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We present an algorithm for sparse Hamiltonian simulation that has optimal dependence on all pa-
rameters of interest (up to log factors). Previous algorithms had optimal or near-optimal scaling in some
parameters at the cost of poor scaling in others. Hamiltonian simulation via quantum walk has optimal
dependence on the sparsity d at the expense of poor scaling in the allowed error ε. In contrast, an ap-
proach based on fractional-query simulation provides optimal scaling in ε at the expense of poor scaling
in d. Here we combine the two approaches, achieving the best features of both. By implementing a linear
combination of quantum walk steps with coefficients given by Bessel functions, our algorithm achieves
near-linear scaling in τ := d‖H‖maxt and sublogarithmic scaling in 1/ε. Our dependence on ε is optimal,
and we prove a new lower bound ruling out sublinear dependence on τ .

The problem of simulating the dynamics of quantum systems was the original motivation for quantum com-
puters [14] and remains one of their major potential applications. The first explicit quantum simulation
algorithm [16] gave a method for simulating Hamiltonians that are sums of local interaction terms. Aharonov
and Ta-Shma gave an efficient simulation algorithm for the more general class of sparse Hamiltonians [2],
and much subsequent work has given improved simulations [4, 5, 6, 7, 8, 12, 17, 18]. Sparse Hamiltonians
include most physically realistic Hamiltonians as a special case. In addition, sparse Hamiltonian simulation
can also be used to design other quantum algorithms [9, 10, 15]. For example, it was used to convert the
algorithm for evaluating a balanced binary NAND tree with n leaves [13] to the discrete-query model [10].
A later algorithm obtained slightly improved scaling with a different approach [3].

In the Hamiltonian simulation problem, we are given an n-qubit Hamiltonian H (a Hermitian matrix),
an evolution time t, and a precision ε > 0, and are asked to implement the unitary operation e−iHt up to
error at most ε (as quantified by the diamond norm distance). We say that H is d-sparse if it has at most
d nonzero entries in any row. In the sparse Hamiltonian simulation problem, H is specified by a black box
that takes input (j, `) ∈ [2n] × [d] (where [d] := {1, . . . , d}) and outputs the location and value of the `th
nonzero entry in the jth row of H . Specifically, as in [5], we assume access to an oracle OH acting as
OH |j, k, z〉 = |j, k, z ⊕Hjk〉 for j, k ∈ [2n] and bit strings z representing entries of H , and another oracle
OF acting as OF |j, `〉 = |j, f(j, `)〉, where f(j, `) : [2n] × [d] → [2n] is a function giving the row index of
the `th nonzero element in column j. Note that the form of OF assumes that the locations of the nonzero
entries of H can be computed in place. This is possible if we can efficiently compute both (j, `) 7→ f(j, `)
and the reverse map (j, f(j, `)) 7→ `, which holds in typical applications of sparse Hamiltonian simulation.
Alternatively, if f provides the nonzero elements in order, we can compute the reverse map with only a log d
overhead by binary search.

At present, the two best algorithms for sparse Hamiltonian simulation are one based on a Szegedy quan-
tum walk [5, 8] and another based on simulating an unconventional model of query complexity called the
fractional-query model [6]. The quantum walk approach has query complexity O(d‖H‖maxt/

√
ε), which is

linear in both the sparsity d and the evolution time t. (Here ‖H‖max denotes the largest entry ofH in absolute
value.) However, this approach has poor dependence on the allowed error ε. In contrast, the fractional-query
approach has query complexity O

(
τ̃ log(τ̃/ε)
log log(τ̃/ε)

)
, where τ̃ := d2‖H‖maxt. This approach gives exponentially
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better dependence on the error at the expense of quadratically worse dependence on the sparsity and loga-
rithmically worse dependence on the evolution time. Considering the fundamental importance of quantum
simulation, it is desirable to achieve the best features of both approaches.

In this work, we combine the two approaches, giving the following.

Theorem 1. A d-sparse Hamiltonian H acting on n qubits can be simulated for time t within error ε with

O

(
τ

log(τ/ε)

log log(τ/ε)

)
(1)

queries and

O

(
τ [n+ log(τ/ε)]

log(τ/ε)

log log(τ/ε)

)
(2)

additional 2-qubit gates, where τ := d‖H‖maxt.

This result provides a strict improvement over the method of [6], removing a factor of d in τ , and thus
providing near-linear instead of superquadratic dependence on d.

We also prove a lower bound showing that any algorithm must use Ω(τ) queries. While a lower bound
of Ω(t) was known previously [4], our new lower bound shows that the complexity must be at least linear in
the product of the sparsity and the evolution time. Our proof is similar to a previous limitation on the ability
of quantum computers to simulate non-sparse Hamiltonians [11]: by replacing each edge in the graph of the
Hamiltonian by a complete bipartite graph Kd,d, we effectively boost the strength of the Hamiltonian by a
factor of d at the cost of increasing the sparsity by a factor of d. Combining this result with the error-dependent
lower bound of Ref. [6], we find a lower bound as follows.

Theorem 2. For any ε, t > 0, integer d ≥ 2, and fixed value of ‖H‖max, there exists a d-sparse Hamiltonian
H such that simulating H for time t with precision ε requires Ω

(
τ + log(1/ε)

log log(1/ε)

)
queries.

Thus our result is near-optimal in either τ or ε on its own. However, our upper bound (1) has a product,
whereas the lower bound (2) has a sum. It remains unclear how to close the gap between these bounds.
Intriguingly, a slight modification of our technique gives another algorithm with the following complexity.

