Additivity in Classical and Quantum Information Theory

Andrew Cross, Ke Li, Graeme Smith

IBM TJ Watson Research Center, KL also with Center for Theoretical Physics, MIT

QIP2016, Banff Centre

Information theory: optimal rates in sending, storing, processing data

Entropy formulas quantify the answers

- $H(X) = -\sum_{x} p_x \log p_x$
- $H(\rho) = -Tr \rho \log \rho$
- Optimal Compression: H(X)
- Schumacher Compression: $H(\rho)$
- Classical Channel capacity: max I(X;Y)
 I(X;Y) = H(X)+ H(Y) H(XY)
- Quantum Communication: max {H(B) H(E)}
- Private capacity: max {I(V;B)-I(V;E)}

Additivity lets us calculate answers

Classical Capacity of Classical Channel

Nonadditivity is the rule Especially quantumly

• Good: Better rates, e.g., for classical and quantum communication.

Bad: Mostly don't know capacities, distillable entanglement, etc. Have upper and lower bounds that are far apart.

Outline

- 1. Entropy formulas and their additivity proofs
- 2. All the uniformly additive formulas under standard decouplings
- 3. Standard decoupling is typical
- 4. Completely coherent information: a new additive quantity
- 5. Observation: classical-quantum correspondence

Entropy formulas

Quantum channel: unitary interaction with a inaccessible environment

$$|0\rangle$$
 — UN = E
 ρ_A — B

Entropy formula : linear combination of entropies

$$f_{\alpha}(U_{\mathcal{N}}, \phi_{V_{1}...V_{n}A}) = \sum_{s \in \mathcal{P}(V_{1}...V_{n}BE)} \alpha_{s}H(s)\rho$$

with $\rho_{V_{1}...V_{n}BE} = (I \otimes U_{\mathcal{N}})\phi_{V_{1}...V_{n}A}(I \otimes U_{\mathcal{N}}^{\dagger})$

- Maximized version: $f_{\alpha}(U_{\mathcal{N}}) = \max_{\phi_{V_1...V_nA}} f_{\alpha}(U_{\mathcal{N}}, \phi_{V_1...V_nA})$
- Additivity: $f_{\alpha}(U_{\mathcal{N}_1} \otimes U_{\mathcal{N}_2}) = f_{\alpha}(U_{\mathcal{N}_1}) + f_{\alpha}(U_{\mathcal{N}_2})$

Additivity Proofs

$$f_{\alpha}(U_{\mathcal{N}}) = \max_{\phi_{V_1...V_nA}} f_{\alpha}(U_{\mathcal{N}}, \phi_{V_1...V_nA})$$
$$f_{\alpha}(U_{\mathcal{N}}, \phi_{V_1...V_nA}) = \sum_{s \in \mathcal{P}(V_1...V_nBE)} \alpha_s H(s)\rho$$

• Enough to show subadditive:

Standard Additivity Proof

- Additivity proofs: two key steps
 - **1) Decoupling:** ϕ_{12}
 - 2) Apply entropy inequalities to show $f_{\alpha}(U_{\mathcal{N}_{1}} \otimes U_{\mathcal{N}_{2}}, \phi_{12}) \leq f_{\alpha}(U_{\mathcal{N}_{1}}, \tilde{\phi}_{1}) + f_{\alpha}(U_{\mathcal{N}_{2}}, \hat{\phi}_{2})$
- We call f_{α} uniformly (sub)-additive under the given decoupling. The set of all such formulas are called the additive cone.

A canonical example

• Entanglement assisted capacity:

$$C_{ea}(\mathcal{N}) = \max_{\phi_{VA}} I(V; B)$$

2) Entropy inequality

 $I(V; B_1B_2) = I(V; B_1) + I(V; B_2|B_1)$ = $I(V; B_1) + I(VB_1; B_2) - I(B_1; B_2)$ $\leq I(V; B_1) + I(VB_1; B_2) \leq C_{ea}(\mathcal{N}_1) + C_{ea}(\mathcal{N}_2)$

Outline

- 1. Entropy formulas and their additivity proofs
- 2. All the uniformly additive formulas under standard decouplings
- 3. standard decoupling is typical
- 4. Completely coherent information: a new additive quantity
- 5. Observation:classical-quantum correspondence

Decoupling

• We focus on "standard decoupling".

