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Recent years have witnessed an enormously growing understanding of quan-
tum many-body systems, based on the language and tools of entanglement
theory. Along these lines tensor network methods have proven instrumental
to our current understanding of gapped local Hamiltonians at low energies, in
particular in 1D [2, 3, 4]. Often one is interested in the low-energy properties of
an entire gapped phase, i.e. a collection of Hamiltonians which can be smoothly
connected with one another by adiabatic paths (which in turn translate to local
unitary (LU) circuits of constant depth). Ideally, one would like to identify
stable properties which uniquely characterize a gapped phase, and enumerate
those phases exhaustively. In 2D this goal has largely been elusive so far, not
the least because of novel emergent phenomena like (intrinsic) topological order.

Here we focus on gapped phases in 2D with an emergent topological gauge
theory [5], i.e. with topological order given by a (finite) gauge group G and
certain complex weights ω. We introduce a framework of virtual symmetry matrix
product operators (MPO) for projected entangled pair states (PEPS) and show
how this MPO symmetry determines the emergent, topological properties of the
PEPS [1]. In particular, we identify several kinds of local equivalences between
symmetry MPOs all of which describe PEPS in the same gapped phase. In
a wider context, this implies that many topological gauge theories are in fact
equivalent and our results based on entanglement theory provide a microscopic
explanation for this redundancy.

Generalizing G-injectivity [6], we require that local PEPS tensors are invari-
ant under certain symmetry MPOs (Fig. 1). From this idea we can rigorously
determine the emergent topological order of the PEPS as that of a Dijkgraaf-
Witten topological quantum field theory (TQFT) [5]. This TQFT is defined via
a discrete path integral Z over (2+1)D spacetime: one obtains Z by triangulating
spacetime and assigning elements of G and weights ω to the resulting tetrahedra
in a triangulation invariant way. The MPO symmetry of local PEPS tensors
can now be understood as a particular example of triangulation invariance in
the emergent TQFT (Fig. 1). Other properties of the MPOs have a similar
interpretation. However, while a TQFT has vanishing correlation length by def-
inition, our framework of virtual MPO symmetry provides a rigorous extension
of Dijkgraaf-Witten TQFTs to non-zero correlation length.

How are these MPOs constructed in detail? For simplicity we will again use
the emergent TQFT for illustration, however, the construction works regardless.
The triangulation invariance of Z implies that the tetrahedral weights are given
by a so called 3-cocycle ω : G×G×G→ C× of G. As sketched in Fig. 1, the
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Figure 1: Virtual MPO symmetry vs. triangulation invariance in TQFTs.

MPO is defined by the same data (G,ω) as Z. Microscopically, this ensures
that our virtual MPO symmetry (and injectivity) correctly extends to any local
region of the PEPS. It is easy to show that any nontrivial ω implies an MPO
bond dimension D > 1. For trivial ω the MPO factorizes into a product of
local operators and defines ordinary G-injectivity [6]. As is proven rigorously
in [1], MPOs constructed from the data (G,ω) indeed lead to an emergent
TQFT specified by the same data, even for non-zero correlation length. Parent
Hamiltonians associated with the PEPS are frustration-free, but their interaction
terms do not commute in general.

To what extent are these MPOs a unique property of the emergent gapped
phase? Given G, a trivial observation shows that there is a continuous freedom
in the choice of ω. Group cohomology provides a convenient means to eliminate
it: infinitely many 3-cocycles ω are replaced by a finite number of equivalence
classes [ω] which form the third cohomology group H3(G,C×) of G. This
equivalence merely rescales the MPO and can be absorbed into an LU circuit
of depth 1 at the physical level. In other words, the gapped phase determined
by the MPO actually depends on H3(G,C×) only. This very object has been
suggested to classify topological gauge theories [7].

