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1 Introduction

Quantum query complexity is an important method of understanding the power of quantum com-
puters. In this model we are given a black-box containing a boolean string x = x1 · · ·xN , and we
would like to calculate some function f(x) with as few accesses to the black-box as possible. It is
often easier to give bounds on the query complexity than to the time complexity of a problem, and
insights from the former often prove useful in understanding the power and limitations of quantum
computers. One famous example is Grover's algorithm for unstructured search [1]; by casting this
problem into the query model it was shown that Θ(

√
N) queries was required [2], proving that

Grover's algorithm is optimal.
Several methods have been proposed to bound the quantum query complexity. Upper bounds

are almost always proven by �nding better query algorithms. Some general methods of constructing
quantum algorithms have been proposed, such as quantum walks [3, 4, 5, 6] and learning graphs [7].
For lower bounds, the main methods are the polynomial method [8] and adversary method [9]. In
particular, adversary lower bounds have been shown to be tight [10, 11, 12], but calculating such a
tight bound seems di�cult in general.

To improve our understanding of quantum query complexity, we introduce a new oracle model,
which we call the bomb oracle. This model is inspired by the concept of interaction free measure-

ments, illustrated vividly by the Elitzur-Vaidman bomb testing problem [13], in which a property
of a system can be measured without disturbing the system signi�cantly. Like the quantum oracle
model, in the bomb oracle model we want to evaluate a function f(x) on a black-box boolean string
x = x1 · · ·xN while querying the oracle as few times as possible. In this model, however, the bomb
oracle is a controlled quantum oracle with the extra requirement that the algorithm fails if the
controlled query returns a 1. This seemingly impossible task can be tackled in a fashion similar to
the Elitzur-Vaidman bomb tester [14].

Our main result is that the bomb query complexity, B(f), is characterized by the square of the
quantum query complexity Q(f): B(f) = Θ(Q(f)2).

This characterization allows us to give nonconstructive upper bounds to the quantum query
complexity for some problems. It is sometimes easy to design a bomb query algorithm by adapting a
classical algorithm. By our main result, this gives an upper bound on the quantum query complexity.
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We provide a general method for doing so, and inspired by this method we give a corresponding
explicit quantum algorithm. Using this method, we were able to give an O(n3/2) algorithm for the
single-source shortest paths (SSSP) problem in an unweighted graph with n vertices, beating the
best-known O(n3/2

√
log n) algorithm [15]. A more striking example is our O(n7/4) algorithm for

maximum bipartite matching; in this case the best-known upper bound was the trivial O(n2).

2 Model

We de�ne the bomb query model as follows: we want to compute a function f(x) using a quantum
circuit, where access to the hidden query string x is not provided through the usual quantum oracle
Ox, but rather through a bomb oracle, shown in the following circuit:

|c〉 • |c〉
|0〉

Ox
bomb explodes if c · xi = 1

|i〉 |i〉

(1)

In this circuit Ox is the traditional quantum oracle: Ox|0, i〉 = |xi, i〉. There are however three
di�erences between the bomb oracle and the usual quantum oracle Ox:

• We allow an extra control bit c to control the oracle Ox. (This modi�cation on its own would
not change the query complexity.)

• The input to the record register must be |0〉 before the application of controlled-Ox; after the
application of controlled-Ox it will contain |c · xi〉.

• After the application of controlled-Ox, the record register is immediately measured. If a 1 is
measured (corresponding to c · xi = 1), the algorithm fails. We say the bomb has exploded.

We de�ne the bomb query complexity Bε(f) to be the minimum number of times the bomb oracle
shown above needs to be applied in an algorithm such that the following hold for all input string x:

• The bomb explodes with probability at most ε.

• The probability that the bomb outputs the wrong answer is bounded by a constant (say 0.01).

3 Main Result

Let Q(f) be the bounded-error quantum complexity. Our main result is the following:

Bε(f) = Θ

(
Q(f)2

ε

)
. (2)

We prove the Bε(f) = O(Q(f)2/ε) upper bound by mimicking the solution of the Elitzur-Vaidman
problem [14]: we simulate each quantum query with a gadget using O(Q(f)/ε) bomb queries. By
utilizing the quantum Zeno e�ect, the gadget simulates a quantum query with O(ε/Q(f)) error and
probability of explosion. This allows us to simulate a quantum algorithm with O(Q(f)2/ε) bomb
queries while keeping the probability of explosion and the error constant-sized.

We prove the Bε(f) = Ω(Q(f)2/ε) lower bound through a novel adaption of the adversary
method to bomb query complexity. We show that the bomb query complexity is Ω(Adv±(f))2/ε,
where Adv±(f) is the adversary bound with general weights [16]. Since the general adversary
method is tight for quantum query complexity, i.e. Adv±(f) = Θ(Q(f)) [10, 11, 12], this shows
that Bε(f) = Ω(Q(f)2/ε).
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4 Applications

Inspired by our characterization of bomb query complexity, we have the following result (stated
informally):

Suppose there is a classical algorithm that computes f(x) in T queries, and
the algorithm guesses the result of each query (0 or 1), making no more than an
expected G mistakes for all x. Then there is an explicit quantum algorithm using
O(
√
TG) queries.

This result is inspired by the easy construction of bomb query algorithms for certain functions.
Take, for example, the OR function: decide whether the string x is the all-zero string 0N or not.
A simple classical algorithm would be to simply check each bit of x one-by-one until we �nd a 1;
this takes at most T = N queries. At each query, the algorithm could guess that the query result
is 1; since the algorithm ends when a 1 is found, there is at most G = 1 wrong guess. Therefore
Q(OR) = O(

√
TG) = O(

√
N). We have thus proved the existence of Grover's algorithm.

We were able to make this upper bound constructive, by constructing an explicit quantum
algorithm tht makes O(

√
TG) queries. This algorithm is very similar to Kothari's algorithm for

oracle identi�cation [17]. Roughly speaking, the quantum algorithm takes the T -query classical
algorithm and uses quantum search to squentially �nd the G mistakes.

It turns out that this approach can be used to improve the upper bounds of several graph
problems in the adjacency matrix model. For example consider the following problem: given an
unweighted directed graph G with n vertices, �nd all shortest paths from a �xed vertex v ∈ G
to all other vertices w ∈ G (single source shortest paths). By analyzing the classical breadth-�rst
search algorithm, we obtain Q(f) = O(n3/2) (beating the best known upper bound of O(n3/2

√
log n)

[15]). Another example is �nding a maximum matching (a maximum set of edges that do not share
vertices) in a bipartite graph with n vertices; by analyzing the classical Hopcroft-Karp algorithm
[18] we see that this takes no more than O(n7/4) quantum queries to the adjacency matrix. (The
best known upper bound is the trivial O(n2), although the time complexity of this problem was
studied in [19, 20].)

Finally, we hope that the bomb query complexity model can help us understand the relationship
between the classical randomized query complexity, R(f), and the quantum query complexity Q(f).
It is known [8] that for all total functions f , R(f) = O(Q(f)6); however, there is a long-standing
conjecture that actually R(f) = O(Q(f)2). In light of our results, this conjecture is equivalent to the
conjecture that R(f) = O(εBε(f)). Further study on the relationship between bomb and classical
randomized complexity may therefore shed light on the limitations of quantum computation.
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