 $\tilde{V}_i = \tilde{M}_2 V_i, \quad \tilde{M}_2 \in \mathcal{P}(B_2 E_2); \quad \hat{V}_i = \hat{M}_1 V_i, \quad \hat{M}_1 \in \mathcal{P}(B_1 E_1)$

• Example

$$\tilde{V}_1 = V_1 B_2, \ \tilde{V}_2 = V_2 E_2, \ \tilde{V}_3 = V_3$$

 $\hat{V}_1 = V_1, \ \hat{V}_2 = V_2 B_1 E_1, \ \hat{V}_3 = V_3$

Entropy Inequalities

- Strong subadditivity: I(A;B|C) = H(AC)+ H(BC)-H(ABC)-H(C)>=0 [H(A)>=0, H(A)+H(B)-H(AB)>=0, H(AB)+H(A)-H(B)>=0, H(AB)+H(AC)-H(B)-H(C)>=0]
- There may be more, but we don't know them! (Classically, there is more: H(A|B)>=0, Non-Shannon inequalities.)
- Luckily, we don't need them ^_^

Zero Auxiliary Variable

 $f_{\alpha}(\mathcal{N}, \phi_A) = \alpha_B H(B) + \alpha_E H(E) + \alpha_{BE} H(BE)$ Decoupling: $\phi_{A_1A_2} \to (\phi_{A_1}, \phi_{A_2})$

 $\Pi^{\varnothing} := \{ f_{\alpha} \mid f_{\alpha}(U_{\mathcal{N}_1} \otimes U_{\mathcal{N}_2}, \phi_{A_1A_2}) \le f_{\alpha}(U_{\mathcal{N}_1}, \phi_{A_1}) + f_{\alpha}(U_{\mathcal{N}_2}, \phi_{A_2}) \}$

Result:

full characterization of Π^{\varnothing}

 $\Pi^{\varnothing} \text{ Rays}$ $f_{\alpha} = \lambda_1 H(B) + \lambda_2 H(E)$ $+ \lambda_3 H(B|E) + \lambda_4 H(E|B)$

 $\lambda_i \ge 0$

 $\prod^{\varnothing} \text{ Faces} \\ \alpha_B + \alpha_{BE} \ge 0 \\ \alpha_E + \alpha_{BE} \ge 0 \\ \alpha_B + \alpha_E + \alpha_{BE} \ge 0 \\ \alpha_{BE} \ge 0.$ Anything inside the cone is uniformly additive. Outside the cone, there is A state that makes f_{α} not subadditive.

One Auxiliary Variable At first, consider $f_{\alpha^{V}}(\mathcal{N}, \phi_{VA}) = \alpha_{V}H(V) + \alpha_{BV}H(BV) + \alpha_{EV}H(EV) + \alpha_{BEV}H(BEV)$

Fix a standard decoupling:

 $\tilde{V} \in \{V, B_2 V, E_2 V, B_2 E_2 V\}$ and

 $\hat{V} \in \{V, B_1V, E_1V, B_1E_1V\}$

These are labeled by $(a, b) \ a, b = 0...3$

for each decoupling (a,b), define the additive cone: $\Pi^{V,(a,b)} := \{f_{\alpha^{V}} \mid f_{\alpha^{V}}(U_{\mathcal{N}_{1}} \otimes U_{\mathcal{N}_{2}}, \phi_{VA_{1}A_{2}}) \leq f_{\alpha^{V}}(U_{\mathcal{N}_{1}}, \phi_{\tilde{V}A_{1}}) + f_{\alpha^{V}}(U_{\mathcal{N}_{2}}, \phi_{\hat{V}A_{2}})\}$