Theorem 3. For any α ∈ (0, 1], a d-sparse Hamiltonian H acting on n qubits can be simulated for time t
within error ε with O

(
τ1+α/2 + τ1−α/2 log(1/ε)

)
queries.

This result provides a nontrivial tradeoff between the parameters t, d, and ε, and suggests that further
improvements to such tradeoffs may be possible.

Overview of algorithms. Our algorithm uses a Szegedy quantum walk as in Refs. [5, 8], but with a linear
combination of different numbers of steps. Such an operation can be implemented using techniques that
were developed to simulate the fractional-query model [6]. This allows us to introduce a desired phase more
accurately than with the phase estimation approach of [5, 8]. As in [6], we first implement the approximated
evolution for some time interval with some amplitude and then use oblivious amplitude amplification to make
the implementation deterministic, facilitating simulations for longer times.

References [5, 8] define a quantum walk step U that depends on the Hamiltonian H to be simulated.
This operation can be implemented using a state preparation procedure that only requires one call to the
sparse Hamiltonian oracle, avoiding the need to decompose H into terms as in product-formula approaches.
The walk takes place in an enlarged state space that includes two copies of the space acted on by H . Each
eigenstate of H is mapped onto a superposition of two eigenstates |µ±〉 of the quantum walk step U .

The relevant eigenvalues µ± of U are related to the eigenvalues λ of H via µ± = ±e±i arcsin(λ/Xd),
where X ≥ ‖H‖max is a parameter that can be increased to create a lazy quantum walk. For small λ/Xd,
the steps of the quantum walk for either µ+ or µ− yield a phase factor that is nearly proportional to that for
the Hamiltonian evolution. However, the phase deviates from the desired value since the function arcsin(x)
is not precisely linear about x = 0.
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An obvious way to increase the accuracy is to increaseX above its minimum value of ‖H‖max. However,
the number of steps of the quantum walk is O(tXd), so increasing X results in a less efficient simulation.
Another approach is to use phase estimation to correct the phase factor [5, 8], but this approach still gives
polynomial dependence on 1/ε.

Instead, we propose using a superposition of steps of the quantum walk to effectively linearize the arcsin
function. Specifically, rather than applying U , we apply Vk :=

∑k
m=−k amU

m for some coefficients
a−k, . . . , ak. We show that the coefficients can be chosen by considering the generating function for the
Bessel function [1, 9.1.41],

∞∑
m=−∞

Jm(z)µm± = exp

[
z

2

(
µ± −

1

µ±

)]
= eiλz/Xd, (3)

where the second equality follows from the relationship between λ and µ± (note in particular that µ+ −
1
µ+

= µ− − 1
µ−

). Thus the ability to perform the operation
∑∞

m=−∞ Jm(−x)Um would allow us to exactly
implement the evolution under H for time x/Xd. Remarkably, the coefficients required in the expansion
are the same for both µ+ and µ−, so there is no need to distinguish the spaces. By truncating the sum to
some finite range {−k, . . . , k}, we obtain an expression in which each term can be performed using at most k
queries. Because the Bessel function falls off exponentially for large |m|, we can obtain error at most ε with
a cutoff k that is only logarithmic in 1/ε.

To perform Vk, we prepare ancilla qubits in a superposition state |χk〉, then perform a controlled operation∑k
m=−k |m〉〈m| ⊗ Um. Following a projective measurement that gives result |χk〉, the operation is Vk with

success probability approximately 1/a2, where a :=
∑k

m=−k |am|. Rather than using Vk to implement
evolution over the entire time, we break the time up into “segments” and use Vk to achieve the time evolution
for each segment. The probability of success may be boosted to 1 using the oblivious amplitude amplification
procedure introduced in Ref. [6]. Such an exact implementation enables many segments to be performed
consecutively with complexity linear in the number of segments.

The complexity of our algorithm is the number of segments (tXd/x) times the complexity for each
segment (k) times the number of steps needed for oblivious amplitude amplification (a). We have some
freedom in choosing x, which controls the amount of evolution time simulated by each segment. To obtain
near-linear dependence on the evolution time t, we choose x = O(1). Then amplitude amplification requires
O(1) steps, and the number of segments needed isO(τ), giving the linear factor in (1). The value of k needed
to achieve overall error at most ε is logarithmic in τ/ε, yielding the logarithmic factor in (1).

An alternative approach is to use a larger segment that scales with τ . Choosing x = τα for α ∈ (0, 1],
we need k = O(τα + log(1/ε)). Then we require O(τ1−α) segments and O(τα/2) steps of amplitude
amplification, giving the scaling presented in Theorem 3.

Discussion. Our technique for Hamiltonian simulation combines ideas from quantum walks and fractional-
query simulation to provide improved performance over both previous techniques. As a result, it provides
near-optimal scaling in all parameters of interest. In particular, the scaling is only slightly superlinear in
τ = d‖H‖maxt, whereas we have proven that linear scaling is optimal. Furthermore, the method has sublog-
arithmic scaling in the allowed error, which was proven to be optimal in Ref. [6].

Nevertheless, there is still a gap between the complexity of our algorithm and the lower bound in (2), as
they involve different tradeoffs between τ and ε. It remains open whether the performance can be further
improved, perhaps to give performance similar to (2), although we can rule out scaling strictly as in (2).

Our technique can potentially be used for the more general task of operation conversion, in which we
use one quantum operation to implement another. In our work, we convert a step of a quantum walk to
Hamiltonian evolution, whereas in Ref. [15] the task is to convert Hamiltonian evolution to an inverse. One
approach to operation conversion is to use phase estimation. Here we have shown that a superposition of
operations can provide far better performance.
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