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Two
player
games

Game G: distribution µ(x,y), predicate V (x,y,a,b)

▶ Referee samples questions (x,y) ∼ µ

▶ Alice gets x, Bob gets y

▶ Alice answers with a, Bob answers with b

▶ Players win iff V (x,y,a,b) = 1
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Two
player
games

Game G: distribution µ(x,y), predicate V (x,y,a,b)

▶ Classical
value: val(G) = maximum
winning probability when Alice and Bob’s
strategies are local (i.e. no entanglement).

▶ Can assume strategies are
deterministic.

▶ Entangled
value: val⋆(G) = maximum
winning probability when Alice and Bob are
quantumly
entangled.

▶ Entanglement
can
help: There exist G with
val(G) < val⋆(G) (e.g. CHSH).
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Why
games?
Theoretical
Computer
Science
▶ Local checking of proofs (classical and quantum), hardness of constraint

satisfaction problems, cryptography,...

Testing
non-locality
in
quantum
mechanics
▶ Bell inequality violations correspond to val⋆(G) > val(G)

▶ The recent Loophole-Free Bell Test by [Hensen, et al.] is a two player game
in action

Device
independent
information
processing
▶ Certified random number generation, QKD, delegated quantum

computation,...
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Testing
non-locality
in
one
round

▶ Consider the Greenberger-Horne-Zeilinger (GHZ) game

▶ Three players
▶ val(GHZ) = 3/4

▶ val⋆(GHZ) = 1

▶ GHZ game was used in one of the earliest tests of quantum non-locality.

▶ Testing non-locality using the GHZ game:

▶ Lose: Players are not using optimal quantum strategy.
▶ Win: Maybe players are using a quantum strategy.

▶ Want: Transform GHZ into a game G where

▶ val⋆(G) = 1

▶ val(G) ≤ 0.01

▶ This is called gap
amplification.
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Testing
non-locality
in
one
round
Idea: Play many instances of the GHZ game in parallel.

GHZn: Alice, Bob and Charlie receive inputs for n GHZ games
simultaneously and have to win all of them.

▶ val⋆(GHZn) = 1.

▶ Play each GHZ game independently using entangled strategy.

▶ val(GHZn)
?
≤ (3/4)n
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Parallel
repetition
of
games

In Gn, the referee plays n independent
instances of G simultaneously with Alice and
Bob.

▶ Referee samples i.i.d. (x1, y1), . . . , (xn, yn) ∼ µ

▶ Alice gets (x1, . . . ,xn), Bob gets (y1, . . . , yn)

▶ Alice and Bob win Gn if they win all n
instances of G.

The
Parallel
Repetition
Question: How does val(Gn) relate to
val(G) and n?
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Parallel
repetition
of
games

▶ In 1995, Ran Raz proved the Parallel
Repetition
Theorem
▶ For two player games G with val(G) < 1, val(Gn) decays exponentially

fast in n.

▶ Proof was highly non-trivial; one of the first applications of information
theory to complexity theory.

▶ Open
questions: Does the Parallel Repetition Theorem hold for:
▶ Entangled games?
▶ Multiplayer games?

▶ Our
result: We change the problem by solving the gap
amplification problem for entangled games and multiplayer games
by introducing a technique called anchored
parallel
repetition.
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Parallel
repetition
of
games

▶ How does val(Gn) compare to val(G)?

▶ Trivial
bound: val(G)n ≤ val(Gn).

▶ “Theorem”: val(Gn) = val(G)n.
▶ “Proof”: The instances of G are independent of each other, and each

instance cannot be won with probability greater than val(G), so the
maximum success probability is at most val(G)n.

val(Gn) , val(G)n in
general!

Next: Feige’s Counterexample G where 1
2 = val(G) = val(G2).
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Feige’s
Counterexample

▶ Alice and Bob get uniform and independent bits x,y ∈ {0,1}.

▶ Alice and Bob both output a statement of the form

“[Alice/Bob]’s
input
bit
is
[0/1]”

▶ Players win iff their statements agree and are true.

Examples
Alice gets x = 0, Bob gets y = 1.

▶ Alice says “Alice’s input bit is 0”, Bob says “Alice’s input bit is 0”.