We give a full characterization of $\Pi^{V,(a,b)}$

One Auxiliary Variable

The additive cone $\Pi^{V,(a,b)}$

case	(a,b)	\hat{M}_1	\tilde{M}_2	equivalents	Additive Cone	Extreme Rays
1.	(3,3)	B_1E_1	B_2E_2	(0,0)	$\alpha_V + \alpha_{BV} + \alpha_{EV} \ge 0$ $\alpha_V + \alpha_{BV} \ge 0$ $\alpha_V + \alpha_{EV} \ge 0$ $\alpha_V \ge 0$	$ \begin{array}{c c} -H(E BV) \\ -H(E V) \\ -H(B EV) \\ -H(B V) \end{array} $
2.	(3,2)	B_1E_1	E_2	$(2,3),(3,1)\ (1,3),(1,0),(0,1)\ (2,0),(0,2)$	$\alpha_{BV} \le 0$ $\alpha_V + \alpha_{BV} \ge 0$	$ \begin{array}{c} -H(BE V) \\ \pm H(B EV) \\ -H(B V) \end{array} $
3.	(3,0)	B_1E_1	ϕ	(0,3)	$\begin{array}{l} \alpha_{EV} \leq 0 \\ \alpha_{BV} \leq 0 \end{array}$	$ \begin{array}{c c} H(E BV) \\ -H(E V) \\ \pm H(BE V) \end{array} $
4.	(1,1)	B_1	B_2	(2,2)	$\alpha_{EV} = 0$ $\alpha_V \ge 0$ $\alpha_{BEV} \ge 0$	$-H(B V) \\ H(E BV)$
5.	(1,2)	B_1	E_2	(2,1)	$\begin{array}{l} \alpha_{BEV} \ge 0\\ \alpha_V \ge 0 \end{array}$	$ \begin{array}{c c} \pm [H(EV) - H(BV)] \\ H(E BV) \\ -H(E V) \end{array} $

One Auxiliary Variable

$$f_{\alpha} = f_{\alpha} \varnothing + f_{\alpha} V$$

 $\begin{aligned} f_{\alpha^{\varnothing}} &:= \alpha_B H(B) + \alpha_E H(E) + \alpha_{BE} H(BE) \\ f_{\alpha^V} &:= \alpha_V H(V) + \alpha_{BV} H(BV) + \alpha_{EV} H(EV) + \alpha_{BEV} H(BEV) \end{aligned}$

Result: $f_{\alpha}(U_{\mathcal{N}})$ U.A. w.r.t. (a, b) iff $f_{\alpha^{\varnothing}} \in \Pi^{\varnothing}$ & $f_{\alpha^{V}} \in \Pi^{V,(a,b)}$

$$\Pi^{V,(a,b)}$$

case	(a,b)	\hat{M}_1	\tilde{M}_2	equivalents	Additive Cone	Extreme Rays
1.	(3,3)	B_1E_1	B_2E_2	(0,0)	$ \begin{aligned} \alpha_V + \alpha_{BV} + \alpha_{EV} &\geq 0 \\ \alpha_V + \alpha_{BV} &\geq 0 \\ \alpha_V + \alpha_{EV} &\geq 0 \\ \alpha_V &\geq 0 \end{aligned} $	-H(E BV) -H(E V) -H(B EV) -H(B V)
2.	(3,2)	B_1E_1	E_2	$(2,3),(3,1)\ (1,3),(1,0),(0,1)\ (2,0),(0,2)$	$\alpha_{BV} \le 0$ $\alpha_V + \alpha_{BV} \ge 0$	$\begin{array}{l} -H(BE V) \\ \pm H(B EV) \\ -H(B V) \end{array}$
3.	(3,0)	B_1E_1	ϕ	(0,3)	$\begin{array}{l} \alpha_{EV} \leq 0 \\ \alpha_{BV} \leq 0 \end{array}$	$H(E BV) \ -H(E V) \ \pm H(BE V)$
4.	(1,1)	B_1	B_2	(2,2)	$\alpha_{EV} = 0$ $\alpha_V \ge 0$ $\alpha_{BEV} \ge 0$	$\begin{array}{c} -H(B V) \\ H(E BV) \end{array}$
5.	(1,2)	B_1	E_2	(2,1)	$\begin{array}{l} \alpha_{BEV} \ge 0\\ \alpha_V \ge 0 \end{array}$	$\begin{array}{c} \pm [H(EV) - H(BV)] \\ H(E BV) \\ -H(E V) \end{array}$

 f_{α^V}

Many Auxiliary Variables (of number n) $f_{\alpha} = \sum_{S \in \mathcal{P}(V_1 \dots V_n)} f_{\alpha^S}$ $f_{\alpha^S} := \alpha_S H(S) + \alpha_{BS} H(BS) + \alpha_{ES} H(ES) + \alpha_{BES} H(BES)$ (e.g., when n=2, $f_{\alpha} = f_{\alpha^{\varnothing}} + f_{\alpha^{V_1}} + f_{\alpha^{V_2}} + f_{\alpha^{V_1 V_2}}$)Result: $f_{\alpha}(U_{\mathcal{N}})$ U.A. w.r.t. $(a_1, b_1) \dots (a_n, b_n)$ iff $f_{\alpha^S} \in \Pi^{S, (a_S, b_S)}$

