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1 Introduction

In this work, we study the problem of quantum spectrum testing. Here one is given n copies of a
mixed state ρ ∈ Cd×d and the goal is to determine whether ρ’s spectrum satisfies some property P
or is far from satisfying P. Formally:

Definition 1.1. A property P is testable with f(d, ε) copies if for every d ≥ 1, ε > 0 there
is an algorithm T which, when given f(d, ε) copies of a mixed state ρ ∈ Cd×d with spectrum
η = (η1, . . . , ηd), behaves as follows: (i) If η ∈ P, then Pr[T accepts] ≥ 2/3. (ii) If η is ε-far from
P in total variation distance, then Pr[T rejects] ≥ 2/3.

This model is the natural quantum analogue of the classical problem of testing symmetric properties
of probability distributions. It can also be shown [Mon14]1 equivalent to the model of testing
unitarily invariant properties of mixed states, as proposed by Montanaro and de Wolf [MdW13]. A
large focus of this work is addressing questions raised by their survey.

There are two previous results directly relevant to results in our work. The first is an algorithm
for learning the spectrum of an unknown mixed state. This algorithm is naturally suggested by
the early work of Alicki, Rudnicki, and Sadowski [ARS88] and was explicitly proposed by Keyl
and Werner [KW01]. Regarding its performance guarantee, Hayashi and Matsumoto [HM02] gave
explicit error bounds and a short proof, but their work contained some small calculational errors,
subsequently corrected by Christandl and Mitchison [CM06]. From the last of these it is easy to
deduce the following:

Theorem 1.2. There is an algorithm which, given O(d2/ε2 · ln(d/ε)) copies of a mixed state ρ with
spectrum η, outputs with high probability an estimate of η that is ε-close in total variation distance.

The second result comes from the work of Childs et al. [CHW07]. It can be thought of as a quantum
analogue of the (Birthday Paradox-based) fact that Θ(

√
r) samples are necessary and sufficient to

distinguish a distribution which is uniform on half of [2r] from one which is uniform on all of [2r]:

Theorem 1.3. Θ(r) copies of a state ρ are necessary and sufficient to distinguish between the
cases when ρ’s spectrum is uniform on either r or 2r values. (The bound also holds for r vs. cr for
integers c > 2.)

Theorem 1.2 gives an upper bound of O(d2/ε2 · ln(d/ε)) copies for testing any property in the model
of Definition 1.1, whereas Theorem 1.3 gives a lower bound of Ω(d) for various properties of spectra.
Thus, when considering specific properties, we hope for subquadratic algorithms, though we usually
cannot hope for sublinear algorithms. This is in contrast with property testing of classical prob-
ability distributions, in which sublinear algorithms are the main goal, with the Birthday Paradox
typically precluding sub-O(

√
d)-sample algorithms.

We have four main results. The first concerns the property that Montanaro and de Wolf refer
to as Mixedness:
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Theorem 1.4. Θ(d/ε2) copies are necessary and sufficient to test whether ρ ∈ Cd×d is the maxi-
mally mixed state.

(In terms of Definition 1.1, a state is maximally mixed if its spectrum is η = (1/d, . . . , 1/d).) This
is the quantum analogue of the result of Paninski [Pan08] which states that Θ(

√
d/ε2) samples

are necessary and sufficient to test whether an unknown probability distribution is uniform (see
also [GR11, BFR+13]).

Our second result gives new bounds for testing whether a state has low rank.

Theorem 1.5. Θ(r2/ε) copies are necessary and sufficient to test whether ρ ∈ Cd×d has rank r
with perfect completeness. With imperfect completeness, a lower bound of Ω(r/ε) holds.

We note that the copy complexity is independent of the ambient dimension d. Knowing that a
state is low rank can often make solving a given problem much simpler. For example, quantum
state tomography can be made more efficient when the state is known to be low-rank [FGLE12].

Next, we extend Theorem 1.3 to r vs. r′ for any r + 1 ≤ r′ ≤ 2r. A qualitative difference is
seen when r′ = r + 1; namely, nearly quadratically many copies are necessary.

Theorem 1.6. Let 1 ≤ ∆ ≤ r. Then O(r2/∆) copies are sufficient to distinguish between the cases
when ρ’s spectrum is uniform on either r or r + ∆ eigenvalues; further, a nearly matching lower
bound of Ω((r2/∆)1−ε) copies holds for any ε > 0.

As above, we note that these bounds are independent of the ambient dimension d. The 1 − ε in
the exponent is an artefact of our proof technique; it is an interesting open problem as to whether
a tight Ω(r2/`) lower bound can be obtained.

Our final result shows that the analysis of the algorithm from Theorem 1.2 is tight up to
logarithmic factors.

Theorem 1.7. If ρ ∈ Cd×d is the maximally mixed state, the algorithm from Theorem 1.2 fails to
give an ε-accurate estimate (with high probability) unless Ω(d2/ε2) copies are used.

To our knowledge, no such lower bound was known previously. We remark that it is an interesting
open question as to whether some other algorithm can estimate an unknown state’s spectrum with
from a subquadratic number of copies.

