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In this talk, we derive the optimal estimation for commutative and non-commutative group
with energy constraint. The proposed method can be applied to projective representations
of non-compact groups as well as of compact groups. This paper addresses the optimal
estimation of R, U(1), SU(2), SO(3), and R2 with Heisenberg representation under a suitable
energy constraint. The technical details are in arXiv:1209.3463 (2012).

Fourier Analytic Approach: In quantum theory, the reversible dynamics of a system is often de-
scribed by an element in a projective unitary representation of a group. In this case, the unitary
acting on the real quantum system reflects important physical parameters. Therefore, we can es-
timate these physical parameters by estimating the true unitary among a given projective unitary
representation of a group. Indeed, it is known that estimation of unitary has a square speed up over
the state estimation in quantum case. However, only the limited case of estimation of unitaries has
been solved[1–8]. Other case of estimation of unitaries has not been solved while their Fisher in-
formation has been calculated[10]. Indeed, several researchers consider that the Fisher information
describes the attainable limit of the precision of the estimation of unitary[9–16]. However, as was
pointed in [8, 17], it does not give the attainable bound of precision of the estimation of unitary.

The first studies [1, 2] treated the phase estimation, which is essentially the estimation of the
representation of U(1). Next, the estimation of SU(2) was studied [3–5]. Chiribella et al [6]
established a general theory of estimation of unitary representation of a compact group. Chiribella
[18] extended the result to the case of projective representations. Kahn [19] applied this result to
the case of SU(d). These studies showed that the estimation error behaves as C

n2 when n is the
number of tensor products of the representation. We often call this phenomena the square speed
up. For a real implementation, the energy of the input state might be a more important factor
than the available number of tensor products. However, many existing studies do not address the
optimal estimation with an energy constraint for the input state. This paper deals with this kind
of optimization problem.

On the other hand, Imai et al [7] treated phase estimation by using Fourier analysis. In the
estimation of action of finite group, the minimum error probability has been shown by [20–22],
and that with the projective representation case by [23]. In the case of non-compact groups, the
estimation of group action has been formulated by Holevo [24, 25] when the input state is fixed.
However, the optimization of input state has been not resolved. That is, there is no general
theory of estimation of group action for non-compact groups. In fact, the Fourier transform can
be generalized to the case of a non-compact group G, whose generalized version is often called
Plancherel transform. In this case, we focus on the set Ĝ of irreducible representations. Under
this method, the input state φ can be written as totally square summable (integrable) matrices on
irreducible representation spaces. The inverse Fourier transform is given as the unitary operator
from the input state φ to the square integrable function on G, which can be regarded as an element
of L2(G). Hence, using the inverse Fourier transform, we derive a general optimization result for
estimation of a group. In this formula, the minimum error can be written as the minimum of the
average error under the distribution given as the square integral of the inverse Fourier transform
of the input pure state. Then, we recover existing general results for finite groups and compact
groups by [20–23] from our obtained general result.

Further, when the input system is infinite-dimensional, it is natural to restrict the energy of
the input state. This constraint is also needed even in the finite-dimensional case. However, the
optimal estimation of group action with this type constraint has not been studied sufficiently with
a general framework even in the compact case. Using the Fourier transform, this paper gives a
general result for this problem. The merit of the obtain general result is to decrease the freedom of
optimization. That is, thanks to these results, it is enough to treat the case when the measurement
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is a specific measurement and the input is pure state. These result reduce our optimization problem
to the optimization with respect to input pure states. Further, these results enable us to apply
the known result of Fourier analysis because these results clarify the relation with Fourier analysis.
The typical obtained results with the energy constraint are summarized as follows although our
obtained results cover more general setups.