П	V,	(a	,b)

case	(a,b)	\hat{M}_1	\tilde{M}_2	equivalents	Additive Cone	Extreme Rays
1.	(3,3)	B_1E_1	B_2E_2	(0,0)	$\alpha_V + \alpha_{BV} + \alpha_{EV} \ge 0$ $\alpha_V + \alpha_{BV} \ge 0$ $\alpha_V + \alpha_{EV} \ge 0$ $\alpha_V \ge 0$	-H(E BV) -H(E V) -H(B EV) -H(B V)
2.	(3,2)	B_1E_1	E_2	$(2,3),(3,1)\ (1,3),(1,0),(0,1)\ (2,0),(0,2)$	$\alpha_{BV} \le 0$ $\alpha_V + \alpha_{BV} \ge 0$	$\begin{array}{c} -H(BE V) \\ \pm H(B EV) \\ -H(B V) \end{array}$
3.	(3,0)	B_1E_1	ϕ	(0,3)	$\begin{array}{l} \alpha_{EV} \leq 0 \\ \alpha_{BV} \leq 0 \end{array}$	$ \begin{array}{c} H(E BV) \\ -H(E V) \\ \pm H(BE V) \end{array} $
4.	(1,1)	B_1	B_2	(2,2)	$\alpha_{EV} = 0$ $\alpha_V \ge 0$ $\alpha_{BEV} \ge 0$	$-H(B V) \\ H(E BV)$
5.	(1,2)	B_1	E_2	(2,1)	$\begin{array}{l} \alpha_{BEV} \geq 0\\ \alpha_V \geq 0 \end{array}$	$\begin{array}{c} \pm [H(EV) - H(BV)] \\ H(E BV) \\ -H(E V) \end{array}$

 $f_{\alpha^S}, S \neq \emptyset$

Outline

- 1. Entropy formulas and their additivity proofs
- 2. All the uniformly additive formulas under standard decouplings
- 3. standard decoupling is typical
- 4. Completely coherent information: a new additive quantity
- 5. Observation:classical-quantum correspondence

- Standard decoupling (a special relabeling) $\tilde{V}_i = \tilde{M}_2 V_i$, $\tilde{M}_2 \in \mathcal{P}(B_2 E_2)$; $\hat{V}_i = \hat{M}_1 V_i$, $\hat{M}_1 \in \mathcal{P}(B_1 E_1)$
- Consistent Decoupling (general relabeling)

 $\tilde{V}_i \in \mathcal{P}(V_1...V_n B_2 E_2)$ with $\tilde{V}_i \cap \tilde{V}_j = \emptyset$; $\hat{V}_i \in \mathcal{P}(V_1...V_n B_1 E_1)$ with $\hat{V}_i \cap \hat{V}_j = \emptyset$.

example: $\tilde{V}_1 = V_2 B_2, \tilde{V}_2 = V_3 E_2, \tilde{V}_3 = V_1$ $\hat{V}_1 = V_2 V_3, \hat{V}_2 = B_1, \hat{V}_3 = \emptyset$ Non-standard Decouplings Result: Among consistent decouplings, standard ones suffice.

(\forall) $f_{\alpha}(U_{\mathcal{N}}, \phi_{V_1...V_nA})$ being uniformly subadditive w.r.t. a consistent decoupling,

(\exists) $f_{\beta}(U_{\mathcal{N}}, \varphi_{V_1...V_mA})$ with $m \leq n$, being uniformly subadditive w.r.t. a standard decoupling, such that

$$\max_{\phi_{V_1...V_nA}} f_{\alpha}(U_{\mathcal{N}}, \phi_{V_1...V_nA}) = \max_{\varphi_{V_1...V_mA}} f_{\beta}(U_{\mathcal{N}}, \varphi_{V_1...V_mA}).$$

Outline

- 1. Entropy formulas and their additivity proofs
- 2. All the uniformly additive formulas under standard decouplings
- 3. standard decoupling is typical
- 4. Completely coherent information: a new additive quantity
- 5. Observation:classical-quantum correspondence

