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A major application of quantum communication is the distribution of entangled particles
for use in quantum key distribution [1–3] (QKD). Due to unavoidable noise in the commu-
nication line, QKD is in practice limited to a distance of a few hundred kilometers [4–6],
and can only be extended to longer distances by use of a so-called quantum repeater [7, 8],
a device which performs iterated entanglement distillation and quantum teleportation. The
existence of entangled particles that are undistillable but nevertheless useful for QKD [9]
raises the question of the feasibility of a quantum key repeater, which would work beyond the
limits of entanglement distillation, hence possibly tolerating much higher noise than existing
protocols. Here, we show that any such apparatus is severely limited in its performance; in
particular, we exhibit entanglement suitable for QKD but unsuitable for the most general
conceivable quantum key repeater protocol. Our results are in the form of general bounds on
the rate at which secure key can be obtained by such protocols. The mathematical techniques
we develop may be seen as a step towards opening the theory of entanglement measures to
networks of communicating parties. A technical version of this work is available at [10].

When a signal is passed from a sender to a receiver, it inevitably degrades due to the noise
present in any realistic communication channel (e.g. a cable or free space). The degradation of the
signal is typically exponential in the length of the communication line. When the signal is classical,
degradation can be counteracted by use of an amplifier that measures the degraded signal and,
depending on a threshold, replaces it by a stronger signal. When the signal is quantum mechanical
(e.g. encoded in non-orthogonal polarisations of a single photon), such an amplifier cannot work
anymore, since the measurement inevitably disturbs the signal [11]. Sending a quantum mechanical
signal, however, is the basis of quantum key distribution, a method to distribute a cryptographic
key which can later be used for perfectly secure communication between sender and receiver [1].
The degradation of sent quantum signals therefore seems to place a fundamental limit on the
distance at which secure communication is possible thereby severely limiting its applicability in
the internet [5, 6].

A way around this limitation is the use of entanglement-based quantum key distribution schemes
[2, 3] in conjunction with a so-called quantum repeater [7]. This amounts to distributing n Einstein-
Podolsky-Rosen (EPR) pairs between Alice and Charlie (an untrusted telecom provider), and
between Bob and Charlie. Imperfections due to noise in the transmission are compensated by
distillation, yielding ≈ ED × n perfect EPR pairs. Here ED denotes the distillable entanglement
of the imperfect EPR pair. The EPR pairs between Charlie and Bob are then used to teleport the
state of Charlie’s other particles to Bob. This process, known as entanglement swapping, results
in EPR pairs between Alice and Bob [12]. When Alice and Bob make appropriate measurements
on these EPR pairs, they obtain a sequence of secret key bits, that is, an identical but random
sequence of bits that is uncorrelated with the rest of the universe (including Charlie’s systems),
enabling secure communication. The described scheme with one intermediate station effectively
doubles the distance over which QKD can be carried out and more repeater stations can be inserted
to efficiently extend the distance arbitrarily. The implementation of quantum repeaters is therefore
one of the focal points of experimental quantum information science [8].

Due to the tight connection between the distillation of EPR pairs and QKD [13, 14], it came
as a surprise that there are bound entangled states (i.e. entangled states with ED = 0) from
which secret key can be obtained (i.e. the distillable key satisfies KD > 0) [9]. With the help of a
quantum repeater as described above, however, the secret key contained in such states cannot be
extended to larger distances, as the states do not allow for the distillation of EPR pairs.
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This raises the question of whether there may be other ways to extend the secret key to arbitrary
distances than by entanglement distillation and swapping, other quantum key repeaters. More
formally, we analyse the quantum key repeater rate KA↔C↔B at which a protocol — only using
local operations and classical communication (LOCC) — is able to extract private bits between
Alice and Bob from entangled states which each of them shares with Charlie. By a private bit
we mean an entangled state containing a unit of privacy paralleling the EPR pair as a unit of
entanglement [9, 15]. Mathematically, a private bit is given by a density matrix γAA′BB′ with four
subsystems A, A′ and B, B′. A and B are the qubits that contain the key bits and A′ and B′

are d-dimensional systems, called shield systems. Moreover, each private bit is represented by an
operator X which is a d2 by d2 matrix with ‖X‖1 = 1.

Note that just as the definition of the distillable key [9, 16], the definition of the quantum key
repeater rate is information-theoretic in nature. The role of Charlie here merits special attention.
While he participates in the LOCC protocol like Alice and Bob do, he is not a “trusted party”;
indeed, at the end of the protocol, Alice and Bob wish to obtain private bits, whose privacy is not
compromised even if at that point Charlie passes all his information to the eavesdropper. We also
note that techniques from quantum information theory [17, 18] allow to conclude that the obtained
rate of private bits can be made unconditionally secure [19–21].

In the following we will describe our main results which demonstrate that the performance of
quantum key repeaters beyond the use of entanglement distillation is severely limited.