▶ Alice says “Alice’s input bit is 0”, Bob says “Bob’s input bit is 1”.

val(G) = 1/2
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Feige’s
Counterexample
The
repeated
game G2

▶ Alice gets (x1,x2) ∈ {0,1}2

▶ Bob gets (y1, y2) ∈ {0,1}2

▶ Alice and Bob have to output two statements of the form:

“[Alice/Bob]’s
input
bit
in G1 is
[0/1]”
“[Alice/Bob]’s
input
bit
in G2 is
[0/1]”

▶ Would expect val(G2) = val(G)2 = 1
4 .
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Feige’s
Counterexample
Strategy
for G2

Alice
says:

“Alice’s
input
in G1 is x1”
“Bob’s
input
in G2 is x1”

Bob
says:

“Alice’s
input
in G1 is y2”
“Bob’s
input
in G2 is y2”

Analyzing val(G2)

▶ Pr[Win G1] = Pr[x1 = y2] = 1/2.

▶ Pr[Win G2 |Win G1] = Pr[Win G2 | x1 = y2] = 1.

▶ Pr[Win G2] = Pr[Win G2|Win G1]×Pr[Win G1] =
1
2 .

▶ Winning G2 is
correlated
with
winning G1!

val(G2) = val(G)
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Parallel
repetition
of
games

Non-product
 strategies makes the parallel repetition of
games non-trivial!

▶ The difficulty of non-product strategies is pervasive
▶ Additivity conjectures in quantum information
▶ Hardness amplification of proof systems
▶ Direct sum/product theorems in complexity theory

16



Parallel
repetition
of
games
Parallel
Repetition
Theorem [Raz ’95, Holenstein ’07]

For a two-player game G with val(G) = 1− ε ≥ 1/2,

val(Gn) = (1− ε3)Ω(n/s).

where s is length of players’ answers.

Two
major
open
questions
since
then:
Does Raz’s parallel repetition theorem extend to

1. More than two players?

2. Entangled players?
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Answers known for special classes of games.

▶ Quantum
parallel
repetition

▶ XOR games [Cleve, et al. ’08]
▶ Unique games [Kempe-Regev-Toner ’08]
▶ Free games [Chailloux-Scarpa ’14, Jain-Pereszlényi-Yao ’14, Chung-Wu-Y.

’15]
▶ Projection games [Dinur-Steurer-Vidick ’14]

▶ Multiplayer
parallel
repetition

▶ Free games [Chung-Wu-Y. ’15]

General case is still wide open!
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Changing
the
problem
For the purposes of gap amplification, a completely general parallel
repetition theorem is unnecessary.

▶ Raz’s Parallel Repetition Theorem: G→ Gn performs gap
amplification for 2-player classical games.

We present the anchoring
transformation:

G→ G⊥→ Gn⊥

For all G, G⊥ is an equivalent game that obeys quantum and
multiplayer parallel repetition theorems.

▶ Technique of changing
the
game for gap amplification is inspired by
[Feige-Kilian ’94].
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Anchoring
transformation

▶ A two player game G can be viewed
as a graph
game.

▶ (x,y) ∼ µ is a uniformly random edge
from a bipartite graph.
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Anchoring
transformation

▶ G→ G⊥: Add anchor
questions,
and connect all other questions to
them.

▶ Add enough anchor
edges so
that they form a (small)
constant fraction of the total
number of edges (say 1/100).

▶ If either player receives “⊥”, then
players automatically
win.
Otherwise, the referee checks
according to G.
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Anchored
games
G: k-player game with question distribution µ.

In G⊥:

▶ Referee samples question according to µ.

▶ With probability α, each player’s question independently replaced with
anchor question “⊥” (α is called the probability
of
anchoring).

▶ If any player receives “⊥”, players win automatically.

▶ Otherwise, referee checks answers according to G.

val(G⊥) = pα · val(G) + (1− pα)

val⋆(G⊥) = pα · val⋆(G) + (1− pα)

pα = (1−α)k

23



Anchored
games
G: k-player game with question distribution µ.

In G⊥:

▶ Referee samples question according to µ.

▶ With probability α, each player’s question independently replaced with
anchor question “⊥” (α is called the probability
of
anchoring).

▶ If any player receives “⊥”, players win automatically.