Completely Coherent Information

case	(a,b)	\hat{M}_1	\tilde{M}_2	equivalents	Additive Cone	Extreme Rays
1.	(3,3)	B_1E_1	B_2E_2	$(0,\!0)$	$\alpha_V + \alpha_{BV} + \alpha_{EV} \ge 0$ $\alpha_V + \alpha_{BV} \ge 0$ $\alpha_V + \alpha_{EV} \ge 0$ $\alpha_V \ge 0$	-H(E BV) -H(E V) -H(B EV) -H(B V)
2.	(3,2)	B_1E_1	E_2	$(2,3),(3,1)\ (1,3),(1,0),(0,1)\ (2,0),(0,2)$	$\alpha_{BV} \le 0$ $\alpha_V + \alpha_{BV} \ge 0$	$\begin{array}{c} -H(BE V) \\ \pm H(B EV) \\ -H(B V) \end{array}$
3.	(3,0)	B_1E_1	ϕ	(0,3)	$\begin{array}{l} \alpha_{EV} \leq 0\\ \alpha_{BV} \leq 0 \end{array}$	$ \begin{array}{c} H(E BV) \\ -H(E V) \\ \pm H(BE V) \end{array} $
4.	(1,1)	B_1	B_2	(2,2)	$\alpha_{EV} = 0$ $\alpha_V \ge 0$ $\alpha_{BEV} \ge 0$	$-H(B V) \ H(E BV)$
5.	(1,2)	B_1	E_2	(2,1)	$\begin{array}{c} \alpha_{BEV} \ge 0\\ \alpha_V \ge 0 \end{array}$	$\begin{array}{c} \pm [H(EV) - H(BV)] \\ H(E BV) \\ -H(E V) \end{array}$

Completely Coherent Information

case	(a,b)	\hat{M}_1	\tilde{M}_2	equivalents	Additive Cone	Extreme Rays
1.	(3,3)	B_1E_1	B_2E_2	$(0,\!0)$	$\alpha_V + \alpha_{BV} + \alpha_{EV} \ge 0$ $\alpha_V + \alpha_{BV} \ge 0$ $\alpha_V + \alpha_{EV} \ge 0$ $\alpha_V \ge 0$	-H(E BV) -H(E V) -H(B EV) -H(B V)
2.	(3,2)	B_1E_1	E_2	$(2,3),(3,1)\ (1,3),(1,0),(0,1)\ (2,0),(0,2)$	$\alpha_{BV} \le 0$ $\alpha_V + \alpha_{BV} \ge 0$	$\begin{array}{c} -H(BE V) \\ \pm H(B EV) \\ -H(B V) \end{array}$
3.	(3,0)	B_1E_1	ϕ	(0,3)	$\begin{array}{l} \alpha_{EV} \leq 0\\ \alpha_{BV} \leq 0 \end{array}$	$egin{array}{l} H(E BV) \ -H(E V) \ \pm H(BE V) \end{array}$
4.	(1,1)	B_1	B_2	(2,2)	$\alpha_{EV} = 0$ $\alpha_V \ge 0$ $\alpha_{BEV} \ge 0$	$-H(B V) \ H(E BV)$
5.	(1,2)	B_1	E_2	(2,1)	$\begin{array}{c} \alpha_{BEV} \ge 0\\ \alpha_V \ge 0 \end{array}$	$ \begin{array}{c} \pm [H(EV) - H(BV)] \\ \hline H(E BV) \\ -H(E V) \end{array} $

Completely Coherent Information

 $I^{cc}(\mathcal{N}) = \max_{\phi_{VA}} [H(VB) - H(VE)]$

properties:

- Symmetric in B ←> E .
- Lower bound for cost of swapping B and E.
 [J. Oppenheim and A. Winter, arXiv:quant-ph/0511082]
- Upper bound for simultaneous quantum communication rate to B and E.
- For degradable channels, $I^{cc}(N) = Q(N) = Q^{(1)}(N)$.
- WANT: operational meaning.

Outline

- 1. Entropy formulas and their additivity proofs
- 2. All the uniformly additive formulas under standard decouplings
- 3. standard decoupling is typical
- 4. Completely coherent information: a new additive quantity
- 5. Observation:classical-quantum correspondence

A Classical-Quantum Coincidence

- we can do this whole game for classical entropy formulas too.
- we get exactly the same set of uniformly additive functions.
- Could have been more, since there are more classical inequalities: H(X|Y) >=0.
- But uniform additivity only uses strong subadditivity.

Open Questions

 ϕ_1

 ϕ_{12}

- Additivity other than uniform additivity?
- More general decouplings?
- Completely coherent information: operational meaning?
- Understand classical-quantum correspondence better.

Thank you!