Our first result takes as its starting point the observation that there are private bits that are
almost indistinguishable from separable states by LOCC [22]. An example is given by the choice
X = 1

d
√
d

∑
ij uij |i〉〈j| ⊗ |j〉〈i|, where the uij are the entries in the quantum Fourier transform in

dimension d. Here, the distinguishability can easily be bounded by ‖XΓ‖1 = 1√
d
, where Γ indicates

the partial transpose, that is, the transpose of one of the systems [23]. Suppose now that a quantum
repeater protocol applied to two copies of the latter state, shared by Alice and Charlie and Bob
and Charlie respectively, successfully outputs a private bit between Alice and Bob. Then, if Alice
and Bob joined their labs, they could distinguish this resulting state from a separable state, as
separable states are well distinguishable from private states by a global measurement [9]. This
implies an LOCC procedure for Alice & Bob (jointly) and Charlie to distinguish the initial private
bits γ ⊗ γ from separable states: first run the quantum key repeater protocol and then perform
the measurement. This, however, is in contradiction to the property that the private state γ (and
hence γ ⊗ γ) is almost indistinguishable from separable states under LOCC. In conclusion this
shows that such private bits cannot be successfully extended to a private bit between Alice and
Bob by any quantum key repeater protocol (see Section III.B of[10]).

Although intuitive, the above argument only bounds the repeated key obtained from a single

copy of input states. The language of entanglement measures allows us to formulate this argument
asymptotically as a rigorous distinguishability bound on the rate KA↔C↔B for general states ρ

and ρ̃ (see Section III.C of [10]):

KA↔C↔B(ρACA
⊗ ρ̃CBB) ≤ D∞C↔AB(ρACA

⊗ ρ̃CBB), (1)

where the RHS is the regularised LOCC-restricted relative entropy distance to the closest separable
state [24]. Observing invariance of this bound under partial transposition, we obtain for states
remaining positive under partial transposition (PPT) a bound in terms of the regularised relative
entropy of entanglement of their partially transposed version ρΓ: E∞R (ρΓ) +E∞R (ρ̃Γ). If we restrict
to forward communication from Charlie and ρACA

= ρ̃BCB
, squashed entanglement provides a

bound: KA←C→B(ρACA
⊗ ρ̃CBB) ≤ 4Esq(ρ

Γ). Using invariance under partial transposition directly
on the hypothetical quantum key repeater protocol, we obtain for PPT states ρ and ρ̃ (see Section
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III.A of [10]):

KA↔C↔B(ρACA
⊗ ρ̃CBB) ≤ KD(ρΓACA

) ≤ min{E∞R (ρΓACA
), Esq(ρ

Γ

ACA
)}. (2)

We will now give an example of a state ρACA
= ρ̃BCB

for which the key rate is large, but the
bounds, and hence the quantum key repeater rate are arbitrarily small. Guided by our intuition, we
would like to consider the private bit γ from above whose partial transpose is close to a separable
state. The state, however, is not PPT (no private bit can be PPT [9]). Fortunately, it turns into
a PPT state ρ under mixing with a small amount of noise and we find KA↔C↔B(ρ⊗ ρ) ≈ 0 while
KD(ρ) ≈ 1. This leads us to the main conclusion of our paper: there exist entangled quantum
states that are useful for quantum key distribution at small distances but that are virtually useless
for long-distance quantum key distribution.

Finally, we present a different type of bound on the quantum key repeater rate based on the
direct analysis of the entanglement of a concrete output state of a quantum repeater protocol (see
Section III.D of [10]):

KA←C↔B(ρACA
⊗ ρ̃CBB) ≤

1

2
EC(ρACA

) +
1

2
ED(ρ̃CBB). (3)

This bound, unlike the ones presented above, applies to all quantum states. In particular, it applies
to certain states invariant under partial transposition which escape the techniques presented before.
Note that in the case of PPT states, one may partially transpose the states appearing on the right
hand side since KA←C↔B is invariant under partial transposition. The proof of (3) is obtained by
upper bounding the squashed entanglement of the output state of the protocol using a manipulation
of entropies resulting in the RHS of (3). The squashed entanglement in turn upper bounds the
distillable key of the output state (which upper bounds the LHS) [25].

The preceding results pose limitations on the entanglement of the output state of a quantum
key repeater protocol. As such, they support the PPT 2 conjecture: Assume that Alice and Charlie
share a PPT state and that Bob and Charlie share a PPT state; then the state of Alice and Bob,
conditioned on any measurement by Charlie, is always separable [26–28]. Reaching even further,
and consistent with our findings, we may speculate that perhaps the only “transitive” entangle-
ment in quantum states, i.e. entanglement that survives a quantum key repeater, is the distillable
entanglement. One may also wonder whether there are inequalities between the entanglement of
in- and output for other entanglement measures. In the context of algebro-geometric measures,
this question has been raised and relations for the concurrence have been found [29, 30]. As our
work focuses on operational entanglement measures, we investigated the tightness (3) and, based
on a random construction, showed that the LHS cannot be replaced by the entanglement cost of
the output state.

With this paper we initiate a study of long-distance quantum communication and cryptography
beyond the use of entanglement distillation. Even though the reported results provide limitations
rather than new possibilities, we hope that this work will lead to a rethinking of the currently used
protocols resulting in procedures for long-distance quantum communication that are both more
efficient and that can operate in noisier environments.
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