2 Techniques

Following [ARS88, Har05, CM06, CHW07], we use techniques from representation theory of the
symmetric group Sn. A basic tool is Schur-Weyl duality, which decomposes the space (Cd)⊗n as

(Cd)⊗n
Sn×Ud∼=

⊕
λ`n
Pλ ⊗Qdλ, (1)

where the subspace Pλ corresponds to the symmetric group, the subspace Qdλ corresponds to the
unitary group, and λ is a partition of n (meaning a tuple λ = (λ1, . . . , λ`) satisfying λ1 ≥ . . . ≥
λ` ≥ 0 and λ1 + . . .+λ` = n). In our testing problem, the tester is provided ρ⊗n, which is invariant
under any permutation of the n coordinates, and whether it accepts or rejects should be invariant
under any unitary transformation of ρ. This means that if we measure ρ⊗n in the Schur basis given
by Equation (1), we can throw away the information from the permutation and unitary registers
without losing any relevant information. What is left is only the “irrep” label λ.
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The end result is this: there is a sampling algorithm—referred to in [CHW07] as weak Schur
sampling—which, on input a mixed state ρ⊗n, outputs a random partition λ whose distribution
depends on the spectrum of ρ. We will denote this distribution by SWn(ρ). Furthermore, an ar-
gument which is essentially from [CHW07] (though see [MdW13, Lemma 19] for a full statement)
shows that for any property P, there is an optimal tester in the model of Definition 1.1 whose oper-
ation is as follows: 1. Sample λ ∼ SWn(ρ). 2. Accept or reject based only on λ. We may therefore
proceed without loss of generality by analyzing only algorithms of this form. This necessitates
understanding the distribution SWn(ρ).

In case ρ is the maximally mixed state, the distribution SWn(ρ) is somewhat well-studied [Bia01,
Mél10]. It is known as the Schur-Weyl distribution, and we denote it by SWn,d. (In the limit as
d→∞, it approaches the well-known Plancherel distribution.) The exact distribution on partitions
given by SWn,d is quite complicated and difficult to work with, and so various works have instead
sought to describe large-scale features of a “typical” λ ∼ SWn,d. For example, Biane [Bia01]
has shown that, up to small fluctuations, the “shape” of a random λ ∼ SWn,d tends toward a

certain limiting shape Ω which depends only on the ratio
√
n
d . Furthermore, Meliot [Mél10] has

characterized these small fluctuations as being distributed like a certain Gaussian process. The
second of these results borrows heavily from a proof of the analogous result for the Plancherel
measure by Kerov [IO02], and we will give an overview his techniques below.

Kerov’s approach involves studying a certain space of symmetric polynomial functions on Young
diagrams. For example, if one is interested in showing that a random λ ∼ SWn,d tends to have some
coordinates which are much larger than the rest, then it would be natural to study “moments” of
the form

∑
λki . However, the approach of Kerov would suggest studying the following “moments”

instead:

pk(λ) :=
∞∑
i=1

[(λi − i+ 1
2)k − (−i+ 1

2)k], for k ≥ 1.

The polynomial family (pk) inhabits (in fact, it generates) the so-called algebra of polynomial func-
tions on the set of Young diagrams Λ∗ (also known as Kerov’s algebra of observables). There are
other important polynomial families within Λ∗—in addition to the pk polynomials, our work uses
the p̃k, p

#
µ , s∗µ, and ck polynomials— and each of these families sheds light on a different aspect of

the input partition λ. For example, though the p#µ (λ) polynomials don’t give any obvious infor-
mation regarding the “shape” of λ, they are unique in that we can easily compute the expectation
Eλ∼SWn(ρ)[p

#
µ (λ)] for any mixed state ρ. There are various methods for passing from one polyno-

mial family to another, and it is often the case that a problem most easily stated in terms of one
polynomial family is most easily solved in terms of another.

Our lower bounds generally have the following outline: 1. Reduce the problem to showing
that a certain expression within the algebra of observables is small with high probability. 2. Use
various polynomial-estimation techniques developed by Kerov and others for proving concentration
of said expression. Thus, e.g., proving the lower bound in Theorem 1.6 roughly reduces to showing
that the expression

∑∞
k=1(−1/r)k+1ck(λ) is small (with high probability) for λ ∼ SWn,d. As

another example, proving the lower bound in Theorem 1.4 reduces to showing that the expression∑
µ s
∗
µ(λ)sµ(ε,−ε, . . . , ε,−ε)/d↑µ is small (with high probability) for λ ∼ SWn,d. Our upper bounds

generally involve analyzing algorithms which accept or reject based on simple statistics of the
sampled λ ∼ SWn,d. For example, the rank tester of Theorem 1.5 accepts iff the sampled λ has at
most r nonzero parts, and the uniformity tester of Theorem 1.4 accepts iff c1(λ) is sufficiently small.
As in the lower bounds, analyzing these algorithms uses techniques from the algebra of observables,
and we sometimes also require certain combinatorial interpretations of the weak Schur sampling
algorithm; e.g., its relationship with the Robinson–Schensted–Knuth “bumping” algorithm.
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