▶ Otherwise, referee checks answers according to G.

val(G⊥) = pα · val(G) + (1− pα)

val⋆(G⊥) = pα · val⋆(G) + (1− pα)

pα = (1−α)k

23



Our
results
Theorem: Multiplayer
parallel
repetition

If G is a k-player game with val(G) = 1− ε, then

val(Gn⊥) = (1− ε3)Ω(n/s).

Theorem: Quantum
parallel
repetition

If G is a two-player game with val⋆(G) = 1− δ, then

val⋆(Gn⊥) = (1− δ8)Ω(n/s).

s denotes answer lengths of the players.
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Applications: Testing
non-locality

▶ Greenberger-Horne-Zeilinger (GHZ) game
▶ Three players
▶ val(GHZ) = 3/4

▶ val⋆(GHZ) = 1

▶ Using
our
multiplayer
parallel
repetition
theorem:
▶ val⋆(GHZn⊥) = 1

▶ val(GHZn⊥) = e
−Ω(n).
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Applications: Complexity
theory

▶ Suppose it is NP-hard (or QMA-hard) to distinguish between: given
G,
▶ val⋆(G) = 1, or
▶ val⋆(G) < 1− δ.

▶ Using
our
quantum
parallel
repetition
theorem: Then for all ε > 0

it is NP-hard (or QMA-hard) to distinguish between: given G
▶ val⋆(G) = 1

▶ val⋆(G) = ε.
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Why
does
anchoring
help?
An anchored game G⊥ is easier than G. How could analyzing Gn⊥ be
helpful?

Recall that the difficulty comes from non-product strategies.

▶ Strategies try to correlate winning in one round with winning in
other rounds.

▶ E.g., Alice’s answer for G1 can depend on her question in G2.

Intuition: Anchor questions randomly “disrupt” careful coordination
of players!

▶ E.g., if Alice’s question in G2 is “⊥”, she cannot use it to play G1.

▶ But Bob doesn’t know she received “⊥” in G2!
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Proof
strategy

Proof
by
contradiction:

If val⋆(Gn) is too large
(i.e. supergood), then we get a strategy for G
with success probability greater than val⋆(G).
Contradiction.
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Proof
strategy
Fix a supergood strategy for Gn.

▶ Entangled state: |ψ⟩

▶ For all x = (x1, . . . ,xn), Alice uses POVM {Ax(a)}a.

▶ For all y = (y1, . . . , yn), Bob uses POVM {By(b)}b.

Claim: If val⋆(Gn)≫ val⋆(G)n, there exist many i such that

Pr[Win Gi |Win G1, . . . ,Gi−1] > val⋆(G) + δ.

Goal: Alice and Bob try to simulate playing Gi conditioned on
winning games G1, . . . ,Gi−1.
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Proof
strategy
Strategy
for Gi :

1. Alice gets xi , Bob gets yi .

2. Using local operations Alice and Bob generate the entangled state
|Φxi ,yi ⟩.

3. Alice and Bob measure the state to obtain answers ai and bi .

Intuition: The state |Φxi ,yi ⟩ represents the behavior of Alice and Bob
in Gn conditioned on winning games G1, . . . ,Gi−1 and inputs (xi , yi).

31



Proof
strategy
Strategy
for Gi :

1. Alice gets xi , Bob gets yi .

2. Using local operations Alice and Bob generate the entangled state
|Φxi ,yi ⟩.

3. Alice and Bob measure the state to obtain answers ai and bi .

Intuition: The state |Φxi ,yi ⟩ represents the behavior of Alice and Bob
in Gn conditioned on winning games G1, . . . ,Gi−1 and inputs (xi , yi).

31



What
is |Φxi ,yi⟩?
Imagine the following experiment: Alice and Bob play Gn using the optimal
entangled strategy, but their inputs x = (x1, . . . ,xn) and y = (y1, . . . , yn) are in
superposition.
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Imagine the following experiment: Alice and Bob play Gn using the optimal
entangled strategy, but their inputs x = (x1, . . . ,xn) and y = (y1, . . . , yn) are in
superposition.

Initially, the state of Alice and Bob is

|Φ⟩ =
∑
x,y

√
µ(x,y) |x⟩ ⊗ |ψ⟩ ⊗ |y⟩

Recall that µ(x,y) = µ(x1, y1)× · · · ×µ(xn, yn).
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What
is |Φxi ,yi⟩?
Imagine the following experiment: Alice and Bob play Gn using the optimal
entangled strategy, but their inputs x = (x1, . . . ,xn) and y = (y1, . . . , yn) are in
superposition.

