallel repetition theorem

> First, prove that val*(G") goes to 0 as n — co for all G when
val*(G) < 1.

» Prove a general multiplayer parallel repetition theorem

Thank you! Any questions?
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