Let us briefly mention some simple examples. Since H3(Z2,C×) = {[1], [ω]}
there are two topological gauge theories with G = Z2, and these are realized by
the toric code [8] and the doubled semion model [9]. Both models have the same
fusion rules for their emergent anyons and the same topological entanglement
entropy [10, 11], yet can be distinguished by how their degenerate ground states
on a torus respond to modular transformations.1 Accordingly, PEPS for the
toric code are described in our framework by MPOs with data (Z2, [1]), i.e.
by ordinary Z2-injectivity, while the doubled semion model requires MPOs
with data (Z2, [ω]) and D = 2. Secondly, MPOs constructed from an Abelian
group G may yield PEPS with non-Abelian anyons, e.g. for certain data
(Z3

2, [ω]). This is impossible for ordinary G-injectivity unless G itself is non-
Abelian. The data (Z3

2, [ω]) is also interesting as a source of non-Abelian anyons
which can alternatively be described within the XS-stabilizer formalism [12].
More generally, emergent topological gauge theories are realized e.g. in quantum
double models [8] and deformations thereof [13].

Perhaps surprisingly, group cohomology does not eliminate all freedom in
1This response is encoded in the topological S- and T -matrices.
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Figure 2: Local equivalence of virtual symmetry MPOs.

parametrizing our MPO symmetry. In order to see this, consider an auto-
morphism σ of G. While it cannot affect any structure solely determined by
group multiplication, σ does affect the weights via (σ−1 B ω)(g1, g2, g3) :=
ω

(
σ(g1), σ(g2), σ(g3)

)
. So Aut(G) naturally induces a permutation action on

equivalence classes [ω]. We write [ω′] ∼ [ω] whenever two classes belong to the
same orbit JωK. Microscopically, an MPO with data (G, [ω]) is then conjugated
by a product of local operators to yield another MPO with data (G, [ω′]). This
can again be absorbed into an LU circuit of depth 1 at the physical level. Thus,
gapped phases in (2 + 1)D with emergent topological gauge theories depend on
H3(G,C×)/∼ at most, which significantly improves the earlier result [7].

Often, the orbits H3(G,C×)/∼ provide a provably complete classification for
fixed G. We would like to illustrate this with a simple example. For G = Z2×Z2
one has H3(G,C×) = {ωk1k2k3}, where ki ∈ {0, 1}. The permutation action
yields 4 disjoint orbits J1K = Jω000K, Jω001K, Jω010K, Jω111K. It is now instructive
to look at the topological S- and T -matrices which in this case are given by:

S(g,µ)(h,ν) = 1
4 (−1)µ1h2+µ2h1+ν1g2+ν2g1+k1g1h1+k2g2h2(−i)k3(g1h2+g2h1), (1)

T(g,µ)(h,ν) = δg,h δµ,ν ik1g
2
1+k2g

2
2+k3g1g2 (−1)g1µ2+g2µ1 . (2)

Here degenerate ground states are labelled by (g, µ) ∈ {00, 01, 10, 11}2 where
g1 (g2) denotes the high (low) bit of g (similarly for µ). A simple calculation
confirms that these matrices are constant on the above orbits (once ground state
labels are suitably permuted), as expected from their invariant property [14].
Since the T -matrices are distinct for each orbit, there are exactly 4 topological
gauge theories with G = Z2 × Z2.

Furthermore, we show how two MPOs with data (G, JωK) and (G′, Jω′K)
respectively may determine the same gapped phase, although G and G′ are not
isomorphic. This is because symmetry MPOs may locally transform into each
other under conjugation by an auxiliary MPO with D > 1 (Fig. 2). Perhaps
surprisingly, we can reuse the above example for illustration: MPOs with the
data (Z2 × Z2, Jω001K) and (Z4, J1K) are in fact locally equivalent, as are the
gapped phases they determine.

In this work we have introduced virtual symmetry MPOs and showed how
they characterize PEPS in 2D with topological order given by a Dijkgraaf-Witten
TQFT. We have further uncovered local equivalences of these symmetry MPOs
in terms of auxiliary MPOs. While they arise at several, conceptually different
stages, all these equivalences translate to LU circuits of constant depth at the
physical level, so that the corresponding PEPS lie in the same gapped phase.
What is more, these equivalences are stable since the virtual MPO symmetry is
unaffected by physical operations which may cause a non-zero correlation length.
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