Estimation of the location sift operation R: Firstly, let us consider the estimation of the location
sift operation x ∈ R. In this case, any irreducible representation can be written as x 7→ expi

with the momentum p ∈ R̂ with R̂ = R. Hence, any representation can be written as the unitary
Ux :=

∫∞
−∞ e

xpi|p〉〈p|dp on L2(R). In this case, the input state can be written as a square integrable

function φ on the momentum space R̂. When we apply the estimator M(dx̂), which is a POVM,

we obtain the output distribution 〈φ|U †xM(d)Ux|φ〉.
Now, we consider the energy constraint on the momentum space R̂ as

∫∞
−∞ p

2|φ(p)|2 dp√
2π
≤ E,

which can be regarded as a constraint for the kinetic energy. When we adopt the mean square error
D(M,φ) :=

∫∞
−∞(x̂ − x)2〈φ|U †xM(dx̂)Ux|φ〉, our problem can be formulated as the minimization

problem:

min
M,φ
{D(M,φ)|

∫ ∞
−∞

p2|φ(p)|2 dp√
2π
≤ E} =

8

E
, (1)

which can be shown by employing the conventional minimum uncertainty relation. The optima
input state is given by a Gaussian wave function. Due to the central limit theorem, the Gaussian
wave function can be approximated by the tensor product φ⊗n of an arbitrary pure state φ. In this
case, the optimal coefficient of the first order can be attained by the maximum likelihood estimator
with n repeated applications of a proper covariant measurement to the system with the single copy
input φ.

Estimation of the periodic location sift operation U(1): Next, we consider the estimation of the
location sift operation with the periodic condition. In this case, the action can be described as
the action eθi ∈ U(1). Then, any irreducible representation can be written as θ 7→ eθki with the

momentum k ∈ ˆU(1) with ˆU(1) = Z. Hence, any representation can be written as the unitary Uθ :=
⊕∞k=−∞eθki|k〉〈k| on L2(Z). The input state can be written as a square integrable function φ on the

momentum space ˆU(1) = Z. Now, we consider the energy constraint on the momentum space ˆU(1)

as
∑∞

k=−∞ k
2|φ(k)|2 ≤ E. Similarly the output distribution is written as 〈φ|U †θM(dθ̂)Uθ|φ〉 with the

the estimator M(dθ̂). When we adopt the error D(M,φ) :=
∫∞
−∞(1− cos(θ̂− θ))〈φ|U †θM(dθ̂)Uθ|φ〉,

our problem can be formulated as the minimization problem:

min
M,φ
{D(M,φ)|

∞∑
k=−∞

k2|φ(k)|2 ≤ E} = max
s>0

sa0(
2
s )

4
+ 1− sE ∼=

1

8E
− 1

128E2
as E →∞, (2)

where a0 is a function related to the Mathieu function.
Further, the optimal coefficient of the first order can be attained by the following method. The

input state is the tensor product φ⊗n of an arbitrary pure state φ. We apply a proper covariant
measurement to the system with the single copy input φ. Finally, we apply the maximum likelihood
estimator for n repeated applications of the above measurement.

Estimation of the action SO(3) and SU(2): Next, we consider the estimation of the rotating action
g ∈ SO(3). In this case, any irreducible representation can be written as g 7→ Uλ,g on the irreducible

representation space Hλ with the maximum weight λ ∈ ˆSO(3). Hence, any representation can be
written as the unitary Ug := ⊕

λ∈ ˆSO(3)
Uλ,g on ⊕

λ∈ ˆSO(3)
Uλ ⊗ U∗λ, where U∗λ is the dual space of Uλ.

In this case, the input state can be written as a square integrable function φ on ⊕
λ∈ ˆSO(3)

Uλ ⊗ U∗λ.

When we apply the estimator M(dĝ), we obtain the output distribution 〈φ|U †gM(dĝ)Ug|φ〉.
Now, we consider the energy constraint as 〈φ|⊕

λ∈ ˆSO(3)
λ(λ+1)Iλ|φ〉 ≤ E, where Iλ is the projec-

tion to the space Uλ ⊗U∗λ, by using the Casimir operator, which is natural in the relation with the

angular momentum. When we adopt the error D(M,φ) :=
∫∞
−∞

1
4(4− |Trg−1ĝ|2)〈φ|U †xM(dx̂)Ux|φ〉
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with use of the gate fidelity 1
4 |Trg−1ĝ|2, our problem can be formulated as the minimization prob-

lem:

min
M,φ
{D(M,φ)|〈φ| ⊕

λ∈ ˆSO(3)
λ(λ+ 1)Iλ|φ〉 ≤ E} = max

s>0

sa1(
2
s )

4
+ 1− s(E +

1

4
) ∼=

9

8E
− 81

128E2
(3)

as E →∞, where a1 is a function related to the Mathieu function. Further, the optimal coefficient
of the first order can be attained by the method given in the case of U(1). A similar result can be
shown when we consider the projective representation of SO(3).