Controlled by their question registers, they apply their measurements, and
coherently store their answers.

|Φ⟩ =
∑

x,y,a,b

√
µ(x,y) |x⟩|a⟩ ⊗ |ψx,y,a,b⟩ ⊗ |y⟩|b⟩

|ψx,y,a,b⟩ =
(√
Ax(a)⊗

√
By(b)

)
|ψ⟩.

32



What
is |Φxi ,yi⟩?
Imagine the following experiment: Alice and Bob play Gn using the optimal
entangled strategy, but their inputs x = (x1, . . . ,xn) and y = (y1, . . . , yn) are in
superposition.

After conditioning the state on winning G1, . . . ,Gi−1 and (xi , yi ) we have

|Φxi ,yi ⟩ ∝
∑

x,y,a,b:
V (xj ,yj ,aj ,bj )=1∀j<i

xi ,yi

√
µ(x,y) |x⟩|a⟩ ⊗ |ψx,y,a,b⟩ ⊗ |y⟩|b⟩

In
other
words: |Φxi ,yi ⟩ is the post-measurement
state of Alice and Bob in
the game Gn, conditioned on questions (xi , yi ) and the having won games
G1, . . . ,Gi−1.
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Why
is |Φxi ,yi⟩ useful?

|Φxi ,yi ⟩ ∝
∑

x,y,a,b:
V (xj ,yj ,aj ,bj )=1∀j<i

xi ,yi

√
µ(x,y) |x⟩|a⟩ ⊗ |ψx,y,a,b⟩ ⊗ |y⟩|b⟩

Suppose Alice and Bob can prepare |Φxi ,yi ⟩ when given questions
(xi , yi).

Then if Alice and Bob measure ai and bi , the answers will win
with probability close to

Pr[Win Gi |Win G1, . . . ,Gi−1] > val⋆(G) + δ.

Contradiction.
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▶ It’s
not
clear
how
to
locally
sample |Φxi ,yi ⟩!

▶ This is the primary challenge of proving a quantum parallel
repetition theorem.
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Anchoring
our
way
to
parallel
repetition
We carefully define |Φxi ,yi ⟩ so that

1. it allows Alice and Bob to win Gi with high probability, and

2. is jointly sampleable by the players with high fidelity.

Key
Lemma

On average over (xi , yi) ∼ µ,

|Φxi ,yi ⟩ ≈Uxi ⊗Vyi |Φ⊥,⊥⟩

for some unitaries Uxi , Vyi .
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Ingredients
in
our
Key
Lemma

▶ We bound
I(Xi ;B)Φ ≤ ε and I(Yi ;A)Φ ≤ ε

▶ By Pinsker, this implies that Bob’s side of entanglement in Φ is nearly
independent of Xi , and Alice’s side of Φ is nearly independent of Yi .

▶ (The
Church
of
the
Larger
Hilbert
Space) Uhlmann’s Theorem implies
there exist unitaries Uxi and Vyi so that

|Φxi ,⊥⟩ ≈Uxi ⊗ I|Φ⊥,⊥⟩ and |Φ⊥,yi ⟩ ≈ I⊗Vyi |Φ⊥,⊥⟩

▶ Using the fact that the “⊥” questions anchor all other questions, we can
stitch together these two statements to get

|Φxi ,yi ⟩ ≈Uxi ⊗Vyi |Φ⊥,⊥⟩

36



Theorem: Quantum
parallel
repetition

If G is a two-player game with val⋆(G) = 1− δ, then

val⋆(Gn⊥) = (1− δ8)Ω(n/s)
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Conclusion
What
we
showed: We give the first gap amplification results for
general games in the quantum and multiplayer settings.

Future
directions
▶ Other applications of anchoring?

▶ Direct sums in communication complexity?
▶ Additivity questions in quantum information

▶ Prove a general quantum parallel repetition theorem
▶ First, prove that val⋆(Gn) goes
to 0 as n→∞ for all G when

val⋆(G) < 1.

▶ Prove a general multiplayer parallel repetition theorem

Thank
you! Any
questions?
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