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Information theory: optimal rates  
in sending, storing, processing data
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Entropy formulas quantify the 
answers

• H(X) = -     x px log px

• H(  ) = -Tr    log 

• Optimal Compression: H(X)
• Schumacher Compression: H(   )
• Classical Channel capacity: max I(X;Y)

I(X;Y) = H(X)+ H(Y) – H(XY)
• Quantum Communication: max {H(B) – H(E)}
• Private capacity: max {I(V;B)-I(V;E)}



Additivity lets us calculate answers

C(        ) 
= C(    )+C(   )

+

Classical Capacity of Classical Channel



Nonadditivity is the rule
Especially quantumly

• Good: Better rates, e.g., for classical and    
quantum communication.  

• Bad:
Mostly don’t know
capacities, distillable
entanglement, etc.
Have upper and lower
bounds that are
far apart.
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Entropy formulas
• Quantum channel: unitary interaction with a 

inaccessible environment

• Entropy formula : linear combination of entropies

       with

• Maximized version:

• Additivity:
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Additivity Proofs

• Enough to show subadditive: 

       

       

additive:

subadditive:



Standard Additivity Proof
• Additivity proofs: two key steps

   1) Decoupling: 

2) Apply entropy inequalities to show

• We call        uniformly  (sub)-additive 
under the given decoupling. The set of all 
such formulas are called the additive cone.



 A canonical example

• Entanglement assisted capacity:

  1) Decoupling

   2) Entropy inequality
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Decoupling
•  We focus on "standard decoupling".

• Example



Entropy Inequalities

• Strong subadditivity:
   I(A;B|C) = H(AC)+ H(BC)-H(ABC)-H(C)>=0
   [H(A)>=0, H(A)+H(B)-H(AB)>=0, H(AB)+H(A)-H(B)>=0, 

H(AB)+H(AC)-H(B)-H(C)>=0]

• There may be more,  but we don’t know 
them! (Classically, there is more: H(A|B)>=0, Non-
Shannon inequalities.) 

• Luckily, we don't need them ^_^



Zero Auxiliary Variable

Rays Faces

Anything inside the cone
is uniformly additive.
Outside the cone, there is
A state that makes     not 
subadditive. 

full characterization of Result:



One Auxiliary Variable
At first, consider

We give a full characterization of               .

for each decoupling (a,b), define the additive cone:



The additive cone

One Auxiliary Variable



One Auxiliary Variable

Result:



Many Auxiliary Variables (of number n)

Result:

(e.g., when n=2,                                                      )
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Non-standard Decouplings

• Standard decoupling (a special relabeling)

• Consistent Decoupling (general relabeling)

      example:



Non-standard Decouplings
Result: Among consistent decouplings, 
              standard ones suffice.
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Completely Coherent Information



Completely Coherent Information



Completely Coherent Information

• Symmetric in B       E .
• Lower bound for cost of swapping B and E.  
    [J. Oppenheim and A. Winter,  arXiv:quant-ph/0511082]
• Upper bound for simultaneous quantum communication 

rate to B and E.
• For degradable channels, Icc(N) = Q(N) = Q(1)(N) .
• WANT: operational meaning.

properties:
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A Classical-Quantum Coincidence

• we can do this whole game for classical 
entropy formulas too.

• we get exactly the same set of uniformly 
additive functions.

• Could have been more, since there are 
more classical inequalities: H(X|Y) >=0.

• But uniform additivity only uses strong 
subadditivity.



Open Questions

• Additivity other than uniform additivity?

• More general decouplings?

• Completely coherent information: 
operational meaning?

• Understand classical-quantum 
correspondence better.  



             Thank you!