For SU(2), we adopt the error D(M,φ) :=
∫∞
−∞(1 − 1

2Trg−1ĝ)〈φ|U †xM(dx̂)Ux|φ〉. Then, our
problem can be formulated as the minimization problem:

min
M,φ
{D(M,φ)|〈φ| ⊕

λ∈ ˆSU(2)
λ(λ+ 1)Iλ|φ〉 ≤ E} = max

s>0

sb2(
8
s )

16
+ 1− s(E +

1

4
) ∼=

9

32E
− 7 · 33

211E2

(4)

a E →∞, where b2 is a function related to the Mathieu function.

Estimation of the action of the Heisenberg representation: Finally, we consider the action of the
Heisenberg representation x = (x1, x2) ∈ R2. In this case, the irreducible representation is the
equivalent with the Heisenberg representation x 7→ Ux on L2(R) when we fix the commutation
relation. Then, the input state can be written as a square integrable operator φ on L2(R), which
is a pure state on L2(R) ⊗ L2(R). When we apply the estimator M(dx̂), we obtain the output

distribution 〈φ|U †xM(dx̂)Ux|φ〉. Now, we consider the energy constraint as 〈φ|(Q2+P 2)⊗I|φ〉 ≤ E.

When we adopt the mean square error D(M,φ) :=
∫∞
−∞(x̂1 − x1)2 + (x̂2 − x2)2〈φ|U †xM(dx̂)Ux|φ〉,

our problem can be formulated as the minimization problem:

min
M,φ
{D(M,φ)|〈φ|(Q2 + P 2)⊗ I|φ〉 ≤ E} =

1

2E
, (5)

which can be shown by reducing the problem to the minimum uncertainty relation on the two-
dimensional space.

Uncertainty relations on S1 and S3: Using the relation S1 ∼= U(1) and S3 ∼= SU(2), we de-
rive uncertainty relations on S1 and S3. Given ϕ ∈ L2(S1), we focus on the relation between
∆2
ϕ(cosQ, sinQ) := ∆2

ϕ cosQ+ ∆2
ϕ sinQ and ∆2

ϕP , where ∆2
ϕX := 〈ϕ|X2|ϕ〉− 〈ϕ|X|ϕ〉2. Then, we

obtain

min
ϕ∈L2

n(S
1)
{∆2

ϕ(cosQ, sinQ)|∆2
ϕP ≤ E} = max

s>0
1− (sE −

sa0(
2
s )

4
)2 ∼=

1

4E
− 1

32E2
as E →∞, (6)

where L2
n(Ω) is the set of normalized functions of L2(Ω). Given ϕ ∈ L2(S3), we focus on the relation

between ∆2
ϕ
~Q :=

∑3
j=0 ∆2

ϕQj and ∆2
ϕ
~P :=

∑3
j=1 ∆2

ϕPj , where Pj is the momentum operator for

the i-th direction of σj via the relation S3 ∼= SU(2). Then, we obtain

min
ϕ∈L2

n(S
3)
{∆2

ϕ
~Q|∆2

ϕ
~P ≤ E} = 1− (min

s>0
s(E +

1

4
)−

sb2(
8
s )

16
)2 ∼=

9

16E
− 5 · 33

29E2
as E →∞. (7)

Conclusion: Our obtained results show that we do not need to use of the entangled input state or the
quantum correlation with the quantum measurement to achieve the optimal first order coefficient
asymptotically. That is, we only need to use the correlation in the classical data processing because
the maximum likelihood estimator employs the correlation in this sense. These results are very
contrastive with the square speed-up of estimation of action without energy constraint. Using these
result, we have derived uncertainty relations on S1 and S3.
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